How does the powder mixture of ibuprofen and caffeine attenuate the solubility of ibuprofen? Comparative study for the xanthine derivatives to recognize their intermolecular interactions using Fourier-transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and Xray powder diffractometry (XRPD).

Shoya Suenaga[¶], Hikaru Kataoka[¶], Kanji Hasegawa, Ryotaro Koga, Chihiro Tsunoda, Wataru Kuwashima, Tomohiro Tsuchida, and Satoru Goto*

Supplemental Materials

Figure S1. The endothermic signal of IBP melting in the DSC thermograms of the IBP mixtures with CFN (a), TPH (b), TBR (c), and XAT (d), which were expanded from the thermograms in Figure 4. Numbers expressed the temperatures of the peak tops. The intersections of the left-side tangent lines of peaks on the baseline extensions shifted in the mixtures of CFN/IBP and TPH/IBP. However, those in the mixtures of TBR/IBP and XAT/IBP were invariable, indicating no intermolecular interactions.

Figure S1. The endothermic signal of DCF melting in the DSC thermograms of the DCF mixtures with CFN (e), TPH (f), TBR (g), and XAT (h), which were expanded from the thermograms in Figure 4. Numbers expressed the temperatures of the peak tops. The intersections of the left-side tangent lines of peaks on the baseline extensions shifted in the mixtures of CFN/DCF, TPH/DCF, and TBR/DCF. However, those in the mixtures of XAT/DCF were invariable, indicating no intermolecular interactions.

Figure S2. DSC-XRPD diffractograms of the neat TPH (sky blue), the TPH/DCF equimolar mixture at 401.75 K (cyan), 423.19 K (moss green), and 444.24 K (indigo) from Figure 5(h), and the simulated diffractograms of DCF with its polymorphs of HD1 (black), HD2 (red), and HD3 (green).

Figure S3. The ATR-FTIR spectra of CFN (a), TPH (b), TBR (c), and XAT (d). Bordeaux lines show spectra of neat crystals, and gray lines show their solids standing for 7 days. Numbers adjacent to noticeable peaks express the corresponding wave numbers. It was considered no particular changes in the significant peaks.

Figure S3. Expansions of the FTIR spectra of CFN (a'), TPH (b'), TBR (c'), and XAT (d') into the wavenumber range of 1800-400 cm⁻¹. Numbers adjacent to noticeable peaks express the corresponding wave numbers. Their assignments to the moieties were appended.

	CFN	ТРН	TBR	ХАТ
Purine C8-H stretching	3112, 2958	3121, 2985	3116, 3026	3134, 2997
Amide-II (N2-H stretching)	-	-	2829	2877
N3-H, N7-H stretching	-	2787, 2609	-	2794,
Urea C2=O stretching: Falk 1989	1692	1706	1684	1695
Amide-I C6=O stretching: Falk 1989	1646	1661	1661	1646
Amide-II N1-H bending (scissoring)	-	-	1655-1620	1655-1620
Purine C4=C5 stretching: Cohen 1975	1599	1609	1592	n.d.
Purine C8=N9 stretching: Cohen 1975	1547	1564	1547	1567
substitution CH3 bending (1453)	1480	1484	1487	-
Purine C8-H bending: Cohen 1975	1457	1442	1457	1457
Purine C5-N7 stretching: Silverstein	1430	1427	1425	1419
Purine C4-N9 stretching	1359	1315	1370	1334
Purine C-N, C-O vibration: Cohen 1975	1289,1238, 1190	1285,1241, 1187	1295,1223, 1174	1259,1206, 1153

Table S1. The signal assignments for the normal modes of the structural vibrations in the ATR-FTIR spectra of the neat XAT derivatives.

Figure S4. The ATR-FTIR spectra of IBP.

Figure S4. The ATR-FTIR spectra of IBP. Vibration modes were represented as v: stretching, δ: bending, ω: wagging, ρ: rocking, and τ: twisting.

Figure S4. The ATR-FTIR spectra of DCF.

Figure S4. The ATR-FTIR spectra of DCF. Assignment the FTIR signals onto the simulated peaks in the normal mode analysis.

Figure S4. The ATR-FTIR spectra of DCF. Assignment the FTIR signals onto the simulated peaks in the normal mode analysis.

Figure S4. The vibration modes of the assigned peaks at the wavenumbers of 3284, 3259, and 2889 cm⁻¹.

Figure S4. The vibration modes of the assigned peaks at the wavenumbers of 1722, 1565, and 1545 cm⁻¹.

Figure S4. The vibration modes of the assigned peaks at the wavenumbers of 1452, 1390, and 1287 cm⁻¹.

Figure S4. The vibration modes of the assigned peaks at the wavenumbers of 1247, 1192, and 1080 cm⁻¹.

2.5

Figure S5. (a) Crystalline FTIR spectra of mixtures of IBP with CFN at various molar ratios. Neat CFN (brown), neat IBP (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

2.5

Figure S5. (b) Crystalline FTIR spectra of mixtures of DCF with CFN at various molar ratios. Neat CFN (brown), neat DCF (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S5. (c) Crystalline FTIR spectra of mixtures of IBP with TPH at various molar ratios. Neat TPH (brown), neat IBP (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S5. (d) Crystalline FTIR spectra of mixtures of DCF with TPH at various molar ratios. Neat TPH (brown), neat DCF (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S5. (e) Crystalline FTIR spectra of mixtures of IBP with TBR at various molar ratios. Neat TBR (brown), neat IBP (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S5. (f) Crystalline FTIR spectra of mixtures of DCF with TBR at various molar ratios. Neat TBR (brown), neat DCF (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S5. (g) Crystalline FTIR spectra of mixtures of IBP with XAT at various molar ratios. Neat XAT (brown), neat IBP (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S5. (h) Crystalline FTIR spectra of mixtures of DCF with XAT at various molar ratios. Neat XAT (brown), neat DCF (black), and their mixtures at the ratios of 3:1 (yellow), 2:1 (gray), 1:1 (orange), 1:2 (sky blue), and 1:3 (blue) were measured twice.

Figure S6. Summarized results of SVD computation for the IBP mixtures with the XAT derivatives: (a) the singular values and their corresponding cumulative sum of variances and (b) the first to sixth basis functions (94%). Curves in descending order were represented by colors of black, orange, gray, yellow, blue, and green.

Figure S7. Summarized results of SVD computation for the DCF mixtures with the XAT derivatives: (a) the singular values and their corresponding cumulative sum of variances and (b) the first to sixth basis functions (94%). Curves in descending order were represented by colors of black, orange, gray, yellow, blue, and green.

Figure S8. SVD computation for FTIR spectra of CFN/IBP and CFN/DCF mixtures provided singular values σ i (a) and Basis spectra ψ i(b). Cumulative proportions of σ i were appended beside the σ plots, indicating that higher five σ 's satisfied 97.6 percent of the variance. The basis spectra decomposed by the SVD computation corresponded to the components ψ 1 (black), ψ 2 (orange), ψ 3 (gray), ψ 4 (yellow), and ψ 5 (blue). Details of ψ 's assignments to the observed spectra in the wavenumber range 1800-400 cm⁻¹ are followed (e-o).

Figure S8. The basis spectra decomposed by the SVD computation corresponded to the components at the rank of 1 (black), 4 (yellow), and 5 (blue).

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

Figure S8 (n and o). The components of the first to fifth singular vectors as a function of mole fraction of CFN. The $\lambda 1$, $\lambda 2$, $\lambda 3$, $\lambda 4$, and $\lambda 5$ were represented by closed black circles, orange triangles, gray diamonds, yellow triangles, and blue diamonds. For $\lambda 2$, $\lambda 3$, $\lambda 4$, and $\lambda 5$, closed and open symbols corresponded to the composition with the basis functions correlated to which the IBP or DCF mixtures, respectively.

Figure S8 (p and q). The trajectories of the CFN/IBP (green diamonds) and CFN/DCF (violet triangles) mixtures. They shared the neat CFN's vector (CFN:0). The molar ratios were represented along the corresponding plots. The trajectory of the CFN/DCF mixtures traced along the verical ($\lambda 2/\lambda 1$)-axis (DCF owning dominance in the SVD analysis), whereas that of the CFN/IBP mixtures pursued along the perpendicular ($\lambda 2/\lambda 1$)-axis. The S13(r) and S13(s) show the trajectories of the average spectra and the individually measured spectra, respectively.

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

Figure S9. SVD computation for FTIR spectra of TPH/IBP and TPH/DCF mixtures provided singular values σ i (a) and Basis spectra ψ i (b). Cumulative proportions of σ i were appended beside the σ plots, indicating that higher five σ 's which were satisfied 97.7 percent of the variance. The basis spectra decomposed by the SVD computation corresponded to the components ψ 1 (black), ψ 2 (orange), ψ 3 (gray), ψ 4 (yellow), and ψ 5 (blue). Details of ψ 's assignments to the observed spectra in the wavenumber range 1800-400 cm⁻¹ are followed (e-o).

Figure S9. The basis spectra decomposed by the SVD computation corresponded to the components at the rank of 1 (black), 4 (yellow), and 5 (blue).

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

Figure S9 (p and q). The components of the first to fifth singular vectors as a function of mole fraction of TPH. The $\lambda 1$, $\lambda 2$, $\lambda 3$, $\lambda 4$, $\lambda 5$, and $\lambda 6$ were represented by closed black circles, orange triangles, gray diamonds, yellow diamonds, blue triangles, and green squares. For $\lambda 2$, $\lambda 3$, $\lambda 4$, $\lambda 5$, and $\lambda 6$, closed and open symbols corresponded to the composition with the basis functions correlated to which the IBP or DCF mixtures, respectively.

Figure S9 (r and s). The trajectories of the TPH/IBP (green diamonds) and TPH/DCF (violet triangles) mixtures. They shared the neat TPH's vector (TPH:0). The molar ratios were represented along the corresponding plots. The trajectory of the TPH/DCF mixtures traced along the verical ($\lambda 2/\lambda 1$)-axis (DCF owning dominance in the SVD analysis), whereas that of the TPH/IBP mixtures pursued along the perpendicular ($\lambda 2/\lambda 1$)-axis, indicating independence of the interactions in these TPH/IBP and TPH/DCF mixtures. The S13(r) and S13(s) show the trajectories of the average spectra and the individually measured spectra, respectively.

Figure S10. SVD computation for FTIR spectra of TBR/IBP and TBR/DCF mixtures provided singular values σ (a) and Basis spectra ψ (b). Cumulative proportions of σ were appended beside the σ plots, indicating that higher five σ 's satisfied 97.6 percent of the variance. The basis spectra decomposed by the SVD computation corresponded to the components at the rank of 1 (black), 2 (orange), 3 (gray), 4 (yellow), and 5 (blue). Details of ψ 's assignments to the observed spectra in the wavenumber range 1800-400 cm⁻¹ are followed (e-o').

Figure S10. The basis spectra decomposed by the SVD computation corresponded to the components at the rank of 1 (black), 4 (yellow), and 5 (blue).

Figure S10 (p and q). The components of the first to fifth singular vectors as a function of mole fraction of TBR. The λ 1, λ 2, λ 3, and λ 4 were represented by closed black circles, orange triangles, gray diamonds, and yellow circles. The ψ 5 was not assigned to any spectra, as shown in Figure S12 (n-o'). For λ 2, λ 3, and λ 4, closed and open symbols corresponded to the composition with the basis functions correlated to which the IBP or DCF mixtures, respectively.

Figure S10 (r and s). The trajectories of the TBR/IBP (green diamonds) and TBR/DCF (violet triangles) mixtures. They shared the neat TBR's vector (TBR:0). The molar ratios were represented along the corresponding plots. The trajectory of the TBR/DCF mixtures traced along the $(\lambda 2/\lambda 1)$ -axis (DCF owning dominance in the SVD analysis), whereas that of the TBR/IBP mixtures pursued in proportion to the diagonal line, suggesting the dependence between the trajectories of the TBR/IBP and TBR/DCF mixtures. The S13(r) and S13(s) show the trajectories of the average spectra and the individually measured spectra, respectively. For latter, the $(\lambda 2/\lambda 1)$ -axis flip-flopped to adjust to the former diagram.

Figure S11. SVD computation for FTIR spectra of XAT/IBP and XAN/DCF mixtures provided singular values σ (a) and Basis spectra ψ i(b). Cumulative proportions of σ were appended beside the σ plots, indicating that higher five σ 's satisfied 97.6 percent of the variance. The basis spectra decomposed by the SVD computation corresponded to the components at the rank of 1 (black), 2 (orange), 3 (gray), 4 (yellow), and 5 (blue). Details of ψ 's assignments to the observed spectra in the wavenumber range 1800-400 cm⁻¹ are followed (e-o').

Figure S11. The basis spectra decomposed by the SVD computation corresponded to the components at the rank of 1 (black), 4 (yellow), and 5 (blue).

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

Figure S11 (p and q). The components of the first to fifth singular vectors as a function of mole fraction of XAT. The $\lambda 1$, $\lambda 2$, $\lambda 3$, $\lambda 4$, and $\lambda 5$ were represented by closed black circles, orange triangles, gray diamonds, yellow diamonds, and blue triangles. For $\lambda 2$, $\lambda 3$, $\lambda 4$, and $\lambda 5$, closed and open symbols corresponded to the composition with the basis functions correlated to which the IBP or DCF mixtures, respectively.

Figure S11 (r and s). The trajectories of the XAT/IBP (green diamonds) and XAT/DCF (violet triangles) mixtures, in which the ($\lambda 2/\lambda 1$)-axis flip-flopped. They shared the neat XAT's vector (XAT:0). The molar ratios were represented along the corresponding plots. The trajectory of the XAT/DCF mixtures traced along the ($\lambda 2/\lambda 1$)-axis (DCF owning dominance in the SVD analysis), whereas that of the XAT/IBP mixtures pursued in proportion to the diagonal line, suggesting the dependence between the trajectories of the XAT/IBP and XAT/DCF mixtures. The S13(r) and S13(s) show the trajectories of the average spectra and the individually measured spectra, respectively.

Figure S12. (a) Signal assignment for TPH on 400 MHz ¹H-NMR spectrum of 20 mM TPH in D₂O. The obtained chemical shifts in the various mole fractions of DCF sodium salt in the THP/DCF mixtures, for H8 (b), H10 (c), and H12 (d). The closed plots show the chemical shifts in the TPH/DCF mixtures, where the total amount of TPH and DCF sodium salt was adjusted to 20 mM. The open plots demonstrate those obtained by the measurement of TPH alone at the concentration corresponding to each mole fraction.

Figure S13. (a) Signal assignments for DCF sodium salt on 400 MHz ¹H-NMR spectrum of 20 mM DCF sodium salt in D₂O, assisted with the cross peaks in ¹H,¹H-COSY and NOESY experiments. As the 7.1560 ppm triplet signal (H1) partially overlapped with the 7.1200 double triplet signal (H4), signal details were deformed. The 7.4890 ppm doublet signal (H2) was coupled to the 7.1560 ppm triplet signal (H1) with the vicinal *J* value of 8.24 Hz. The vicinal *J* value between H3 and H4 was 8.24 Hz and that between H5 and H6 was observed as 7.32 Hz. The long-range *J* values between H3 and H5 and between H4 and H6 would be determined as 0.92 and 1.32 Hz, respectively.

Figure S13. The obtained chemical shifts in the various mole fractions of DCF sodium salt in the THP/DCF mixtures, for H1 (b), H2 (c), H3 (d), H4 (e), H5 (f) H6 (g), and H7 (h). The closed plots show the chemical shifts in the TPH/DCF mixtures, where the total amount of TPH and DCF sodium salt was adjusted to 20 mM. The open plots demonstrate those obtained by the measurement of DCF sodium salt alone at the concentration corresponding to each mole fraction.

Figure S14. DOSY spectrum of the mixture containing 20 mM DCF sodium salt and 10 mM TPH in D_2O . The signals at 7.9809, 3.5120, and 3.3221 ppm were H8 and the N-Me hydrogens of TPH. The others were assigned to DCF, described in Figure S12(a). The D_{DOSY} value of 0.485 m² s⁻¹ was observed as the property of the TPH/DCF complex formed in D_2O .

x500 200 um

x500 200 um

Figure S15. The SEM images of IBP (a), DCF (b), CFN (c), and THP (d) after the grind. Additionally, images of equimolar mixtures IBP/CFN (e), IBP/THP (f), DCF/CFN (g), and DCF/THP (h) after 7 days from preparation (physical mixture and grind). While the crystals of IBP and DCF were observed clearly despite the grind, those of CFN and THP were observed only in powder. From this, it is shown that CFN and THP crystals were easily crushed to fine crystalline powder. The powder adsorption around the crystals is observed in the SEM image of the mixture. These SEM images will become evidence of a solid-state interaction between IBP and DCF crystals and CFN and THP powders.