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Supplementary Note 1. Signal amplification reaction.

The colorimetric signal amplification reaction occurred as a result of the chemical reduction of Au** on
the surface of the AUNP conjugates. The reagent solution, which is a mixture of Au®* and H3NO, is
injected into the 2™ top case and initially flows downward into the absorption pads through the sensing
membrane. After removing the 2™ top case after 3 min, the amplification reaction continued with the
reagent flowing back up from the absorption pads to the sensing membrane by evaporation (Figure S2).
As spectroscopic evidence of the amplification reaction, we observed a significant redshift (from 520
nm to 560 nm) of the absorption peak, broadening of the peak, and darkening of the aqueous solution,
which supports signal amplification by particle growth (see Figure S3).

Supplementary Note 2. Assay optimization.

We optimized assay steps to enhance the signal-to-noise ratio in the hs-VFA system. Our tests regarding
cartridge compressibility, which determines the degree of paper layer compression when assembled,
showed that the best signal-to-noise ratio occurred at 25% compressibility, where the signal intensity
increased and the non-specific intensity decreased (Figure S4a). We attribute this to improved contact
efficiency between paper layers, enhancing the washing of remaining conjugates in the 1% top case and
free conjugates in the sensing membrane. Compressibility beyond 25% was not considered due to the
relatively thick paper layers, making it difficult to assemble the top and bottom cases. Using 15 nm
AuNPs led to a 50% increase in signal intensity compared to 40 nm AuNPs (Figure S4b). This
enhancement is due to the superior membrane permeability of the 15 nm AuNPs and the higher particle
quantity (1.40x10'?/mL) at the same optical density (OD) concentration, approximately 15.5 times more
than 40 nm AuNPs (9.00x10%/mL). In the optimized running buffer composition and combination, we
observed an average improvement in signal intensity of approximately 44-68% (Figure S4c).

The sample volume we used in this study, 50 pL, is experimentally optimized. Increasing the sample
volume resulted in higher signal intensity. However, once the volume reached 50 pL, the increase in
intensity was minimal (Figure S4d). Additionally, above 50 uL, the absorption time of the sample by
the top case significantly increased, resulting in longer assay times and greater variability (Figure S4e).
Therefore, we concluded that the ideal volume for optimal signal intensity and minimal assay time was
50 L.

We also studied the dependence on the concentration of both the capture and the conjugate. We used
a fixed amount (10 pL, 1 mg/mL, sufficient to saturate the AuNP’s surface) of the detection antibodies
for conjugate synthesis. We also altered the conjugate concentration (AuNP-detection antibody
complex) in the optimization study. The results of the optimization experiments indicated that the
optimal concentration for the capture antibody was 1 mg/mL (Figure S4f) and that for the conjugate
was 2.5 OD (Figure S4g), which resulted in the highest signal-to-noise ratio. Therefore, these
concentrations were used throughout the final assay testing.

For amplification, we evaluated signal intensity and inter-assay uniformity at the testing spots with
various combinations of Au®** and HsNO concentrations and selected the condition that ranked highest
in both criteria (Au®*": 10 mM and HsNO: 10 mM, Figure S5).

Supplementary Note 3. Comparison of two outlier analysis (OA) models.

While integrating the OA algorithm into our process, we compared the statistics-driven approach
(statistical OA model) with a differential OA method (OA-D), which utilized differential changes in raw
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intensities between the time-lapse images (see the “Computational analysis of hs-VFA signals”
subsection in the Methods for more details about OA and OA-D). This comparison enabled us to
evaluate the impact of different OA methods on assay uniformity (intra-assay) and reproducibility (inter-
assay). When analyzing assay data sets (N=330) using OA algorithms, the statistics-based analysis
retained an average of 6.5 + 1.5 out of the original 10 test spots, whereas the OA-D method retained 4.8
+ 2.1 spots (Figure 3b, inset i). In the statistical OA model, we observed higher exclusion rates for spots
located towards the outer edges of the sensing membrane (i.e., No. 1, 2, 5, 10 in Figure 3b, inset ii).
This is mainly due to minor differences in flow homogeneity between the inner and outer spots, within
a CV of 5%. When comparing the intra-assay CV before and after implementing the OA, we observed
a substantial improvement in spot-to-spot assay uniformity (Figure 3b, inset iii) and assay
reproducibility (Figure 3b, inset iv). Specifically, with the use of the statistical OA model, the assay
uniformity improved from a CV of 4.1% to a CV of 1.1%, and assay reproducibility improved from a
CV of 8.2% to a CV of 5.1%, which was superior to the differential model (OA-D). Therefore, we chose
the statistical OA model for subsequent analysis as it offered better generalizability (by retaining more
test spots) and achieved superior data refinement compared to other exclusion methods.

Supplementary Note 4. Limitations of cTnl quantification with a single neural network model.

Quantitative predictions of cTnl concentrations from DNNguanificaion fOr 14 blind tested samples were <
40 pg/mL, contradicting the predictions from DNNciassification (i.€., these samples were predicted as > 40
pg/mL by DNNcissification). Ground truth cTnl concentrations in all of these samples were in the 50-200
pg/mL range, whereas quantitative outputs from DNNouantification Were equal to 0 pg/mL. One of the
reasons for such false negative outputs from DNNguantification fOr the lower concentration samples can be
the limited amount of training samples. Only 12 out of 64 training samples fell into the 50-200 pg/mL
concentration range and DNNouantification Might be overfitting to higher concentrations considering the
large total dynamic range of the samples used to train the model (i.e., 40-40,000 pg/mL). The overfitting
issue can be minimized by including more samples from all relevant clinical ranges into the training
set'®. However, even with large training sets and minimal model overfitting, a single quantification
network (i.e., DNNouantification) Might still return contradicting results with respect to DNNciassification,
especially for the borderline samples (i.e., samples close to the cut-off level of the equipment used to
measure ground truth concentrations, 40 pg/mL in this work). Quantification errors on such samples can
be attributed to the proximity between the assay signals for borderline samples and samples from the <
40 pg/mL range, as well as the interference of the noise factors from the sample matrix and the low-cost
nature of hs-VFA cartridges. Keeping an adjudicative neural network (i.e., DNN,,,,) to process samples
with contradicting predictions between DNNguantification aNd DNNouantification Would still be beneficial to
achieve optimal cTnl concentration accuracy in the low concentration ranges and improve sensitivity
for more reliable high-sensitivity cTnl detection.

Supplementary Note 5. Power-fitting function.

The performance of the optimized quantification neural networks was compared with a rule-based
method where the time-lapse response of hs-VFA was related to cTnl concentration through a power-
fitting function. The input to the function was the time-lapse signal from hs-VFA (Irime—1apse) defined

by equation (1). The power-fitting function form is defined by the power law, and the explicit function
form is outlined below:

Y = a* Irime—tapse”» @ = 4.359, b = 3.636, (S1)
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y' is the predicted concentration. The performance of this power-fitting model on blindly tested clinical
samples is shown on Figure S10a.
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Table S1. Detailed information of the clinical sample test dataset.
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2 <40 0.0298 17.69 00281 792 Tralriing set Trairiing set
3 <40 0.0367 1.00 0.0338 5395 Trainiing set Training set
4 <40 0.0373 535 0.0360 339 Trainiing set Training set
5 < 40 0.0379 18.00 0.0310 9.44 Trairiing set Training set
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11 <40 0.0525 768 0.0478 150 Blind testing g_ég;gg Net includsd
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Table S2. MAE scores for the blind testing samples processed by the c¢Tnl quantification neural
networks. MAE scores are calculated between duplicate serum sample measurements for each patient.

9 <40 12.4
20 50 8.7
23 60 2.9
25 70 6.5
27 100 1.7
28 110 0.5
29 120 3.7
31 150 1.0
33 240 79.4
34 340 0.1
36 410 7.5
38 660 5.8
40 1270 6.8
41 1570 4.3
44 2340 2.0
45 2500 1.9
46 2660 1.3
47 4290 7.1

Table S3. Correlation coefficients and CVs for different cTnl quantification models.

Pearson’s r Pearson’s r CV (%) CV (%)
Models (Entire range) (< 1,000 pg/mL)  (Entire range) (< 1,000 pg/mL) Refs.
Optimal model )

1 (Tim lapse & After OA) 0.965 0.959 6.2 6.5 Fig. 4c

Power fitting model )

Time lapse & After OA) 0.861 0.776 10.5 10.5 Fig. S10a
3 Time-lapse & Before OA 0.951 0.921 8.8 8.7 Fig. S10b
4 End-point & After OA 0.956 0.806 5.3 46 Fig. S10c




Table S4. Cost evaluation. (a) hs-VFA cartridge. (b) Portable reader.

a. Cost for VFA cartridge

b. Cost for portable reader

No. Contents Category Cost/test No. Contents Category Cost
1 AuNP $0.15 1 Raspberry Pi 3 Processor and $53.00
2 Antibodies Assay reagents $1.95 2 Touch screen display display $50.00
3 Chemicals and buffers $0.24 3 Camera module $15.00
4 Nitrocellulose $0.09 4 Macro lens Optical components ~ $27.50
5 Asymmetric membrane $0.20 5 LEDs $1.92
6 CF7 pads (interpad) Paper materials o 02 6 H°”Si|’;%;f§SDe::|;f‘ry' and ci?ﬂgg:;‘t’s $11.00
7 posorpton e form tape, $0.24 7 Wires, resistors, screws, Others $11.96

blocking reagents, etc.) and power supply.
8 3D printed cartridge $0.96 Total cost $170.38
o e p%tsr:izr;ue' - Plastic cartridge $0.01
Total cost/test  $3.86
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Figure S1. Graphical user interface of the Raspberry Pi-based reader.
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Figure S2. Reagent flow mechanism during the amplification reaction. (a) Reagent transport from the
reagent chamber of the 2" top case to absorption pads. (b) The reversed flow of reagent from the
absorption pads to the sensing membrane after decapping the 2" top case.
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Figure S3. Solution-based characterization of Au-ion reduction chemistry. (a) Analysis of the
absorption peak shift. (b) Comparison of color changes in the solutions.
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Figure S4. Optimization of the assay. (a) Evaluation of the effect of cassette compressibility. (b) Impact
of the size of AuNP on assay performance. (¢) Selection of the running buffer combination. Buffer A
contains 1% v/v Triton X-100 and 1% v/v BSA in PBS. Buffer B contains 3% v/v Tween 20, 1% v/v
albumin, 0.5% w/w protein saver, and 1% w/w trehalose in PBS. Effect of different sample volumes on
(d) signal intensity and (e) sample absorption time. Effect of (f) capture antibody concentration and (g)
conjugate concentration on assay result. For this test, 102 pg/mL and 0 pg/mL of cTnl spiked in ¢Tnl-
free serum were used. Signal-to-noise (S/N) ratio was calculated using the signal intensities obtained by
assaying these two concentrations. Each data point in (2), (b), (c), (e), (f), and (g) represents the mean
of triplicates £ SD. Data points in (d) represent the mean of 50 repeats + SD.
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Figure S5. Optimization of the reagent concentrations for Au-ion reduction-based signal amplification
reaction. (a) Signal intensity analysis. (b) Reaction uniformity test. A 1 ng/mL c¢Tnl was assayed
triplicate. The intensity in (a) represents the mean of the three measurements. CV(%) in (b) represents
the mean of inter-assay CV/(%) from the triplicates. The numbers in the bracket indicate the rank.
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Figure S6. Representative images of sensing membranes after conducting assays with varying
concentrations of ¢Tnl spiked in human serum. Images were captured at t = 60s within the time-lapse
sequence.
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Figure S7. Architecture of the optimal classification neural network (DNNciassiication)-
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Figure S8. Architectures of the optimal quantification neural networks. (a) DNNguantificaiion and (b)
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Figure S9. Performance of the optimized neural network models on the validation sets. (a) Classification
predictions on the validation set. (b) Quantification predictions on the validation set.
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Figure S10. Predictions of cTnl concentrations in clinical samples from non-optimized quantification
models. (a) Power-fitting model with the time-lapse input data processed by OA. (b) Optimized neural
network models (i.e., DNNoyantification ahd DNN,,,,) With the time-lapse input data not processed by
OA. (c) Optimized neural network models with the end-point input data processed by OA. Dashed lines
on x and y axis indicate 40 pg/mL.
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Figure S11. Evaluation of the imaging-based signal quantification capacity of the Raspberry Pi-based
portable reader. Each data point represents the mean of triplicates + SD.
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Figure S12. Evaluation of the impact of the number of testing spots on the assay performance. (a)
Spotting map, (b) Sensitivity, (c) Intra-assay uniformity, and (d) Inter-assay repeatability. Each data
point represents the mean of triplicates £ SD without outlier exclusion.
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Figure S13. Detailed configuration of the paper layers of the hs-VFA. (a) Components of the 1% top
case. (b) Components of the bottom case.
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Movie S1. Real-time response of the signal amplification reaction on hs-VFA (time-lapsed).
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