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Supplementary Figures

b  The CF-C8FGLG complex

5

C Sequence identity (= the identical residues/aligned residues), based on the structure-
based sequence alignment in Supplementary Fig. 1a of Yang et al. (10.1038/s41467-
024-47990-2).

Casp-8 DED1  Casp-8 DED2 cFLIP DED1 cFLIP DED2
FADD DED 28/82=34.1% 21/82=25.6% 23/75=30.6% 21/83=25.3%
Casp-8 DED1 21/81=25.9% 23/84=27.3% 24/84=28.5%
Casp-8 DED2 14/86=16.2% 22/74=29.7%
cFLIP DED1 17/76=22.3%

Sequence identity (%) 29.7

//EJ s 285

0
2 o Q 1o

) \2 ) N 8

@ % g F P %,

Supplementary Fig. 1 Representative electron density maps for the binary CF-C8¥CGL¢
and CF"7G-C8FCGLG complexes. a The 2Fo-Fc electron density map for the CFH7G-C8FOLG

complex, contoured at 1.5 sigma using PyMol, shows a region containing the type III interface



between DED2 of cFLIP molecule CFi and DED1 of cFLIP molecule CFh as seen in Fig. 3g.
The ribbons illustrate the atomic coordinates. This region contains a disordered helix, *H3,
represented by a dotted line, in ¢FLIP DED CFi>. The disordered helix 2H3 is referred to as a
disordered loop 2H2->H4 in (b). Helices 1 to 7 of each DED are numbered H1 to H7, while 2H4
stands for the helix 4 in DED2. See the figure legend of Fig. 1c for the naming convention. b
Similar to (a), but shows the 2Fo-Fc electron density map for the CF-C8FSLG complex. This
map illustrates a region containing the type III interface between DED2 of cFLIP molecules
CFh and CFg as seen in Fig. 3g. Notably, this region contains a more ordered loop 2H2-H4 of
cFLIP DED CFh;, compared to the disordered loop 2H2-*H4 of cFLIP DED CFiz in (a). ¢ The
sequence identity among FADD DED, Casp-8 DED1, Casp-8 DED2, cFLIP DED1, and cFLIP
DED?2. The identity was estimated based on the structure-based sequence alignment in
Supplementary Fig. 1a of Yang et al. (10.1038/s41467-024-47990-2)". (n=1 data) Source data

are provided as a Source Data file.
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Supplementary Fig. 2: The SAXS data for the CF-C8"¢LCG complex. a The Guinier plot for
the SAXS data shown in Fig. 2d. b P(r) analysis and fit of SAXS data to the model in Fig. 2d.

See also Supplementary Table 2.
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Supplementary Fig. 3 Different types of the surfaces and CSS on tDED. a Displays the
type Ia, Ib, IIa, IIb, I11a, and I1Ib surfaces of tDED using cFLIP tDED as an example. b Displays
different type of the CSS surfaces of cFLIP and Casp-8 tDED. Pink, green, or dark grey angled
and angled/dashed lines represent different CSS of tDEDs. ¢ Illustrates that type II-1II-II CSS
is a part of the CBS for the protein-protein interaction between the molecules of different layers.
For comparison, type III-II-III CSS is mainly involved in self-assembly occurring in the same
layer. The molecules are colored as their counterparts in Fig. 3g. C8d; denotes DED1 of Casp-

8ED chain d, while CFf represents cFLIPPEP chain f.
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Supplementary Fig. 4 Casp-8*P self-assembly plays a minor role in the formation of the

CF"76.C8FGLG complex. a Displays five representative interfaces involved in the Casp-8-

Casp-8 and cFLIP-Casp-8 interactions within the CF"76-C8FGLG complex. The interface



residues and the Casp-8 mutations generated in this study are indicated for each interface.
Thick pink lines illustrate the type III-II-III interface between two Casp-8PEP molecules, while
thick blue lines represent the representative interfaces between a type III-11-IIT CSS-mediated
cFLIP'PED trimer and a Casp-8PEP molecule. The molecules are colored as their counterparts
in Fig. 3g. C8; denotes DED1 of Casp-8'PEP, while CFf represents cFLIP™EP chain f. b Depicts
the five interfaces involved in the interaction between the cFLIP double-layer intermediate
complex and Casp-8 within the same complex. Red thick lines indicate the Casp-8-recruiting
CBS on the cFLIP double-layer intermediate complex. The interface residues and the Casp-8
mutations generated in this study are illustrated for each interface. ¢ Pulldown of CF'7C by
His-tagged C8"9LY or mutant C8FCLC to evaluate the importance of the C8 self-assembly in the
binary complex formation. The resin-bound fractions are divided into the eluted protein
fractions (shown here) and the resin after elution fractions (shown in (d)). Both fractions
underwent SDS-PAGE analysis to access the amount of bound CF and His-tagged C8FOLG,
with each band quantified using Image] (https://imagej.net/ij/)>. The bar chart shows the
quantified mutagenesis results of (¢) and (d) (therefore, n=1 data), with the ratios of cFLIP to
Casp-8 plotted as blue and light blue bars for the eluted protein and resin after elution fractions,
respectively. Each ratio is normalized to that of lane 14, with the normalized results plotted as
orange and yellow bars, respectively, and the ratio shown on top. "Type a" and "type b" Casp-
8 mutations are indicated. The flow-through fractions are also shown here.d Shows the SDS-
PAGE analysis results of the resin after elution fractions from (c¢). Source data are provided as

a Source Data file. The experiments were repeated twice with similar results.
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Supplementary Fig. 5 The procedure of cryo-EM structure determination. a Diagrams
illustrating the structure determination process for the CF-C8FuL_FGLG_CADA_EAFuL_F25G
complex, resulting in five cryo-EM models: one ternary complex (Complex C) and four binary

complexes (Complexes D to G). See also Supplementary Figs. 6, 7. b The corresponding



Fourier Shell Correlation (FSC) curves for Complexes C to G. FSC curves for the Complexes
A (EMD-39127 [https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-39127]) and B (EMD-39126
[https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-39126]) of the CF-C8FuL_FGLG_CADA_RAFuL
complex' are shown for comparison. ¢ Local resolution mapped onto the cryo-EM envelope of
each complex solved in (a). d Overview of the atomic coordinates of the binary cFLIP-Casp-8
tDED and ternary cFLIP-Casp-8-FADD DED complexes fit into the corresponding cryo-EM
density maps. FADD is colored in red, while Casp-8 and cFLIP are colored in green and blue,

respectively.



The CF-C8Ful_FGLG_CADA_FAFuL_F25G cornplexes
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Supplementary Fig. 6 Representative cryo-EM micrographs, 2D classes, and angular
distribution of particles from the ternary CF-C8Ful_FGLG_CADA_RAFuL F25G complex. a
Representative Cryo-EM micrograph for the CF-C8Ful_FGLG_CADA_EAFUL F25G complex. Scale
bar = 60 nm. Thousands of movies were collected to produce micrographs with similar results.
Source data are provided as a Source Data file. b Examples of 2D classes for the particles from
the CF-C8FuL_FGLG_CADA_E AFUL_F25G complex. ¢ Angular distribution of particles in the cryo-

EM analysis of the Complexes C to G. See also Supplementary Fig. 5.

10



11



Complex C
{ -

L‘é 2 /\/

Superimposed with
the full-length FADD

|-

Fas DD or
RIPK1 DD
/

Bottom view Top view
Supplementary Fig. 7 Representative cryo-EM envelopes reconstituted from the ternary
CF-C8Ful_FGLG_CADA_R AFuL_F25G complex. a The cryo-EM envelop of the Complex C shows
the region where the 1% and 2™ FADD molecules are recruited by the binary cFLIP-Casp-8
complex. The envelopes clearly identify FADD due to the absence of density for helix H7,
while helix '"H7 of ¢cFLIP tDED (blue ribbons) is present. The 1 and 2" FADD molecules,

FAI and FAr, are colored in red and pink, respectively. Casp-8 and cFLIP are colored in green
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and blue, respectively. b The cryo-EM envelop of the complex E shows the region where the
first Casp-8 molecule (C8a) is recruited by the cFLIP oligomeric complex. Casp-8 and cFLIP
are colored in green and blue, respectively. The lower part includes the envelops for helix 'H7
of cFLIP (blue ribbons). Please note that the upper part contains the envelops for a helix 'H7
(green ribbons), helping confirming the identity of Casp-8 tDED, especially in comparison to
the FAI and FAr region shown in (a). ¢ A model of Complex C (in pipes-and-planks) with the
full-length  FADD (in ribbons). The DED of the full-length FADD (PDB: 2GF5
[http://doi.org/10.2210/pdb2GF5/pdb], Carrington et al. 10.1016/j.molcel.2006.04.018)° was
superimposed with the FADD DED of Complex C in order to predict the locations of FADD
DD for interacting with Fas DD or RIPK1 DD (orange arrows). For the possible location of
Casp-8's caspase domain and its heterodimer with cFLIP's pseudo-caspase domain, please refer
to Figs. 5¢, 7b, and 7¢ in Yang et al. 10.1038/s41467-024-47990-2.! The molecules are colored

as their counterparts in Fig. 7.
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Supplementary Fig. 8 The effects of FADD mutations on the reverse hierarchical binding
process. a Cell-lysate based mutagenesis results. FADD protein and varying amounts of
cFLIP®PEP_expressing plasmid were simultaneously added to HeLa cell lysate for a 16-hour
incubation. The effects of the FADD K33E mutation and the absence of cFLIP's pseudo-
caspase domain were examined by western blotting. Lane 6 shows that the addition of FADD

simultaneously induces two functionally different complexes: Casp-8 activation and RIPK1
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activation. Expressed cFLIP®EP inhibits added-FADD-induced Casp-8 but not RIPKI
activation (Lane 7). The western blotting data were repeated twice with similar results. b
Residues involved in the seven interfaces between FADD and the binary CF-C8 complex, and
the two interfaces between FADD and neighboring FADD in the triple-FADD complex, as
mentioned in Fig. 6e. Nine boxes represent the nine representative interfaces, with their
locations highlighted on the molecular surfaces of the 5:3:3 Complex C. The locations of
various FADD mutations and Casp-8 FGLG mutations on different interfaces are highlighted.
In each box, interface residues are shown in stick presentation, with FADD mutations
highlighted by dashed boxes. FADD mutations that inhibit expressed-cFLIP-induced Casp-8
activation are labeled in red. The molecular surfaces are the cryo-EM envelops for the Complex
C. Green arrows point to the CBS, illustrated by red lines, originally on the cFLIP double-layer
intermediate complex for recruiting Casp-8 molecule C8a. White and grey lines show the Casp-
8 layer or cFLIP layers. C8; denotes DEDI1 of Casp-8PEP, while CFf represents cFLIPPED
chain f. ¢ SDS-PAGE analysis results for reconstituting ternary cFLIPPEP-Casp-8PEP_FGLG.
FADD™! complexes with different FADD mutants in reverse order, using the method
described in Fig. 5a. Ni-resin loaded with various His-tagged FADD mutants was used to
pulldown the tag-removed, double-purified binary CF-C8F6L6 complex. Subsequently the Ni-
resin was washed and subjected to SDS-PAGE analysis. The experiments were repeated twice

with similar results. Source data are provided as a Source Data file.
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the triple-FADD structure
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FADD F25G mutant induces little changes in the triple-FADD structure

The cryo-EM structure of the CF-C8FuL_FGLG_CADA.FAFUL_F256 5:3:3 complex C (PDB: 8YNI, in this study)
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The cryo-EM structure of the CF-C8FuL_FGLG_CADA 8:3 complex F (PDB: 8YNM, in this study)

Supplementary Fig. 9 The presence of FADD alters the cFLIP-Casp-8 tDED assembly. a-
¢ Structural comparison of the binary complex (grey) and corresponding ternary complex
(colored as their counterparts in Fig. 5h). Red arrows indicate shifts in tDED relative to the
superimposed Casp-8 molecule C8c. a The comparison suggests that the presence of triple-
FADD in the ternary complex transforms the CF-C8 assembly into a CF-C8 hetero-double
layer, different from the binary complex. b The comparison indicates that the presence of

single-FADD also causes structural jamming, resulting in a CF-C8 hetero-double layer in the

16



ternary complex. ¢ The comparison shows that the recruitment of the FADD F25G mutant
induces minimal changes in CF-C8 tDED assembly, as highlighted in the close-up view. The
transition from a CF triple-layer to a CF-C8 hetero-double layer is incomplete, with cFLIP

molecule CFg remaining in the complex. CFf represents cFLIP'PEP chain f.
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between cFLIP, Casp-8, and FADD in reverse order. Black arrows represent
oligomerization reactions (OR) that result in an intermediate or stable complexes at specific

oligomerization states (OS). Blue arrows indicate rotations by a certain degree. The molecules
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are colored as their counterparts in Figs. 1d, 3g, and 5h. C8d; denotes DED1 of Casp-8'PEP
chain d, while CFf represents cFLIP™EP chain f.

Elevated levels of cFLIP could form a transient type III-1I-III CSS-mediated trimer (OS-
1) with a CF:C8:FA ratio of 3:0:0. In OR-1, two transient trimers merge to form a more stable
double-layer intermediate complex (OS-2, 6:0:0), creating a CBS with a type I interface, a type
[I-III-II CSS, and a type III interface. In OR-2, OS-2 recruits a Casp-8 molecule to form OS-3
(6:1:0). Subsequently, in OR-3 and subsequent OR-4, OS-3 (6:1:0) and OS-4 (6:2:0) recruit
additional Casp-8 molecules, resulting in OS-4 (6:2:0) and OS-5 (6:3:0), respectively. To
restrain C8 oligomerization (in the green box), OS-5 recruits the 4™ Casp-8 molecule (C8d) to
form OS-6 (6:4:0) in OR-5.

The resultant CF-C8 complex could bind FADD (in the orange box). In OR-6, OS-6
binds a FADD molecule and loses two cFLIP molecules to form OS-7 (4:4:1). In OR-7 or
OR7 2, OS-7 recruits or loses a Casp-8 molecule to form OS-8 (4:5:1) or OS-9 (4:3:1),
respectively. Alternatively, OS-5 can sequentially recruit three FADD and lose two cFLIP
molecules to form Complex B (OS-11, 4:3:3) through OR-8 to OR-10.

For comparison, the mechanism of C8 filamentation on the top end is shown in the red
dashed box. Assuming that Casp-8 form OS-2 (0:6:0), it enters the C8 filamentation cycle to
sequentially recruit three Casp-8 molecules, forming OS-5 (0:6+3:0). OS-5 is essentially a
longer version of OS-2 with the same CBS. It can recruit a Casp-8 molecule (via OR-2) to form
OS-3 to repeat the C8 filamentation cycle (indicated by a dotted pink arrow) or recruit any

existing C8 transient trimer repeatedly (OR-X, shown by a grey arrow) in filament extension.
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8YNI 5:3:3 CF-C8-FA complex (Complex C)
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Supplementary Fig. 11: Cryo-EM maps for each helix of DED in Complex C

Figure and figure legend continue on the following page.
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8YNI 5:3:3 CF-C8-FA complex (Complex C
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Supplementary Fig. 11: Cryo-EM maps for each helix of DED in Complex C
Shows cryo-EM maps for each helix of DED in the cryo-EM structure of 5:3:3 CF-C8-FA
complex (Complex C). The contour level of the surface: 0.20-0.24 (about sdlevel 18-24) using

UCSF Chimera version 1.16-42360.

21



8YNK 5:3 CF-C8 complex (Complex D)
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Supplementary Fig. 12: Cryo-EM maps for each helix of DED in Complex D

Figure and figure legend continue on the following page.
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8YNK 5:3 CF-C8 complex (Complex D)
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Supplementary Fig. 12: Cryo-EM maps for each helix of DED in Complex D
Shows cryo-EM maps for each helix of DED in the cryo-EM structure of 5:3 CF-C8 complex
(Complex D). The contour level of the surface: 0.20-0.24 (about sdlevel 18-24) using UCSF

Chimera version 1.16-42360.
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8YNL 6:3 CF-C8 complex (Complex E)
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Supplementary Fig. 13: Cryo-EM maps for each helix of DED in Complex E

Figure and figure legend continue on the following page.



8YNL 6:3 CF-C8 complex (Complex E)
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Supplementary Fig. 13: Cryo-EM maps for each helix of DED in Complex E

Shows cryo-EM maps for each helix of DED in the cryo-EM structure of 6:3 CF-C8 complex

(Complex E). The contour level of the surface: 0.20-0.24 (about sdlevel 18-24) using UCSF

Chimera version 1.16-42360.
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8YNM 8:3 CF-C8 complex (Complex F)
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Supplementary Fig. 14: Cryo-EM maps for each helix of DED in Complex F

Figure and figure legend continue on the following page.



8YNM 8:3 CF-C8 complex (Complex F'
cFLIP

Chain h

{ DED1_H7 DED2_H6

DED2.| H3 V:Jg\) v

DED2_H4

y N
A ¥ ]
\

DED1_H2  peps_py

DED2_H5

DED1_H5

DED2_H1

DED1_H4

Chain o 7 DED1 _H2 \ DED1_H1 DED“_HS , Contour level: 0.16
e a 2 -, 2 ~ R
R L
|§ - ? :‘/@v"
e

i ‘ _ iThe maps fon‘:
DED2_H4 \DED1_H7 | DED2_H6

Chainn DED1_H6
DED2 Hz " DED! Hif DED1_H1

A . % al ?
NP P o2 DED1_Hs P «% DED2_H5
s A TDEDt e ™ 'DED2_H1

DED2_H4

Contour level: 0.16 Contour level: 0.16 Contour level: 0.16

Supplementary Fig. 14: Cryo-EM maps for each helix of DED in Complex F

Shows cryo-EM maps for each helix of DED in the cryo-EM structure of 8:3 CF-C8 complex
(Complex F). The contour level of the surface: 0.20-0.24 (unless specified in figure) using
UCSF Chimera version 1.16-42360. Notably, the corresponding cFLIP tDED chains o and n
in the crystal structure of the CF-C8 FGLG complex (PDB 8YMG6 in this study) have electron

density maps for building all helices including DED1_H?7 of chain o.
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8YNN 4:3 CF-C8 complex (Complex G)
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Supplementary Fig. 15: Cryo-EM maps for each helix of DED in Complex G



Shows cryo-EM maps for each helix of DED in the cryo-EM structure of 4:3 CF-C8 complex
(Complex G). The contour level of the surface: 0.20-0.22 using UCSF Chimera version 1.16-

42360.

29



Supplementary Tables

Supplementary Table 1: X-ray data collection, phasing and refinement statistics for the
binary cFLIP-Casp-8 tDED complex

CFH7G_C8FGLG* CF-CSFGLG* CFH7G_C8FGLG (Se)*

Data collection
Space group P21 2121 1222 P21 2121
Cell dimensions

a, b, c(A) 82.147,166.224, 179.415 150.311, 158.640, 353.286  82.266, 167.448, 179.490

o, B,y (® 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00

Peak

Wavelength 1.00000 1.00000 0.97942
Resolution (A) 50.00-2.09 (2.16-2.09)** 30.00-3.30 (3.42-3.30) 30.00-2.34 (2.42-2.34)
Rsym Or Rumerge 0.054 (0.279) 0.093 (0.739) 0.094 (0.358)
1/col 21.459 (4.252) 12.757 (1.391) 22.935 (3.354)
Completeness (%) 98.6 (95.1) 96.8 (94.8) 97.9 (88.0)
Redundancy 3.7(3.5) 3.3(2.8) 7.6 (6.8)
Refinement

Resolution (A)
No. reflections
Rwork / Rfree
No. atoms
Protein
Ligand/ion
Water
B-factors
Protein
Ligand/ion
Water
R.m.s deviations

Bond lengths (A)

Bond angles (°)
PDB ID

32.88-2.09 (2.11-2.09)
143,410 (4,052)
0.1937/0.2313

14,887

466

46.28

39.67

0.008
1.14
8YMS

29.64-3.30 (3.35-3.30)
61,336 (2,366)
0.2183/0.2643

18,608

0.002
0.56
8YM6

29.84-2.34 (2.37-2.34)
102,214 (2,780)
0.2056/0.2525

14,567
1
51

50.24
112.3
33.46

0.005
0.71
8YM4

*One crystal used for each data set.
**Values in parentheses are for highest-resolution shell.
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Supplementary Table 2: SAXS data statistics for the CF-C8"CLCG complex

Sample details

Organism

source

UniProt sequence ID (residues in construct)
Extinction coefficient [A 280, 0.1%(w/v)]
Protein partial specific volume (cm? g™!)

Particle contrast, Ap [ Pprotein — Psolvent; 101° cm 2]

M, (Da) from chemical composition
C (mol/cm?)
Buffer solution

Human

E. coli expressed

Q14790(1-185); O15519(1-181)

0.322

0.7666

2.3867 [11.8595 - 9.4728]

278,418

0.1947

20 mM Tris-HC1 pH 8.0, 80 mM NaCl

SAS data collection parameters

Instrument

Beam geometry
Wavelength (A)
g-range (A1)

Exposure time

Synchrotron 23A SWAXS endstation of
NSRRC

0.5 mm diameter beam

0.82825

0.0112-0.3758

300s with 30s single exposure time for 10
successive exposures

Concentration range (mg mL"") 9.0

Temperature (K) 288

Data processing

Primary data reduction NSRRC 23A SWAXS package

Data processing
Ab 1nitio analysis
Extinction coefficient estimate

ATSAS 2.8.1; RAW 2.2.2
RAW 2.2.2, ATSAS 3.2.1 (r14885)
ProtParam

Validation and averaging n/a
Rigid-body modelling n/a
Computation of model intensities RAW?22.2
Model y? 1.79
Three-dimensional graphics representation PyMOL

Structural parameters

Guinier analysis
1(0) (em™")
Re(A)
q min (A7)
gR ¢ max (¢ min=0.01118 A™)
Coefficient of correlation, R 2
M, (Da) from 1(0) (ratio to calculated M)
P(r) analysis
1(0) (em")
Re(A)
D max (A)
g range (A1)
x’ fit (estimate from RAW)
M, (Da) from 1(0) (ratio to calculated M)
M, (Da) from Vp (V p/calculated M)

1.4285 + 0.00209
45.6500 + 0.1086
0.01118

1.2901

0.9983

286,000 (1.03)

1.4108 + 0.000298
44.9107 +0.0199
171.6183 + 0.4020
0.0112-0.3758
2.2830

282,000 (1.01)
265,200 (0.95)
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Supplementary Table 3: Cryo-EM data collection, refinement and validation statistics
for studying the CF-C8FuL_FGLG_CADA_pAFul_F25G complex

Complex C Complex D Complex E Complex F Complex G
(EMD-39424) (EMD-39425) (EMD-39426) (EMD-39427) (EMD-39428)
(PDB 8YNI) (PDB 8YNK) (PDBS8YNL) (PDB8YNM) (PDB 8YNN)
Data collection and
processing
Magnification 165K 165K 165K 165K 165K
Voltage (kV) 300 300 300 300 300
Electron exposure (e /A% ~73 ~73 ~73 ~73 ~73
Defocus range (pum) -0.5~-2.5 -0.5~-2.5 -0.5~-2.5 -0.5~-2.5 -0.5~-2.5
Pixel size (A) 0.84 0.84 0.84 0.84 0.84
Symmetry imposed Cl Cl Cl Cl Cl
Initial particle images (no.) 246,000 246,000 246,000 246,000 246,000
Final particle images (no.) 24,014 22,967 27,558 28,464 17,838
Map resolution (A) 3.66 3.62 3.55 3.49 3.97
FSC threshold 0.143 0.143 0.143 0.143 0.143
Map resolution range (A) 2.5~6.1 2.3~6.6 2.3~10.9 2.0~6.2 2.6~6.8
Refinement
Initial model used (PDB
code)
Model resolution (A) 3.66 3.62 3.55 3.49 3.97
FSC threshold 0.143 0.143 0.143 0.143 0.143
Map sharpening B factor
(A%
Model composition
Non-hydrogen atoms 13,550 11,564 12,977 15,663 10,129
Protein residues 1,657 1,409 1,583 1,913 1,233
Ligands - - - - -
B factors (A?)
Protein 151.23 132.02 120.69 152.56 201.56
Ligand - - - - -
R.m.s. deviations
Bond lengths (A) 0.002 0.002 0.002 0.002 0.001
Bond angles (°) 0.400 0.399 0.382 0.393 0.364
Validation
MolProbity score 1.31 1.43 1.28 1.42 1.23
Clashscore 5.64 491 5.24 5.17 4.50
Poor rotamers (%) 0 0 0 0 0
Ramachandran plot
Favored (%) 97.97 96.97 98.08 97.24 98.35
Allowed (%) 2.03 3.03 1.92 2.76 1.65
Disallowed (%) 0 0 0 0 0
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