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Supplementary Note 1. Signal amplification reaction. 

 

The colorimetric signal amplification reaction occurred as a result of the chemical reduction of Au3+ on 

the surface of the AuNP conjugates. The reagent solution, which is a mixture of Au3+ and H3NO, is 

injected into the 2nd top case and initially flows downward into the absorption pads through the sensing 

membrane. After removing the 2nd top case after 3 min, the amplification reaction continued with the 

reagent flowing back up from the absorption pads to the sensing membrane by evaporation (Figure S2). 

As spectroscopic evidence of the amplification reaction, we observed a significant redshift (from 520 

nm to 560 nm) of the absorption peak, broadening of the peak, and darkening of the aqueous solution, 

which supports signal amplification by particle growth (see Figure S3). 

 

 

Supplementary Note 2. Assay optimization. 

 

We optimized assay steps to enhance the signal-to-noise ratio in the hs-VFA system. Our tests regarding 

cartridge compressibility, which determines the degree of paper layer compression when assembled, 

showed that the best signal-to-noise ratio occurred at 25% compressibility, where the signal intensity 

increased and the non-specific intensity decreased (Figure S4a). We attribute this to improved contact 

efficiency between paper layers, enhancing the washing of remaining conjugates in the 1st top case and 

free conjugates in the sensing membrane. Compressibility beyond 25% was not considered due to the 

relatively thick paper layers, making it difficult to assemble the top and bottom cases. Using 15 nm 

AuNPs led to a 50% increase in signal intensity compared to 40 nm AuNPs (Figure S4b). This 

enhancement is due to the superior membrane permeability of the 15 nm AuNPs and the higher particle 

quantity (1.40×1012/mL) at the same optical density (OD) concentration, approximately 15.5 times more 

than 40 nm AuNPs (9.00×1010/mL). In the optimized running buffer composition and combination, we 

observed an average improvement in signal intensity of approximately 44–68% (Figure S4c).  

The sample volume we used in this study, 50 µL, is experimentally optimized. Increasing the sample 

volume resulted in higher signal intensity. However, once the volume reached 50 μL, the increase in 

intensity was minimal (Figure S4d). Additionally, above 50 μL, the absorption time of the sample by 

the top case significantly increased, resulting in longer assay times and greater variability (Figure S4e). 

Therefore, we concluded that the ideal volume for optimal signal intensity and minimal assay time was 

50 μL.  

We also studied the dependence on the concentration of both the capture and the conjugate. We used 

a fixed amount (10 µL, 1 mg/mL, sufficient to saturate the AuNP’s surface) of the detection antibodies 

for conjugate synthesis. We also altered the conjugate concentration (AuNP-detection antibody 

complex) in the optimization study. The results of the optimization experiments indicated that the 

optimal concentration for the capture antibody was 1 mg/mL (Figure S4f) and that for the conjugate 

was 2.5 OD (Figure S4g), which resulted in the highest signal-to-noise ratio. Therefore, these 

concentrations were used throughout the final assay testing. 

For amplification, we evaluated signal intensity and inter-assay uniformity at the testing spots with 

various combinations of Au3+ and H3NO concentrations and selected the condition that ranked highest 

in both criteria (Au3+: 10 mM and H3NO: 10 mM, Figure S5). 

 

 

Supplementary Note 3. Comparison of two outlier analysis (OA) models. 

 

While integrating the OA algorithm into our process, we compared the statistics-driven approach 

(statistical OA model) with a differential OA method (OA-D), which utilized differential changes in raw 
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intensities between the time-lapse images (see the “Computational analysis of hs-VFA signals” 

subsection in the Methods for more details about OA and OA-D). This comparison enabled us to 

evaluate the impact of different OA methods on assay uniformity (intra-assay) and reproducibility (inter-

assay). When analyzing assay data sets (N=330) using OA algorithms, the statistics-based analysis 

retained an average of 6.5 ± 1.5 out of the original 10 test spots, whereas the OA-D method retained 4.8 

± 2.1 spots (Figure 3b, inset i). In the statistical OA model, we observed higher exclusion rates for spots 

located towards the outer edges of the sensing membrane (i.e., No. 1, 2, 5, 10 in Figure 3b, inset ii). 

This is mainly due to minor differences in flow homogeneity between the inner and outer spots, within 

a CV of 5%. When comparing the intra-assay CV before and after implementing the OA, we observed 

a substantial improvement in spot-to-spot assay uniformity (Figure 3b, inset iii) and assay 

reproducibility (Figure 3b, inset iv). Specifically, with the use of the statistical OA model, the assay 

uniformity improved from a CV of 4.1% to a CV of 1.1%, and assay reproducibility improved from a 

CV of 8.2% to a CV of 5.1%, which was superior to the differential model (OA-D). Therefore, we chose 

the statistical OA model for subsequent analysis as it offered better generalizability (by retaining more 

test spots) and achieved superior data refinement compared to other exclusion methods. 

 

 

Supplementary Note 4. Limitations of cTnI quantification with a single neural network model. 

 

Quantitative predictions of cTnI concentrations from DNNQuantification for 14 blind tested samples were < 

40 pg/mL, contradicting the predictions from DNNClassification (i.e., these samples were predicted as ≥ 40 

pg/mL by DNNClassification). Ground truth cTnI concentrations in all of these samples were in the 50–200 

pg/mL range, whereas quantitative outputs from DNNQuantification were equal to 0 pg/mL. One of the 

reasons for such false negative outputs from DNNQuantification for the lower concentration samples can be 

the limited amount of training samples. Only 12 out of 64 training samples fell into the 50–200 pg/mL 

concentration range and DNNQuantification might be overfitting to higher concentrations considering the 

large total dynamic range of the samples used to train the model (i.e., 40–40,000 pg/mL). The overfitting 

issue can be minimized by including more samples from all relevant clinical ranges into the training 

set1-3. However, even with large training sets and minimal model overfitting, a single quantification 

network (i.e., DNNQuantification) might still return contradicting results with respect to DNNClassification, 

especially for the borderline samples (i.e., samples close to the cut-off level of the equipment used to 

measure ground truth concentrations, 40 pg/mL in this work). Quantification errors on such samples can 

be attributed to the proximity between the assay signals for borderline samples and samples from the < 

40 pg/mL range, as well as the interference of the noise factors from the sample matrix and the low-cost 

nature of hs-VFA cartridges. Keeping an adjudicative neural network (i.e., 𝐷𝑁𝑁𝐿𝑜𝑤) to process samples 

with contradicting predictions between DNNQuantification and DNNQuantification would still be beneficial to 

achieve optimal cTnI concentration accuracy in the low concentration ranges and improve sensitivity 

for more reliable high-sensitivity cTnI detection. 

 

Supplementary Note 5. Power-fitting function. 

 

The performance of the optimized quantification neural networks was compared with a rule-based 

method where the time-lapse response of hs-VFA was related to cTnI concentration through a power-

fitting function. The input to the function was the time-lapse signal from hs-VFA (𝐼𝑇𝑖𝑚𝑒−𝑙𝑎𝑝𝑠𝑒) defined 

by equation (1). The power-fitting function form is defined by the power law, and the explicit function 

form is outlined below: 

   

𝑦′ =  𝑎 ∗ 𝐼𝑇𝑖𝑚𝑒−𝑙𝑎𝑝𝑠𝑒
𝑏

, a = 4.359, b = 3.636,                                        (S1) 
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𝑦′ is the predicted concentration. The performance of this power-fitting model on blindly tested clinical 

samples is shown on Figure S10a. 
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Table S1. Detailed information of the clinical sample test dataset.  
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Table S2. MAE scores for the blind testing samples processed by the cTnI quantification neural 

networks. MAE scores are calculated between duplicate serum sample measurements for each patient. 

 

 
 

 

 

 

 

 

 

Table S3. Correlation coefficients and CVs for different cTnI quantification models. 
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Table S4. Cost evaluation. (a) hs-VFA cartridge. (b) Portable reader. 
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Figure S1. Graphical user interface of the Raspberry Pi-based reader. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure S2. Reagent flow mechanism during the amplification reaction. (a) Reagent transport from the 

reagent chamber of the 2nd top case to absorption pads. (b) The reversed flow of reagent from the 

absorption pads to the sensing membrane after decapping the 2nd top case. 
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Figure S3. Solution-based characterization of Au-ion reduction chemistry. (a) Analysis of the 

absorption peak shift. (b) Comparison of color changes in the solutions. 

 

 

 

 

 

 

 

 

 
 

Figure S4. Optimization of the assay. (a) Evaluation of the effect of cassette compressibility. (b) Impact 

of the size of AuNP on assay performance. (c) Selection of the running buffer combination. Buffer A 

contains 1% v/v Triton X-100 and 1% v/v BSA in PBS. Buffer B contains 3% v/v Tween 20, 1% v/v 

albumin, 0.5% w/w protein saver, and 1% w/w trehalose in PBS. Effect of different sample volumes on 

(d) signal intensity and (e) sample absorption time. Effect of (f) capture antibody concentration and (g) 

conjugate concentration on assay result. For this test, 102 pg/mL and 0 pg/mL of cTnI spiked in cTnI-

free serum were used. Signal-to-noise (S/N) ratio was calculated using the signal intensities obtained by 

assaying these two concentrations. Each data point in (a), (b), (c), (e), (f), and (g) represents the mean 

of triplicates ± SD. Data points in (d) represent the mean of 50 repeats ± SD. 
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Figure S5. Optimization of the reagent concentrations for Au-ion reduction-based signal amplification 

reaction. (a) Signal intensity analysis. (b) Reaction uniformity test. A 1 ng/mL cTnI was assayed 

triplicate. The intensity in (a) represents the mean of the three measurements. CV(%) in (b) represents 

the mean of inter-assay CV(%) from the triplicates. The numbers in the bracket indicate the rank. 

 

 

 

 

 

 

 

 

 

 

 
Figure S6. Representative images of sensing membranes after conducting assays with varying 

concentrations of cTnI spiked in human serum. Images were captured at t = 60s within the time-lapse 

sequence. 

 

 

 

 

 

 

 

 

 



  

12 

 

 

 

 

Figure S7. Architecture of the optimal classification neural network (DNNClassification). 

 

 

 

 

Figure S8. Architectures of the optimal quantification neural networks. (a) DNNQuantification and (b) 

DNNLow. 
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Figure S9. Performance of the optimized neural network models on the validation sets. (a) Classification 

predictions on the validation set. (b) Quantification predictions on the validation set. 

 

 

 

 

 

 

 

 

 

 
 

Figure S10. Predictions of cTnI concentrations in clinical samples from non-optimized quantification 

models. (a) Power-fitting model with the time-lapse input data processed by OA. (b) Optimized neural 

network models (i.e., 𝐷𝑁𝑁𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐷𝑁𝑁𝐿𝑜𝑤) with the time-lapse input data not processed by 

OA. (c) Optimized neural network models with the end-point input data processed by OA. Dashed lines 

on x and y axis indicate 40 pg/mL. 

 

 

 

 

 

 

 

 

 

 



  

14 

 

 

 

 
 

Figure S11. Evaluation of the imaging-based signal quantification capacity of the Raspberry Pi-based 

portable reader. Each data point represents the mean of triplicates ± SD. 

 

 

 

 

 

 

 

 
 

Figure S12. Evaluation of the impact of the number of testing spots on the assay performance. (a) 

Spotting map, (b) Sensitivity, (c) Intra-assay uniformity, and (d) Inter-assay repeatability. Each data 

point represents the mean of triplicates ± SD without outlier exclusion. 
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Figure S13. Detailed configuration of the paper layers of the hs-VFA. (a) Components of the 1st top 

case. (b) Components of the bottom case. 
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Movie S1. Real-time response of the signal amplification reaction on hs-VFA (time-lapsed). 


