
Supplementary Information682

1. Choosing input features for developing OncoNPC683

When choosing features for developing OncoNPC, it is important to acknowledge that CUP tu-684

mors often exhibit fundamentally different characteristics from known primaries, including stage,685

location/biopsy site, and pathological features. Including such characteristics specific to known pri-686

maries in the model may introduce a bias and potentially overconfident wrong predictions. Thus,687

we have chosen to prioritize the use of targeted panel sequencing data, which provides relatively688

unbiased and reliable biological signals about the tumors. Furthermore, targeted panel sequencing689

data is increasingly becoming a routine part of cancer care in many centers, which enhances the690

model’s translational potential.691

Pathology findings can be important information for determining primary sites. However, in-692

consistent guidelines across cancer centers make it challenging to integrate them into the model [1].693

Furthermore, for patients with CUP, only 25% of tumors have immunohistochemistry (IHC) results694

that indicate a single primary diagnosis [2]. This lack of consistency in guidelines, coupled with the695

subpar and uncertain performance of pathology in identifying primary sites for challenging tumors,696

can result in unreliable and inconsistent primary site predictions for CUP tumors.697

With regards to patient demographics such as ethnicity and environmental variables, it has698

been demonstrated that these factors can improve disease predictions [3, 4]. However, it is crucial699

to exercise caution when including such factors in machine learning models, as they may lead to700

unwanted disparities in model outcomes across different patient subgroups [5]. While acknowledging701

the potential benefits of incorporating sensitive patient demographics and environmental variables in702

predicting cancer types and relevant clinical outcomes, we recognize that this is an area that requires703

further investigation. Thus, we leave it as a future work to study the effects of such variables.704

2. Optimizing F1 scores across cancer types using varying prediction prob-705

ability thresholds706

Throughout our clinical analyses, we have utilized a fixed prediction probability threshold to identify707

tumor samples with a moderately high degree of confidence (e.g., pmax ≥ 0.5) in their primary cancer708

type predictions. However, an alternative approach is to use varying prediction probability thresholds709

for different cancer types, which achieves the best F1 score for each individual cancer type. In order710

to determine the optimal F1 score and corresponding prediction probability threshold for each cancer711

type, we conducted an analysis, which is illustrated in Supplementary Fig. S1a.712
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Figure S1: Utilization of varying thresholds for prediction probabilities that maximizes
the F1 score for each cancer. (a) The scatter plot shows the maximum F1 score and the
corresponding prediction probability threshold for each cancer type. The red dots correspond to the
top 10 cancer types with the highest number of tumor samples in the training set, while the blue
dots correspond to the bottom 10 cancer types. The gray dots correspond to all the other cancer
types. (b) Impact of varying the threshold for achieving maximum F1 for each cancer on cancer
type predictions for CUP tumors at the DFCI. We compared the number of CUP tumors across
predicted cancer types, obtained by using varying prediction probability thresholds that optimize
the F1 score for each cancer, with those obtained by using a fixed pmax of 0.5 for all cancer types.
The blue bars correspond to the increase in the number of tumors when using the varying threshold
strategy, while the red bars correspond to the decrease in the number of tumors.

Our analysis indicates that the bottom 10 minority cancer types exhibit considerably lower713

maximum F1 scores compared to the top 10 majority cancer types (F1 score 0.601 vs. 0.799), which714

is consistent with the findings presented in Results: OncoNPC accurately classifies 22 known cancer715

types. Additionally, the minority cancer types reached their maximum F1 scores at lower prediction716
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probability thresholds in comparison to the majority cancer types (prediction probability threshold717

0.316 vs. 0.445), suggesting that the predictions for the minority cancer types are generally less718

confident.719

Furthermore, we investigated the impact of varying the threshold for achieving maximum F1720

for each cancer on cancer type predictions for CUP tumors at the DFCI. To do that, we compared721

the number of CUP tumors across predicted cancer types, obtained by using varying prediction722

probability thresholds that optimize the F1 score for each cancer, with those obtained by using a723

fixed pmax of 0.5 for all cancer types (as it is used as the exclusion criterion in our CUP analyses;724

see Extended Data Fig. 6). In Supplementary Fig. S1b, we visualized the resulting differences in725

the number of CUP tumors across predicted cancer types. The blue bars correspond to the increase726

in the number of tumors when using the varying threshold strategy, while the red bars correspond727

to the decrease in the number of tumors.728

Overall, using the varying threshold strategy resulted in an increase in the number of included729

CUP tumors from 798 to 811 (13 additional tumors included). Although there was a reduction in730

the number of included tumors for NSCLC, BRCA, and COADREAD predicted CUP tumors (with731

decreases of 34, 2, and 13 tumors, respectively), the overall increase was due to many other cancer732

types. Notably, OVT, EGC, and HNSCC were the top three contributors to the overall increase,733

with increases of 16, 11, and 8 tumors, respectively.734

3. OncoNPC performance under real-world dataset shifts and difficult-to-735

predict cancers736

Real-world dataset shifts737

OncoNPC achieved robust performance against potential dataset shifts due to the factors includ-738

ing cancer center, biopsy site type, sequence panel version, and patient ethnicity (Main Fig. 2e).739

OncoNPC showed comparable performance, measured in area under the precision-recall curve (AUC-740

PR), for tumor samples from DFCI (AUC-PR = 0.893, n = 3,690) and those from MSK (AUC-PR741

= 0.850, n = 3,331). OncoNPC performance for those from VICC was slightly lower (AUC-PR =742

0.760, n = 268). Refer to Extended Data Fig. 2a for more detailed center-specific OncoNPC perfor-743

mance. OncoNPC showed comparable performance for primary tumor samples (AUC-PR = 0.872, n744

= 4,525) and metastatic tumor samples (AUC-PR = 0.869, n = 2,605), demonstrating its capability745

to predict the primary cancer types of metastatic tumors without compromising its performance.746

Furthermore, as shown in Main Fig. 2e, we investigated its performance across sequence panel ver-747

sions utilized at DFCI. The OncoNPC performance on tumor samples from earlier versions of DFCI748

sequence panels (OncoPanel v1: AUC-PR = 0.821, n = 414 and OncoPanel v2: AUC-PR = 0.887, n749

= 1,050) was slightly lower than the performance on the tumor samples from the most recent panel750

(OncoPanel v3: AUC-PR = 0.907, n = 2,226) which also contained the largest number of genes. As751

all tumor samples have been collected from OncoPanel v3 since October 2016, we expect our model752

to make high-quality predictions in a prospective setting. Finally, OncoNPC demonstrated reliable753

performance for all patient ethnicities, achieving an AUC-PR of over 0.8 for each ethnicity. However,754

the model performed better for white patients compared to other ethnicities (White: AUC-PR =755
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0.877, n = 6,035, Asian: AUC-PR = 0.812, n = 342, Other: AUC-PR = 0.834, n = 347, Black:756

AUC-PR = 0.844, n = 312, and Spanish/Hispanic: AUC-PR = 0.825, n = 253). This discrepancy in757

performance may be attributed to the fact that the training cohort predominantly consisted of white758

patients (83.2% White, 4.46% Asian, 4.78% Other, 4.27% Black, and 3.25% Spanish/Hispanic).759

OncoPanel version variability on primary site predictions760

To investigate the impact of OncoPanel version variability during the model training on primary761

site predictions, we added 7 additional one-hot-encoded input features that represented different762

panel versions (3 versions at DFCI, 3 versions at MSK, and 2 versions at VICC). We then retrained763

the model and analyzed changes in performance and the proportion of predicted cancer types in764

held-out CKP and CUP tumor samples. Supplementary Fig. S2a shows the F1 score differences765

across 22 cancer types between the original OncoNPC model and the model with the panel features.766

Negative values in red indicate cases where the model with the panel features outperformed the767

original OncoNPC model, while positive values in blue indicate the opposite. Supplementary Fig.768

S2b shows the absolute differences in the proportions of 22 predicted cancer types in percentage769

between the original OncoNPC model and the new model in held-out CKP tumors (blue) and CUP770

tumors (green), respectively.771

Regarding the changes in model performance, we observed only a negligible change in the overall772

F1 score when compared to the original OncoNPC model (weighted overall F1 difference of −3.68 ×773

10−4). However, we did observe larger performance changes for some minority cancer types, such774

as PLMESO (Pleural Mesothelioma), AML (Acute Myeloid Leukemia), and NHL (Non-Hodgkin775

Lymphoma) with a mean absolute difference in F1 score of 0.0491 among them. With regard to776

the proportion of predicted cancer types among CKP tumors and CUP tumors, we observed mean777

absolute differences in percentages of 0.0549% and 0.253%, respectively. Our findings suggest that778

incorporating the panel variability into the model training process has only minor effects on the779

model performance and predicted cancer types. Additionally, any resulting small changes are likely780

influenced by stochastic elements of the training process, such as weight initializations.781
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Figure S2: OncoNPC performance with respect to sequencing panel variability. We added
7 panel version features, retrained the model, and analyzed changes in performance and predicted
cancer types in the held-out CKP and CUP tumor samples. (a) F1 score differences across 22 cancer
types between the original OncoNPC model and the model with the panel features. Negative values
in red indicate cases where the model with the panel features outperformed the original OncoNPC
model, while positive values in blue indicate the opposite. We observed a negligible change in overall
F1 score (−3.68 × 10−4) compared to the original OncoNPC model. (b) Absolute differences in the
proportions of 22 predicted cancer types in percentage between the original OncoNPC model and the
new model in held-out CKP tumors (blue) and CUP tumors (green), respectively. For both (a) and
(b), the cancer types on the x-axis are sorted in a decreasing order of the number of tumor samples.
We observed mean absolute differences in percentages of 0.0549% and 0.253% among CKP tumors
and CUP tumors, respectively. The panel variability, when incorporated into the model training
process, has only minor effects on the model performance and predicted cancer types. (c), (d) Box
plots comparing prediction confidences (pmax) across OncoPanel versions for (c) CKP tumors and
(d) CUP tumors at DFCI. The figures show medians, lower and upper quartiles, as well as the mean
and 95% confidence intervals, along with the number of tumor samples.

Regarding the impacts of OncoPanel versions on the prediction confidences, we have provided782

box plots of the prediction confidences (pmax) of the final OncoNPC model for both CKP (Cancer783

with Known Primary) tumors and CUP tumors across three different OncoPanel versions at DFCI,784

as shown in Supplementary Fig. S2d and Supplementary Fig. S2c, respectively. For CKP tumors,785

the prediction confidences of OncoPanel v1 sequenced tumors were significantly lower than those of786

OncoPanel v2 and v3 sequenced tumors (with pmax mean of 0.842 and 95% C.I. of 0.823 - 0.862787
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for OncoPanel v1, as compared to 0.879 and 95% C.I. of 0.868 - 0.890, and 0.889 and 95% C.I. of788

0.881 - 0.896 for OncoPanel v2 and v3, respectively). For CUP tumors, the prediction confidences789

of OncoPanel v1 sequenced tumors were not significantly different from those of OncoPanel v2 and790

v3 sequenced tumors (with pmax mean of 0.719 and 95% C.I. of 0.653 - 0.785 for OncoPanel v1,791

as compared to 0.764 and 95% C.I. of 0.734 - 0.795, and 0.766 and 95% C.I. of 0.750 - 0.783 for792

OncoPanel v2 and v3, respectively). Finally, we want to highlight that OncoPanel v1, which targets793

the fewest genes compared to OncoPanel v2 and v3 (304 genes vs. 326 and 447 genes, respectively),794

only accounts for 10.2% of CKP tumors and 4.8% of CUP tumors. The vast majority of tumors795

at DFCI were sequenced using the latest version of the panel, OncoPanel v3 (representing 61.6% of796

CKP tumors and 74.3% of CUP tumors). We anticipate that this percentage will continue to rise797

as new tumor samples at DFCI are routinely sequenced with OncoPanel v3.798

Difficult-to-predict cancers799

Five cancer types with the lowest F1 were CHOL (0.368), GINET (0.436), PLMESO (0.479), HNSCC800

(0.500), and MNGT (0.545). Nevertheless, when samples were predicted with high confidence (pmax ≥801

0.9), the performance improved as shown in Extended Data Fig. 2a: CHOL (precision: 0.783, recall:802

0.500, F1: 0.610), GINET (precision: 1.00, recall: 0.478, F1: 0.647), PLMESO (precision: 0.765,803

recall: 0.684, F1: 0.722), HNSCC (precision: 0.818, recall: 0.692, F1: 0.750), and MNGT (precision:804

1.00, recall: 0.778, F1: 0.875). This demonstrates that the OncoNPC was still able to make high-805

quality predictions for a subset of tumor samples in rare cancer types, for which training data was806

limited.807

We further investigated the factors underlying the suboptimal performance of relatively more808

common cancer types such as CHOL and HNSCC. As shown in the confusion matrix in Extended809

Data Fig. 1a, a sizable proportion of HNSCC and CHOL tumors were inaccurately classified as810

NSCLC (28 out of 134 HNSCC tumors and 26 out of 126 CHOL tumors). In order to gain insight811

into the OncoNPC’s reasoning behind the misclassification of HSNCC and CHOL tumor samples812

as NSCLC, we selected a subset of samples (n = 14 for HSNCC and n = 7 for CHOL) that were813

mis-classified as NSCLC with a moderately high prediction probability (i.e., pmax ≥ 0.5). We then814

investigated the SHAP values for NSCLC in these samples, as illustrated in Supplementary Fig. S3,815

which shows the 15 most important features for each group based on the mean SHAP values. The816

features are plotted on the x-axis, and the corresponding mean SHAP values on the y-axis, with817

positive values (in blue) corresponding to features that favor the prediction towards NSCLC, and818

negative values (in red) corresponding to features that discourage the prediction towards NSCLC.819
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Figure S3: Top 15 most important features for (a) HNSCC tumors and (b) CHOL
tumors classified as NSCLC. OncoNPC predicted these tumor samples as NSCLC with prediction
probability ≥ 0.5. On the y-axis, the mean SHAP values of each feature are plotted, with positive
values (in blue) corresponding to features that favor the prediction towards NSCLC and negative
values (in red) corresponding to features that discourage the prediction towards NSCLC. For HNSCC
tumors, the key features for favoring the NSCLC prediction are copy number alterations (CNA) in
the SOX2 and TERT genes, as well as the tobacco smoking-related mutation signature SBS4. For
CHOL tumors, key features include CNA in the NKX2-1 gene, mutation in the STK11 gene, and
the mutation signature SBS38 (whose association is currently unknown). Notably, none of the tumor
samples showed a mutation in EGFR.

Among the HNSCC tumors, the model relied heavily on copy number alterations (CNA) in the820

SOX2 and TERT genes, as well as the tobacco smoking-related mutation signature SBS4 to predict821

NSCLC. Interestingly, the SBS4 mutation signature was significantly more enriched in the NSCLC-822

classified HNSCC tumors compared to the rest of the HNSCC tumors (0.123 vs. 0.091). Upon823

reviewing the patient charts, we discovered that the average pack-years of those 14 patients were824

31, and only two of the tumors came from HPV-positive patients, indicating that smoking-related825

signatures played a significant role in incorrect predictions, while HPV status played a minor role.826

For CHOL tumors, key features included CNA in the NKX2-1 gene, mutation in the STK11 gene,827

mutation signature SBS38 (currently unknown), and SBS4 (tobacco). The absence of EGFR/KRAS828

mutations in these tumors negatively impacted the model’s prediction (indicated by red bars), but829

were outweighed by the other factors in these samples. For both cancer types, it thus appears that a830

smoking signature together with some genomic hallmarks of NSCLC (KEAP1, STK11, and PIK3CA)831

contributed to an NSCLC mis-classification in these samples (Main Fig. 3d and Supplementary Fig.832

S10j). Notably, OncoNPC’s interpretability allows us to delve deeper into the model’s errors from a833

clinical perspective for specific cases.834
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corresponding OncoNPC predicted CUP cancer type. All training CKP tumor samples (n = 36,445)
and all MSK CUP tumor samples (n = 581) are shown. For both (a) and (b), the cancer types
(x-axis) are ordered by the number of CKP tumor samples in each cancer type
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Figure S5: Interpreting OncoNPC predictions. Top 15 most important features, based on
mean absolute SHAP values (i.e., µ̂(∣SHAP∣) [6]), for cancer types that had a minimum of 20 CUP
tumors classified.
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Figure S6: SHAP summary plot [6] for cancer types that had a minimum of 20 CUP tumor
samples classified. SAHP values (i.e., impact on OncoNPC predictions) are shown on the x-axis,
while feature values are shown as a color map (from purple to yellow). In each plot, CUP and CKP
tumor samples were combined into a single cohort for the corresponding cancer.
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4. Robustness of OncoNPC performance with respect to key genomics835

input features836

In order to identify the key panel features, we took the average of absolute SHAP values for each837

input feature across 22 cancer types. We then utilized these aggregated feature importance values838

to rank the input features, which were primarily related to age, sex, mutation, and CNA events.839

The top 20 most crucial features with their aggregated SHAP values are shown in Supplementary840

Table S1, while Supplementary Data 3 provides a full list of the ranked input features along with841

their corresponding aggregated SHAP values.842

Table S1: Top 20 most globally important features with their aggregated SHAP values. To obtain
the aggregated SHAP values, we took the average of absolute SHAP values for each input feature
across 22 cancer types. We utilized these aggregated SHAP values to rank the input features, which
were primarily related to age, sex, mutation, and CNA events. See Supplementary Data 3 for a full
list of the ranked input features along with their corresponding aggregated SHAP values

OncoNPC features Aggregated SHAP

Sex 0.659
TP53 0.523
Age 0.376
KRAS 0.326
CDKN2A CNA 0.180
PIK3CA 0.158
APC 0.120
BRAF 0.117
MYC CNA 0.103
EGFR CNA 0.095
TERT 0.088
PTEN 0.078
KIT 0.069
ARID1A 0.067
KMT2D 0.065
CCND1 CNA 0.063
CDKN2B CNA 0.053
NF2 0.053
SMAD4 CNA 0.053
ERBB2 CNA 0.050

Furthermore, in order to investigate the impact of input genomics features on OncoNPC’s ro-843

bustness, we performed a feature ablation study, where we chose the most important genes based on844

their aggregated SHAP values from the previous analysis and gradually reduced them from all 846845

features associated with those genes, as well as age and sex, to only the top 10% (i.e., top 29 fea-846
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tures). In each feature configuration, we re-trained the model with the same set of hyperparameters847

and evaluated its performance on the held-out CKP (Cancer with Known Primary) tumor samples848

(n = 7,289), which were utilized throughout this work. The results of this analysis are presented849

in Extended Data Fig. 3, which shows the breakdown of OncoNPC performance in F1 score by 22850

cancer types across increasing prediction confidence. The cancer types on the y-axis are sorted in a851

decreasing order of the number of tumor samples. Finally, Supplementary Data 4 provides a list of852

input features that correspond to the selected genes in each configuration.853

OncoNPC demonstrates good overall performance, even when using just the top 50% of features854

compared to using all the chosen features, with an overall weighted F1 score of 0.757 vs. 0.777 at a855

minimum pmax threshold of 0, and an F1 score of 0.950 vs. 0.960 at the minimum pmax threshold856

of 0.9. However, when using only the top 10% of features, the performance drops significantly857

across all cancer types compared to using all the chosen features, with an overall weighted F1858

score of 0.512 at a minimum pmax threshold of 0.0 and 0.892 at a minimum pmax threshold of 0.9.859

Interestingly, minority cancer types, such as MEL (Melanoma), RCC (Renal Cell Carcinoma), GIST860

(Gastrointestinal Stromal Tumor), and GINET (Gastrointestinal Neuroendocrine Tumors), showed861

improved performance when we selected only the top 50% of features compared to the full feature862

setting. Specifically, MEL had an F1 score of 0.771 vs. 0.761, RCC had an F1 score of 0.769 vs.863

0.759, GIST had an F1 score of 0.833 vs. 0.824, and GINET had an F1 score of 0.488 vs. 0.475 at a864

minimum pmax threshold of 0. We suspect that dropping features regularizes the feature space and865

improves generalizability over some of the minority cancer types.866

In summary, our feature ablation study demonstrates OncoNPC achieves good performance even867

with a reduced set of genes. While prospective users should still exercise caution and conduct a868

thorough evaluation on their own patient population before integrating the model into their clinical869

workflow, our results suggest that the OncoNPC model may be applicable to a broader range of870

cancer centers, especially those with resource constraints that limit the number of genes that can be871

targeted in their sequencing panels.872

5. Difference in OncoNPC prediction confidence across CUP and CKP873

cohorts874

We investigated how OncoNPC prediction confidence varied across different cohorts, including CUP875

tumors at DFCI and MSK, as well as rare CKP tumors at DFCI. Specifically, we referred to the876

cohort of the rare CKP tumors whose cancer types were not considered during the development of877

OncoNPC as "DFCI excluded CKP tumors". We note that all cohorts in this analysis were not878

seen by OncoNPC during the model training. The results are presented in Extended Data Fig. 2b.879

As expected, the held-out test CKP tumors from cancer types that were considered in OncoNPC880

had the highest prediction confidence (mean 0.881, 95% C.I. 0.875 - 0.887), whereas held-out CKP881

tumors from cancer types that were not considered in OncoNPC (i.e., DFCI excluded CKP tumors)882

had the lowest prediction confidence (mean 0.674, 95% C.I. 0.667 - 0.681), suggesting that OncoNPC883

is able to properly down-weight the confidence for target cancer types that were not included in the884

OncoNPC model training. Interestingly, the overall prediction confidence of DFCI CUP tumors885
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(mean 0.764, 95% C.I. 0.75 - 0.778) and MSK CUP tumors (mean 0.761, 95% C.I. 0.743 - 0.779)886

were comparable to that of all DFCI CKP tumors including the rare tumors (mean 0.769, 95% C.I.887

0.764 - 0.774). Though further study is merited, the similarity in prediction confidence between all888

CUP and CKP tumors suggests that CUP tumors may harbor rare primary cancers, resulting in a889

comparable mixture of known cancer types as seen in CKP tumors. Finally, we observed that among890

the held-out CKP tumor samples, prediction confidence was highest for tumors at DFCI, followed891

by tumors at MSK and VICC (DFCI: mean 0.88, 95% C.I. 0.875 - 0.887, MSK: mean 0.856, 95%892

C.I. 0.85 - 0.863, and VICC: mean 0.804, 95% C.I. 0.778 - 0.830; see Extended Data Fig. 2c).893

6. Accuracy of germline imputation for panel-sequenced tumors894

To impute common SNPs in the tumor data, ultra low coverage off-target reads and the 1000895

Genomes Phase 3 reference panel with the STITCH algorithm were used [7]. This method has been896

extensively evaluated in previous research and was implemented using the default parameters that897

were previously published [8]. In the germline data, patients were genotyped on the Illumina Multi-898

Ethnic Global (MEG) SNP array and imputed to the 1000 Genomes Phase 3 reference panel using899

the Michigan Imputation Server. To ensure high-quality results, each cohort underwent variant-900

level quality control and was then limited to SNPs in HapMap3, which are typically well-imputed901

in GWAS and capture the majority of genetic variation [9].902

To estimate the polygenic risk scores (PRS), common germline variants were first imputed directly903

from tumor-sequencing using the previously described approach that combines off-target reads and904

a haplotype reference panel [8]. Although this method has a mean SNP imputation accuracy of905

0.86 across the genome, it may have biases towards on-target genes (where proximal coverage is906

high) and against deleted regions (where coverage is low). To evaluate the accuracy of the tumor907

off-target PRS, a subset of 1509 tumor samples from the Mass General Brigham (MGB) Biobank,908

including 57 CUP tumors, were used to obtain direct germline SNP array genotyping. The mean909

tumor-germline correlation was 0.92 (s.e. 0.006) for all tumors and 0.91 (s.e. 0.01) for CUP tumors910

across the cancer types for which PRS were calculated. No significant differences were observed for911

any individual cancer PRS (see Supplementary Fig. S7).912
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Figure S7: Correlation between the germline PRS and imputed PRS across cancer types
for which the PRS were calculated. The light blue bars represent all CUP and CKP samples (n
= 1,509), while the blue bars represent CUP samples (n = 57) with matched germline genotyping.
The vertical dotted line at 0.9 serves as a reference point for correlation.
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7. CUP-CKP metastatic survival comparison913

We estimated median survival times of patients across CUP-metastatic CKP pairs using the Kaplan-914

Meier estimator [10] to account for patients lost to follow-up. For the CUP cohort, we excluded915

patients with CUP that were lost to follow up at the time of tumor sequencing and those whose916

primary cancer types were predicted with low probability (see the exclusion criteria in Extended917

Data Fig. 6). The resulting CUP cohort (n = 685), was then restricted to OncoNPC cancer types918

with more than 35 CUP patients. For the CKP metastatic cohort, we excluded patients lost to919

follow up at the tumor sequencing time in the same manner and chose patients with one of the920

known cancers, where either the biopsy was metastatic or the patient had an ICD-10 code indicative921

of secondary malignant neoplasms within a year prior to sequencing dates. A total of 521 and 5,937922

patients were thus retained from the CUP cohort and metastatic CKP cohort, respectively: NSCLC923

(nCUP = 200, nmet-CKP = 1,559), PAAD (nCUP = 80, nmet-CKP = 357), BRCA (nCUP = 67, nmet-CKP924

= 1,656), COADREAD (nCUP = 54, nmet-CKP = 1,198), HNSCC (nCUP = 44, nmet-CKP = 216),925

EGC (nCUP = 40, nmet-CKP = 336), and OVT (nCUP = 36, nmet-CKP = 615). Note that patients926

with CUP, whose predicted cancer type is GINET (nCUP = 39, nCKP = 118), were excluded due to927

the fact that the estimated survival function for the CUP cohort never reached 50 percent.928

We then investigated if cancer-specific prognosis is shared between CUP predicted cancers and929

their corresponding CKP metastatic cancers. Utilizing overall survival data linked to the National930

Death Index and in-house follow-up data (see Methods), we found that median survival times of931

CUP-metastatic CKP pairs were significantly correlated across the cancer types (Spearman’s ρ:932

0.964, p-value: 4.54 × 10−4; Main Fig. 4b). This significant relationship provides evidence that933

genetics-based OncoNPC predictions capture prognostic signals specific to each predicted cancer934

type. While correlated, median survival times were significantly lower for patients with CUP com-935

pared to those with metastatic CKP: CUP median survival 14.0 months (95% C.I. 11.9 - 15.8, n936

= 685) vs. metastatic CKP median survival 23.1 months (95% C.I. 21.8 - 24.2, n = 7,797). This937

is expected as CUPs are an advanced metastatic cancer with limited treatment options [11]. The938

absolute difference in median survival was significant across all predicted CUP - metastatic CKP939

pairs with the exception of Pancreatic Adenocarcinoma (CUP PAAD median survival 8.61 months940

95% C.I. 5.09 - 10.8 vs. metastatic CKP PAAD median survival 6.73 months 95% C.I. 5.98 - 8.02),941

known to be a particularly deadly cancer type.942

8. Prognostic somatic variants shared in CUP-metastatic CKP pairs943

To identify prognostic somatic variants shared between CUP-metastatic CKP pairs, we restricted944

to the 7 common OncoNPC subgroups with at least 35 CUP tumors: NSCLC, PAAD, BRCA,945

COADREAD, HNSCC, EGC, GINET, and OVT. We utilized the processed input somatic features946

encoded in the OncoNPC model (see Methods). To ensure sufficient statistical power, we considered947

somatic features (i.e., mutated genes and CNA genes) present in at least 15 tumors in both the948

CUP and metastatic CKP cohorts, with each pair having the matching cancer type. Finally, we also949

considered all 96 mutational signature features.950

After selecting the cancer types to consider in the CUP-metastatic CKP pairs and candidate951
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somatic variants for each pair, we iteratively tested each feature for association with survival in both952

CUP and corresponding metastatic CKP cohorts, where each pair had the matching cancer type.953

A multivariable Cox Proportional Hazard regression [12] model was used with time-to-death from954

sequencing as the outcome. To adjust for baseline effects, we included age at the time of sequencing,955

sex, tumor sequencing panel version, mutational burden (i.e., sum of total somatic mutations in956

each tumor sample), and CNA burden (i.e., sum of total CNA events in each tumor sample) as957

covariates. Finally, to identify shared prognostic somatic variants for each CUP-metastatic CKP958

pair, we retained somatic variants which passed Schoenfield residuals-based proportional hazard tests959

with p-value threshold of 0.05 (Python lifelines [13]) and were nominally significant (association960

p-value < 0.05) for both CUP and CKP cancer types in each pair.961

Three out of 14 tested CUP-metastatic CKP pairs, specifically NSCLC, PAAD, and COAD-962

READ, showed shared prognostic somatic variants significantly associated with overall survival with963

nominal p-value cut-off at 0.05 (Supplementary Fig. S8a and S8b). In patients with known or classi-964

fied NSCLC, three somatic mutations were associated with poor survival in both groups: SMARCA4965

(CUP: H.R. 1.86, 95% C.I. 1.19 - 2.89, p-value 6.23×10−3, CKP mets: H.R. 1.73, 95% C.I. 1.44 - 2.09,966

p-value 9.30 × 10−9), STK11 (CUP: H.R. 1.76, 95% C.I. 1.14 - 2.71, p-value 1.05 × 10−2, CKP mets:967

H.R. 1.43, 95% C.I. 1.22 - 1.68, p-value 1.00 × 10−5), and KEAP1 (CUP: H.R. 1.83, 95% C.I. 1.18968

- 2.85, p-value 6.82 × 10−3, CKP mets: H.R. 1.40, 95% C.I. 1.18 - 1.66, p-value 1.27 × 10−4). These969

associations of somatic mutations in SMARCA4, STK11, and KEAP1 genes with overall survival970

are well established for NSCLC [14–16]. Interestingly, a CNA event in NKX2-1 was associated with971

improved survival in the patients from the NSCLC pair (CUP: H.R. 0.542, 95% C.I. 0.326 - 0.901,972

p-value 1.83 × 10−2, CKP mets: H.R. 0.770, 95% C.I. 0.662 - 0.894, p-value 6.28 × 10−4), consistent973

with prior meta-analyses [17]. In patients with known or classified COADREAD tumors, SBS10b974

mutation signature, linked to polymerase epsilon exonuclease domain mutations [18], was associated975

with longer overall survival (CUP: H.R. 0.371, 95% C.I. 0.148 - 0.928, p-value 3.41 × 10−2, CKP976

mets: H.R. 0.495, 95% C.I. 0.255 - 0.958, p-value 3.68 × 10−2). Finally, in patients with known or977

classified PAAD tumors, the SBS29 mutation signature (commonly found in tumor samples from978

individuals with a tobacco chewing habit [18]) was associated with poor survival in CUPs but nomi-979

nally protective in metastatic CKPs (CUP: H.R. 2.66, 95% C.I. 1.02 - 6.93, p-value 4.46×10−2, CKP980

mets: H.R. 0.657, 95% C.I. 0.438 - 0.986, p-value 4.28 × 10−2). Although these somatic associations981

remain to be validated in independent cohorts, by categorizing patients with CUP based on their982

OncoNPC predictions, we were able to identify prognostic somatic variants, consistent with recent983

research findings.984
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Figure S8: Prognostic somatic biomarkers shared between CUP and metastic CKP tu-
mors across OncoNPC predicted cancers. (a), (b) Prognostic somatic variants significantly
associated with overall survival, shared between three different CUP (a)-metastatic CKP (b) pairs
(NSCLC: ◯, PAAD: ◻, and COADREAD: ◇). Variant types are indicated by colors: red for somatic
mutations, green for CNAs, and blue for mutation signatures. To estimate hazard ratio for each
somatic biomarker, a multivariable Cox Proportional Hazard regression [12] model was used with
time-to-death from sequencing as the outcome, while adjusting for baseline effects including age,
sex, tumor sequencing panel version, mutational burden, and CNA burden.
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9. Determining treatment-OncoNPC concordance985

Concordance of OncoNPC predicted cancer type with the first palliative treatment assignment at986

DFCI was classified in one of four categories: 1) “TRUE”: the OncoNPC cancer type matched the987

clinically proven/suspected tumor type and the treatment received, which was dictated by NCCN988

guidelines and/or standard of care, within the clinical context provided by the medical record; 2)989

“FALSE”: the OncoNPC cancer type did not match the clinically proven/suspected cancer type and990

the treatment was not appropriate per NCCN guidelines or standard of care, in most reasonable991

situations, and within the context of the medical record; 3) “SOFT FALSE”: the OncoNPC cancer992

type did not match the clinically proven/suspected cancer type, but the treatment received was not993

chosen based on NCCN guidelines or standard of care, owing to the unique clinical context provided994

by the medical record, 4) “EMPIRIC”: treatment received was empiric treatment for cancer of995

unknown primary (e.g., carboplatin/taxol or gemcitabine/cisplatin) with the corresponding clinical996

rationale. In cases where patients received these regimens but not with the clinical intent of empiric997

CUP treatment (i.e., as regimens intended for treating other tumor types), the treatment was not998

labeled as “EMPIRIC” and the case was instead evaluated in context of the proven/suspected tumor999

type. In our analysis, we considered the TRUE group as the concordant group, and FALSE and1000

SOFT FALSE groups as the discordant group. We did not include the EMPIRIC group, which is1001

typically a more challenging patient population with systematically worse outcomes [19].1002

10. Additional discoveries in the treatment concordance analysis1003

Upon reassessing the charts of 158 patients in the cohort, there were some tumors in both groups1004

where patients had a prior history of a known primary cancer, and the tumor being evaluated as1005

a CUP was clinically felt to be a recurrence of that primary cancer: 13 patients (16.9%) in the1006

concordant group and 12 patients (14.8%) in the discordant group. Notably, even after removing1007

these samples from both groups, the analysis still showed a favorable outcome in the concordant1008

group (see Supplementary Fig. S9; multivariable Cox regression: H.R. 0.400, 95% C.I. 0.232 – 0.700,1009

p-value 1.31× 10−3 and IPTW Kaplan-Meier estimator: weighted log-rank test p-value 2.87× 10−5).1010

This indicates that OncoNPC predictions continue to provide clinical benefits for the remaining1011

CUP cases without a prior history of a known primary cancer.1012
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Figure S9: Estimating impact of the treatment-OncoNPC concordance on survival for
patients with CUP who do not have a prior history of known primary cancers. Among
the original CUP treatment concordance analysis cohort (n = 158), we removed 13 patients (16.9%)
in the concordant group and 12 patients (14.8%) in the discordant group who had history of a
known primary cancer. Notably, after removing these samples from both groups, our results showed
a favorable outcome in the concordant group: (a) Multivariable Cox regression: H.R. 0.400, 95%
C.I. 0.232 – 0.700, p-value 1.31 × 10−3, and (b) IPTW Kaplan-Meier estimator: weighted log-rank
test p-value 2.87 × 10−5.

The multivariable Cox regression (Main Fig. 5a) additionally identified significant hazardous1013

effects of age, gastrointestinal (GI) cancer types predicted by OncoNPC, and bone metastasis (H.R.1014

1.27, 95% C.I. 1.02 – 1.58, p-value 3.10×10−2, H.R. 4.20, 95% C.I. 2.06 – 8.55, p-value 7.78×10−5, and1015

H.R. 3.73, 95% C.I. 1.84 – 7.59, p-value 2.71×10−4, respectively), and significantly protective effects1016
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of tumor mutational burden (TMB), as well as adenocarcinoma and neuroendocrine tumor group1017

determined by the histopathology results (H.R. 0.537, 95% C.I. 0.388 - 0.742, p-value 1.64×10−4, H.R.1018

0.439, 95% C.I. 0.272 - 0.710, p-value 7.85 × 10−4 and H.R. 0.0854, 95% C.I. 0.0298 - 0.245, p-value1019

4.79×10−6, respectively). In the IPTW Kaplan-Meier analysis, we found that treatment concordance1020

with the OncoNPC prediction was associated with Gastrointestinal (GI) cancer types (coefficient1021

1.916, 95% C.I. 0.627 - 3.205, p-value 3.57 × 10−3), whereas male sex and OncoNPC prediction1022

uncertainty (i.e., entropy of predictive probability distribution over the considered cancer types)1023

were inversely associated with receiving concordant treatment (coefficient -1.259, 95% C.I. -2.283 -1024

-0.234, p-value 1.61 × 10−2, and coefficient -1.693, 95% C.I. -2.458 - -0.927, p-value 1.46 × 10−5; see1025

Supplementary Fig. S10). These associations with treatment concordance are consistent with likely1026

GI CUPs being more clinically identifiable and low OncoNPC confidence CUPs being less clinically1027

and pathologically identifiable (see Supplementary Note 11.4 for a pathology-based evaluation of1028

OncoNPC predictions for CUP tumors). We note, however, that the IPTW approach specifically1029

adjusts for these systematic differences when estimating the effect of the treatment concordance on1030

survival.1031
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Figure S10: Summary of coefficients for estimating treatment-OncoNPC concordance.
Formally, we estimated out-of-sample P (A∣X), where A corresponds to the treatment-OncoNPC
concordance, using a logistic regression model in a 10-fold cross-fitting. The coefficients were ob-
tained from the first fold. See Methods.
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11. OncoNPC-guided actionable variants in patients with CUP1032

We investigated if OncoNPC classifications could inform genomically-guided, site-specific treatment1033

options that are typically available for cancers with known primaries. We utilized OncoKB [20] as a1034

knowledge base and considered three different categories of potentially actionable somatic variants:1035

oncogenic mutation, amplification, and fusion (see Methods). OncoNPC cancer type predictions1036

enabled identification of potentially actionable somatic variants across CUP tumor samples (total1037

22.8% of the eligible CUP tumor samples; see Extended Data Fig. 9). The majority of potentially1038

actionable somatic variants for patients with CUP were oncogenic mutations (183 counts; 87.1%),1039

followed by amplifications (22 counts; 9.52%) and fusions (7 counts; 3.33%) as shown in Extended1040

Data Fig. 9a. The four most frequent oncogenic mutations were in PIK3CA, KRAS, ALK, and1041

ERBB2 genes, occurring in CUP tumor samples classified as BRCA (PIK3CA and ERBB2 genes)1042

and NSCLC (KRAS, ALK, and ERBB2 genes). Overall, among the eligible CUPs whose prediction1043

confidences are greater than 0.5 (N = 794; see Extended Data Fig. 6 for the exclusion criteria),1044

OncoNPC predictions identified potentially actionable somatic variants for 11.5% of the CUP tumor1045

samples for Level 1 therapeutic level (FDA-approved drugs), 3.63% for Level 2 (Standard care),1046

6.64% for Level 3 (Clinical evidence), and 1.00% for Level 4 (Biological evidence), summing up to1047

the total 22.8% of the eligible CUP tumor samples (Extended Data Fig. 9b).1048

12. Performance of OncoNPC vs. gene expression and whole genome1049

sequencing-based classifiers1050

OncoNPC vs. gene expression profiling (GEP)-based classifier1051

Gene expression profiling is a method that enables a comprehensive and holistic understanding of1052

cellular behavior, providing insight into unique expression patterns specific to various cancer types.1053

In contrast, targeted panel sequencing focuses on the detection of known cancer-associated genes1054

and mutations within them. This approach typically involves a limited number of genes, ranging1055

from tens to hundreds. For example, OncoPanel, a targeted panel sequencing platform at the DFCI,1056

covers 447 key cancer genes.1057

We assessed the confidence of classifiers using targeted panel sequencing data versus gene expres-1058

sion profiling by comparing the proportions of confident samples in our cohort of unresolved CUP1059

tumor samples (n = 158; see the exclusion criteria in Extended Data Fig. 6) to those of confident1060

samples in a previous study that used a gene expression profiling-based classifier for clinicopathology-1061

unresolved CUPs (n = 146) [21]. The gene expression profiling data in the previous study were1062

obtained from a NanoString panel that targeted 225 genes differentially expressed across 18 tumor1063

classes and viral transcripts encoding capsid proteins for HPV16 L1, HPV18 L1, and Merkel cell1064

polyomavirus (VP2). The previous study found that high-medium confidence (>0.8) classifications1065

were made for 56.2% (82/146) of cases, while in our cohort of 158 CUP cases, 96 patients had a1066

prediction confidence for primary sites greater than 0.8 (60.8%; 95/158), which is comparable to1067

the findings based on gene expression profiling. It is not possible to compare clinical and biological1068

characteristics of patients with high confidence predictions across two classifiers. However, as dis-1069
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cussed in [21], a DNA sequencing panel may be more diagnostically valuable than gene expression1070

profiling for CUP tumors, as they often have an atypical transcriptional profile but retain diagnostic1071

mutation features.1072

OncoNPC vs. whole genome sequencing (WGS)-based classifier1073

Whole genome sequencing (WGS) allows for the analysis of the entire genome, including all somatic1074

and germline mutations, providing a comprehensive understanding of the mutational landscape of1075

cancer cells. Unlike targeted panel sequencing, which captures mutations in a specific set of genes,1076

WGS detects mutations in any region of the genome, providing information on regional mutational1077

density features that cannot be accessed otherwise. A WGS-based classifier developed by [22] found1078

that the distribution of somatic passenger mutations across the genome is the most predictive feature1079

for cancer type prediction, reflecting chromatin accessibility to DNA repair complexes and relating1080

to the epigenetic state of the cancer cell of origin.1081

This is further supported by the performance comparison of classifiers. Although the OncoNPC1082

classifier based on targeted panel sequencing achieved an accuracy of 79.0% for held-out primary1083

tumors (n = 4,525) and 79.8% for metastatic tumors (n = 2,605) across 22 different cancer types, the1084

WGS-based classifier [22] outperformed OncoNPC for a larger number of cancer types. Specifically,1085

the WGS-based classifier achieved an accuracy of 88% for held-out primary tumors (n = 1,436)1086

across 24 cancer types and 83% for metastatic tumors (n = 2,028) across 16 cancer types.1087

Finally, we would like to note that comparing our targeted panel sequencing-based classifier,1088

OncoNPC, to classifiers based on other sequencing technologies in an apple-to-apple manner is1089

challenging due to differences in patient populations, modeled cancer types, and other technical1090

factors such as the architecture of the machine learning models used. Nevertheless, we believe a key1091

advantage of an NGS targeted panel sequencing-based algorithm is the widespread use of this assay1092

in routine clinical practice as well as widely available commercial platforms. In particular, we see a1093

major opportunity for the use of OncoNPC for CUP tumors in community clinics where access to1094

detailed diagnostic evaluations and expert pathology reviews is limited.1095

13. Insights from chart reviews of 158 patients with CUP1096

Discordance between treatments and OncoNPC predictions in patients with CUP1097

In order to identify potential reasons behind the discordance, we have looked at pathological findings1098

as well as other factors such as ECOG performance status and issues pertaining to insurance or access1099

to medical care. A trained oncologist reviewed the medical chart records of all 158 patients in the1100

cohort at DFCI, and we found that there was no significant difference in ECOG performance status1101

between the treatment-OncoNPC prediction concordant and discordant groups. The median ECOG1102

was 1 for both groups, and the mean ECOG was 0.816 and 0.778 for the concordant and discordant1103

groups, respectively. Only one patient in the discordant group received emergency and empiric1104

treatment due to superior vena cava syndrome, but otherwise, all patients in the discordant group1105

were treated without any extenuating circumstances, insurance issues, or access barriers.1106
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Diagnostic utility of OncoPanel identified mutation signatures1107

After reviewing the genomic specimen reports for the patients with CUP in the cohort, we have1108

identified Tobacco, APOBEC, and UVA mutations signatures in 4 and 14 patients belonging to the1109

concordant (Tobacco = 2, APOBEC = 0, UVA = 2) and discordant (Tobacco = 4, APOBEC =1110

4, UVA = 6) groups, respectively. We have provided details on the OncoPanel identified mutation1111

signatures and actionable variants for each patient in Supplementary Data 5. Based on the patient1112

chart reviews, we found that out of the 18 cases with detectable mutation signatures (UVA, tobacco,1113

and APOBEC), only 5 cases (27.7%) were diagnostically useful. Notably, only the UVA and tobacco1114

signatures were helpful in identifying cutaneous and thoracic malignancies, respectively, while the1115

APOBEC signature was not useful in diagnosis. In two cases (11.1%), the presence of a UVA1116

signature directly led to the diagnosis of melanoma and subsequent use of immunotherapy. In1117

another case, a patient who had never smoked and presented with a pulmonary mass and visceral1118

metastases was initially thought to have lung cancer; however, OncoPanel testing showed a strong1119

UV damage signal, favoring a diagnosis of melanoma over non-small cell lung cancer. The patient1120

was subsequently treated with pembrolizumab, which led to significant improvement in all disease1121

sites after three cycles. In this patient’s tumor sample, we would like to highlight that OncoNPC1122

accurately predicted melanoma.1123

Retrospective pathology-based evaluation of OncoNPC predictions1124

To assess the concordance of OncoNPC prediction with pathology-based suspected primaries, we1125

retrospectively reviewed available pathological data containing histology and immunohistochemistry1126

information. A certified oncologist at the DFCI reviewed the pathology notes, containing histologic1127

and morphologic features, immunohistochemical stains, and integration of these features by a subspe-1128

cialized (disease-specific) pathologist, for the 158 patients with CUP in the treatment-concordance1129

analysis (see Extended Data Fig. 6 for the exclusion criteria). It is worth noting that these pa-1130

tients had received comprehensive diagnostic work-up and were treated at DFCI. We were able to1131

identify top 3 pathology-based suspected primaries for 129 of these patients, and among them, the1132

top 5 most frequently suspected primaries were Gastrointestinal (26.8%), Pancreatic (18.3%), Lung1133

(11.3%), Cholangiocarcinoma (11.3%), and Gynecologic (mullerian, ovary, and endometrial; 6.57%).1134

Subsequently, we examined the level of agreement between the OncoNPC primary site prediction1135

and the top 3 suspected primary sites based on pathology. For this analysis, we considered the1136

prediction to be concordant if it matched any of the top 3 suspected primary sites, and discordant if1137

it did not. Overall, we found that there was pathology-OncoNPC concordance in 67 out of 129 cases1138

(51.9%), significantly higher than the top-3 concordance of randomly selected OncoNPC predictions1139

(19.9%, 95% C.I. 19.7% - 20.1%). Within the treatment-OncoNPC concordant group (n = 64), we1140

found the pathology-OncoNPC concordance in 53 out of 64 cases (82.8%, 95% C.I. 73.6% - 92.1%),1141

significantly higher than the concordance observed in the treatment-OncoNPC discordant group (n1142

= 65), which was only 14 out of 65 cases (21.5%, 95% C.I. 11.5% - 31.5%). It is worth noting1143

that the higher pathology-OncoNPC concordance in the treatment concordant group is expected1144

due to the definition of the group. Intriguingly, the 14 putatively concordant cases in the treatment1145
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discordant group are likely instances where a primary was suspected by pathology but did not factor1146

into the ultimate treatment decision. Overall, the relatively low overall concordance rate highlights1147

the difficulties in diagnosing highly metastatic or poorly differentiated tumors through pathology,1148

as previously mentioned in [2, 23].1149

Next, we compared the level of uncertainty in OncoNPC predictions, measured by entropy,1150

in two groups of patients. The first group comprised patients with suspected primaries based on1151

pathology findings (n = 129), while the second group consisted of patients with no suspected primary1152

site (n = 29), indicating inconclusive pathology results and an additional degree of pathological1153

complexity. Interestingly, we found no significant difference in prediction uncertainty (0.770, 95%1154

C.I. 0.664 - 0.876 and 0.796, 95% C.I. 0.522 - 1.07 for those with and without pathology-based1155

suspected primaries, respectively; note higher means the prediction is less certain), suggesting that1156

tumors without IHC-based suspected primaries were not more challenging to classify genetically.1157

Additionally, we compared the prediction uncertainty between the pathology-OncoNPC discordant1158

and concordant groups (n = 62 and n = 67, respectively), where CUP tumors were defined as1159

pathology-OncoNPC concordant if the OncoNPC prediction matched any of the top 3 suspected1160

primary sites (and discordant otherwise). The discordant group had significantly higher prediction1161

uncertainty (0.958, 95% C.I. 0.809 - 1.11 for the discordant group vs. 0.597, 95% C.I. 0.458 -1162

0.735 for the concordant group), indicating that discordant tumors were more challenging to classify1163

genetically.1164

Finally, we conducted a retrospective investigation into the diagnostic utility of OncoNPC pre-1165

dictions for CUP tumors when multiple primaries are suspected based on pathology findings. We1166

present two case studies here:1167

In one case, a patient had urothelial cancer years prior to presenting with an ampullary mass.1168

Based on initial pathological findings, it was initially thought to be an intestinal type ampullary1169

carcinoma and treated with first-line chemotherapy (FOLFOX regimen) per NCCN guidelines. How-1170

ever, further examination showed that the mass was more likely consistent with urothelial cancer,1171

and this was confirmed by the positive response to the NCCN-recommended first-line therapy for1172

locally advanced or metastatic bladder cancer (i.e., gemcitabine and cisplatin). OncoNPC predicted1173

Bladder Urothelial Carcinoma for this patient’s tumor with a high prediction confidence of 0.999.1174

In another case, a patient with a history of bilateral breast cancers presented with a lung lesion1175

of unknown primary. OncoNPC predicted Invasive Breast Carcinoma for this patient’s tumor with1176

a confidence of 0.996, while pathology findings suggested possible recurrence of breast cancer, pri-1177

mary lung adenocarcinoma, or mesothelioma. The case was ultimately treated as lung cancer with1178

immunotherapy, but the patient had a poor response and passed away two months later, raising the1179

possibility of a primary breast cancer.1180
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Table S2: Demographic details of patients with CUP in the concordant and discordant treatment
groups, who received their initial treatments after the results of the OncoPanel sequencing were
available to clinicians. The OncoNPC predicted cancer groups, except for the GI group, match
the cancer groups defined in Main Table 1. The GI group in this analysis comprises the upper GI
group, consisting of Cholangiocarcinoma (CHOL), Esophagogastric Adenocarcinoma (EGC), and
Pancreatic Adenocarcinoma (PAAD), as well as Colorectal Adenocarcinoma (COADREAD).

Concordant treatment group
(n = 21)

Discordant treatment group
(n = 12)

Sex; male-female ratio 0.429-0.571 0.417-0.583
Age at seqeuncing (95% C.I.) 65 (60.4 - 69.6) 62 (57.3 - 66.7)

OncoNPC prediction uncertainty
(in entropy; 95% C.I.) 0.517 (0.253 - 0.782) 0.862 (0.484 - 1.24)

OncoPanel version (proportion in %)
v1 1 (4.762%)
v2 2 (9.524%) 1 (8.333%)
v3 18 (85.714%) 10 (83.333%)

Mutational burden (95% C.I.) 0.029 (0.016 - 0.043) 0.031 (0.02 - 0.042)
CNA burden (95% C.I.) 0.231 (0.175 - 0.286) 0.256 (0.2 - 0.313)

OncoNPC predicted cancer groups (proportion in %)
Lung 5 (23.81%) 3 (25.0%)
Breast 1 (4.762%) 4 (33.333%)

GI 3 (14.286%)
Gyn 4 (19.048%) 1 (8.333%)

Others 8 (38.095%) 4 (33.333%)
Metastatic sites (proportion in %)

Brain 2 (9.524%) 2 (16.667%)
Bone 3 (14.286%)

Soft tissue 1 (8.333%)
Others 16 (76.19%) 9 (75.0%)

Histology (proportion in %)
Adenocarcinoma 9 (42.857%) 4 (33.333%)
Neuroendocrine 4 (19.048%)
Squamous cell 1 (4.762%) 1 (8.333%)

Others 7 (33.333%) 7 (58.333%)
Treatment start date (95% C.I.) 2018-10-26 (2018-3-5 - 2019-6-18) 2018-7-2 (2017-9-9 - 2019-4-24)
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Table S3: Center-specific number of held-out CKP tumor samples, broken down by cancer types
and prediction confidences (i.e., pmax) thresholds.

Minimum pmax threshold Minimum pmax threshold

0.0 0.5 0.7 0.9 0.0 0.5 0.7 0.9

Overall
DFCI 3690 3438 3047 2502

Renal Cell Carcinoma (RCC)
DFCI 79 71 61 50

MSK 3331 3012 2608 2112 MSK 85 75 68 56
VICC 268 230 192 136 VICC 6 5 4 3

Non-Small Cell Lung Cancer (NSCLC)
DFCI 811 735 644 533

Head and Neck Squamous Cell Carcinoma (HNSCC)
DFCI 55 50 39 28

MSK 717 618 520 430 MSK 27 18 12 5
VICC 36 27 23 19 VICC . . . .

Invasive Breast Carcinoma (BRCA)
DFCI 600 572 514 433

Cholangiocarcinoma (CHOL)
DFCI 18 12 10 7

MSK 727 675 598 474 MSK 40 31 24 16
VICC 68 62 48 35 VICC 1 . . .

Colorectal Adenocarcinoma (COADREAD)
DFCI 521 502 479 436

Gastrointestinal Stromal Tumor (GIST)
DFCI 47 46 43 40

MSK 375 358 330 303 MSK 34 33 31 30
VICC 55 52 48 37 VICC . . . .

Diffuse Glioma (DIFG)
DFCI 400 390 383 361

Well-Differentiated Thyroid Cancer (WDTC)
DFCI 17 15 14 9

MSK 214 204 187 168 MSK 31 31 29 25
VICC 11 10 8 4 VICC 1 1 1 .

Prostate Adenocarcinoma (PRAD)
DFCI 126 118 98 67

Pleural Mesothelioma (PLMESO)
DFCI 24 21 14 10

MSK 300 280 233 163 MSK 18 17 10 6
VICC 16 10 6 3 VICC 5 3 2 1

Pancreatic Adenocarcinoma (PAAD)
DFCI 136 125 104 71

Meningothelial Tumor (MNGT)
DFCI 27 25 23 20

MSK 233 216 187 154 MSK 3 3 1 .
VICC 10 8 6 1 VICC 1 1 1 1

Ovarian Epithelial Tumor (OVT)
DFCI 257 229 184 112

Gastrointestinal Neuroendocrine Tumors (GINET)
DFCI 20 17 16 11

MSK 100 60 38 10 MSK 3 3 2 .
VICC 12 9 5 2 VICC . . . .

Esophagogastric Adenocarcinoma (EGC)
DFCI 171 153 114 66

Pancreatic Neuroendocrine Tumor (PANET)
DFCI 15 14 13 8

MSK 82 70 44 24 MSK 24 22 19 15
VICC 11 8 7 2 VICC . . . .

Endometrial Carcinoma (UCEC)
DFCI 123 116 95 73

Acute Myeloid Leukemia (AML)
DFCI 15 11 10 6

MSK 105 100 91 70 MSK . . . .
VICC 7 6 6 2 VICC . . . .

Melanoma (MEL)
DFCI 134 127 115 103

Non-Hodgkin Lymphoma (NHL)
DFCI 8 8 7 6

MSK 108 103 98 92 MSK 12 11 8 6
VICC 24 24 23 23 VICC . . . .

Bladder Urothelial Carcinoma (BLCA)
DFCI 86 81 67 52
MSK 93 84 78 65
VICC 4 4 4 3
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