Emura et al.,

"The evolutionary modifications of a GoLoco motif in the AGS protein facilitate micromere formation in the sea urchin embryo"

Supplementary Figures and Legends

Supplemental Figure S1

В

S. purpuratus AGS Protein Sequence

Supplemental Figure 1. Dissection of SpAGS motifs. A, The construct design of SpAGS-GFP, including the restriction enzyme sites used to prepare SpAGS mutants. **B**, The protein sequence of SpAGS. Predicted domains are labeled based on NCBI blast results, and the sequence portions deleted for each N-terminal construct are marked. The sequences for each GL motif used for deletion or swapping are indicated in orange. The internal restriction enzyme sites for *BbvCI* and *BsmI* are shown in green.

OTAGS	MRANNDMPCMELALEGERLCKMGCCREGVEVEEAAVKVGTDDLKTLSA		
SbAGS	MEASCMELALEGERLCKTGNCREAVRYLEAAVR	EKLVHAGSNNSIGAN	KATDPGQVTVNL
PpAGS	MRLELEEGRASTNAFKMDASCMELALEGERLCKAGNCKSGVQYFEAAVEVGTDDLRTLSA	EKLSRKGSDTSSDSG	GSAGSNKAESN
PmAGS	MRLELEEGRASTNAFKMDASCMEL <mark>ALEGERLCKAGNCKSGVQYFEAAVE</mark> VGTDDLRTLSA	EKLSRKSSNTSSTSS	SSGDSAACVRTENVNIOV
EtAGS	MQSEASCMELALEGERLCKVGNCREGVRYLEAAVEVGTDDLKTLSA	FKICFKCCNTCCTCC	CCECAACT REFINIVATOV
EPAGS	MQSETSCMELALEGERLCKVGKCSEGVRYLEAAVEEGTDDLKMLSA	EKESKKSSNISSISS	SSGESAACDATEN VNIQV
Spags	MQSEASCMELALEGERLCKAGNCREGVRYLEAAVEVGTDDLKTLSA	-KLSRKGSNTSTGSS	NSSSSAPSQASTQA
LVAGS	MOSEASCHELALEGERLCKAGNCREGVRVLEAAVEVGTDDLKTLSA		
11100	: ***** * * * * * * * * * * * * * * * *	DKOSHKDSKESVSSA	KNSAPAPSKAKSOT
		DROGT KHCKEDVCCA	
OjAGS	IYSQLGNAYFYLQEYGKALEYHRHDLTLASTIGDRLGEAKARGNLGNTLKVLGKFDEAVM	DROBERHSREE VSSA	NNSALAI SNAKIQI
SbAGS	IYSQLGNAYFYLQDYLKALTYHKHDLTLARSIEDRLGEAKASGNIGNTLKVLGKYDEAIL	DKQSHKHSKEPVSSA	KNSAPAPSKAKTRT
PpAGS	IYSQLGNAYFYLQDYTRALEYHRHDLTLACTLGDHIGEAKASGNLGNTLKVLGKFDEAIV		
PmAGS	I YSQLGNAYFYLQDYTRALEYHRHDLTLACTLGDHIGEAKASGNLGNTLKVLGKFDEAIV	OJAGS	SEKPNKDQVDGKPKGARVKEKSSKEKLVHAGSNNSIGANKATDPGQVTVNL
ETAGS	IYSQLGNAYFYLQDYRKALTYHKHDLTLASSIGDRLGEAKASGNIGNTLKVLGKFDEAIF	SDAGS N Dubos	ATAIQPVAKPLKPVNKNKKKTSSKEKLSKKGSDTSSDSGSAGSNKAESN
EPAGS	TISOLGNAIFILODIVAALIINAADLILAISIGDALGEAKASGNIGNILAVLGAFDEAIC	N. PPAGS	AAATANGK-PROSTGAKFKRKGSNKEKLSRKSSNTSSTSSSSGDSAACVRTENVNIOV
SgAGS	I YSOLGNAYFYLEDYGKALTYHKHDLTLATSIGDRLGEAKASGNIGNTLKVLGKFDEAIC	K PHIAGS	AAATANGA-PROSAGAAFARAGSNALALSRASSNISSISSSGESAACLATENVNIQV
LVAGS	IYSQLGNAYFFLEDYGKALTYHKHDLTLATSIGDRLGEAKASGNIGNTLKVLGKFDEAIC	K ETAGS	DSA-VPNG-KLKPTGSKSKKRNGKEKLSKKGSNTSTGSSNSSSSAPSQASTQA
	***************************************	K cpace	FINONDER EIDE COMINI ENCORCEPENCEUEDERECUCCIENCIDIDE ENECOM
		N calco	EINÖNENE KIED CCKIKIKNOGESKEKÖSUKUSKESKSSAKNSALALSKAKSÖI
OjAGS	CCQGHLDISRELGDKMGEARALYNLGNVFHAKGKHSNGSGHQDPGDFPRDVKQSLLTAID	T LUAGS	EINÖALW-VIM-GEVIMIKNGGEENDKOEHKHEKEDAGGFANG7D7DGKYKABA
SbAGS	CCQKHLEISKELKDTVGEARALYNLGNVYHAKGKSAGKAGHQEPGDFPETVTSCLKQAIV	N. HVAGS	EINOVI NK-KIKI -GOKIKEKNOGEOKDKOODINNOKEI VOOMKNOMI MIDKAKIKI
PPAGS	CCORHLDISRELCDRVGEGRALYNLGNVYHAKGKHAGRAGHODPGDFPEEVIGCLRKAVE	N	
PHIAGS F+ACC		N OTAGS	
EDAGS	CCERHLY I SRELSDKIGEARSLYNLGNVYHAKGKHAGRSGHODPGDFPOEVTECLKOATO	N Shacs	
SpAGS	CCORHLDISRELSEKVGEGRALYNLGNVYHAKGKHAGRSGHODPGDFPOEVTDCLKOAIO	Phags	SP=OORSSPEEMDDDDSEEDVLSREOGKRMDEORCSENRMODKORERENDEDRDVPMKEE
SGAGS	CCORHLDISRELSEKVGEGRALYNLGNVYHAKGKHAGRSGHODPGDFPOEVTDCLKQAIO	PmAGS	SP-OORSSPEEMDDDDSFEDVLSRFOGKRMDEORCSFNRMODKORERENDEDRDYPMKEE
LVAGS	CCQRHLDISRELSEKVGEGRALYNLGNVYHAKGKHAGRSGHQDPGDFPQEVTDCLKQAIQ	ETAGS	SSOKGGEPOEMLDDADNEFEALSREOSNEMDEORCSEGEMORKLOE-DEEANGLPEKEE
	: ** **: : :**.*:*****:**** :. :***:***	P EDAGS	KGGEPTOMLDDADNFFEALSRFOSNRMDEORCSFGRLTKKLDDDEENGLPEKEL
		D. SpAGS	SARKGGEPIOMLDDADNFFEALSRFOSNRMDEORCSFGRLOKKLADEEGNGLPEKEE
OJAGS	YYEANLKLVRELGDRAAQGRACGNLGNTYYLLGDFDVAIKYHEERLFIAKEFGDKAAERR	- SGAGS	SARKGGEPTOMLDDADNFFEALSRFOSNRMDEORCSFGRLOKKLADEEGNGLPEK
Phics	FVEMILA TUKSI UDKAAOGRACGNEGNI EI ELGNEDIATKI HEERESTAKEFGDKEAER	PLVAGS	SARKGGEPTOMLDDADNFFEALSRFOSNRMDEORCSFGRLOKKLADEEGNGLPEK
PmAGS	FYEMNLATVKSLVDKAAOGRACGNLGNTHYLLGNFETAIGFHKERLSIAKEFGDKAAERR	P	: * :.**: ***** :*:::** *: *: ***
EtAGS	YYOANLAIVRELGDRAAOGRACGNLGNTHYLLGNFDTAIOFHKERLAIAKEFGDKAAERR	P	
EpAGS	FYEANLGIVRELGDRAAQGR <mark>ACGNLGNTHYLLGNFETAIQYHTERL</mark> AIAKEFGDKA <mark>AERR</mark>	D. OjAGS	LMNSIAKFQGKRMNEQRMHVASLPGLRGKDEELLSKLKEASSVPDDDFFDMLIR
SpAGS	FYEANLAIVRELGDRAAQGR <mark>ACGNLGNTHYLLGNFETAIQFHTERL</mark> AIAKEFGDKA <mark>AERR</mark>	SbAGS	LLDEIAKVQGNRLNEQRANVELLPGLR-GHREVVDRLLASGDGAVPDDDFFEMLMR
SgAGS	FYEANLAIVRELGDRAAQGR <mark>ACGNLGNTHYLLGNFETAIQFHTERL</mark> AIAKEFGDKA <mark>AERR</mark>	P PPAGS	LMNQIASFORSRLNEORSSICNLPGLKTNNEEVLGOLLOKGNOGVPDDDFFDMLMR
LVAGS	FYEANLAIVRELGDRAAQGR <mark>ACGNLGNTHYLLGNFETAIQFHTERL</mark> AIAKEFGDKA <mark>AERR</mark>	P PmAGS	LMNQIASFQRSRLNEQRSSICNLPGLKTNNEEVLGQLLQKGNQGVPDDDFFDMLMR
	:*: ** :*:.* *:*************:*:*: ** :* *** **	P EtAGS	LLDEIAKLQGSRLNEQRAFSAQRLPGLPGLR-ANENVLGKLLAKGDLAVPDDDFFEMLMR
OINCE	A VONT CNA HVEVOR FREMA ADVVVDTT I TARCI ADOA TRACACVET CHTETT I DDEROAUR	* EPAGS	LLDEIAKLQGSRLNEQRVSVAERLPGLPGLR-ANDKVLGTLLAKGERAVPDDDFFEMLMR
Shags	AVSNLGNSHVFLGDFGAAAFYYKKTLDVAROLEDVAMFAOACYSLGNTYTLMEEYFAATF	SpAGS	LLDEIAKLQGSRLNEQRAFSVKRLPGLPGLR-ANEDVVGKLLAKGERAEPDDDFFEMIIR
PpAGS	AYSNLGNACVFMGDFETAADYYKKTLHIARRLGDIAIEAOACYSLGNTFTLLRDYETAVD	SgAGS	LLDEIAKLQGSRLNEQRASSAQRLPGLPGLR-ANEDVVGKLLAKGDRVEPDDDFFEMIIR
PmAGS	AYSNLGNACVFMGDFETAADYYKKTLHIARRLGDIAIEAQACYSLGNTFTLLRDYETAVD	F LVAGS	LLDEIAKLQGSRLNEQRASSAQRLPGLPGLR-ANEDVVGKLLAKGDRAEPDDDFFEMIIR
EtAGS	AYSNLGNACVFLVKFESAAEYYKKALHIARQLGESAME <mark>AQACYSLGNTYTLLREYEKAVE</mark>	F	*::.*** .*:**** ****:::. * *****:*:*
EpAGS	AYSNLGNACVFMVEFDMAAEYYKKALHIARQLAELAMEAQACYSLGNTYTLLREYEKAVE	T	
SpAGS	AYSNLGNACVFMVQFEVAAKYYKKSLHIARQLGELAMEAQACYSLGNTYTLLREYEKAVE	OJAGS	CQGTRIEDQRTDAPERVRAPTVPDEDFFSLISRVQSQRLEEQRCDLPESLSRDMITDEK*
SGAGS	AYSNLGNACVFMVQFEVAAKYYKKALHIARQLGELAMEAQACYSLGNTYTLLREYEKAVE	F. SbAGS	CQGARMEDQRSSLPSSRPAPTVPDEDFFGLIQRIQSRRIEEQRTDAPWERPTKTRES*
DVAG5	******** ** * ** ****** *** * ********	F PpAGS	CQGSRINDQRSEPPVLQPAPTVPDEDFFALIQRVQSKRMDAQRSDKGPQDQTK*
		F PmAGS	CQGSRINDQRSEPPVLQPAPTVPDEDFFALIQRVQSKRMDAQRSDKGPQEQTK*
OjAGS	YHMRHLHIAQHVNDRVGEGRAYWSLGNAYTALKKYEKAIQYASFHLEISKEVGDKTGEII	EtAGS	CQGARIEDQRSTLPMPTPAPTVPDEDFFTLIQRIQSRRIEEQRTIPPWEKGPKPSDK*
SbAGS	YHVKHLKIAQQLQDRVGEGRACWSLGNAHAALAHHEKALHYATLHFQISREVGDRTGEVT	EPAGS	CQGARIEDQRSSLPVAPPAPTVPDEDFFSLIQRIQSKRIEEQRMIAPWEKDASCMCFY
PpAGS	YHERHHRIAQKLKDRVGEGRACWSLGNAHTALQNHEKALHYATLHLQISREVGDKTGELT	r spags	
PmAGS	YHERHHRIAQKLKDRVGEGRACWSLGNAHTALQNHEKALHYATLHLQISREVGDKTGELT	F SURGS	
EtAGS	YHMRHMEIAQQLQDRVGEGRACWSLGNAHTSLGNHEKALHYATLHLQISREVGDRTGEVT	* LVAGS	CQGARIEDQRSTLPIQVPAPTVPDEDFFSLIQRIQSARIEEQRT
SPAGS	VHCRHMEIAQQLNDRVGEGRACWSLGNAHISLGSHEKALQIAILHLQISREVGDRIGEVI		
Sayes	VHGRHMETAGELNDRVGEGRACWSLGNAHTSLGNHEKALHYATLHLOTSREVGDRTGEVT	OTACC	
LVAGS	YHGRHMEIAQELNDRVGEGRACWSLGNAHTSLGNHEKALHYATLHLQISREVGDRTGEVT	shace	
	** :* .***.::******** *****:::* :***::**::	PDAGS	
		PmAGS	
OjAGS	AQMNLSDLTRLVGNGFRNEERNGSSICSREDDGKPRRRSMENLELVRMTPEKNS	ELAGS	
SDAGS	AQMNLVDLQTVLGLSKKGPEEEKQGRDARSRRKSMENLEFMSLTPEKNG	EDAGS	SYESSTIHGSACCVYRRPIOOTSI*
PpAGS Pmags	AQMINLADLKTVLGLDKDPCSQDGLLQNASKKTLKEKELNKQKKQSMERLELVTMTPDKNA AQMINLADLRTVLGLDKDPCSQDGLLQNASKKTLKEKELNKQKKQSMERLELVTMTPDKNA	SpAGS	DYDTSRTEGTACCVYSRPVOESHL*
EtAGS	AOMNLADI.KTI.FGTGTGDI.SHDVTAAC-PPAMOPTKGATRPRRSMENT.FLVAMTPRKMT	SgAGS	DYDTSRTEGTACCVYIRPVOESHL*
EpAGS	AOMNLSDLOKIFGLSPGDISNATTOVPDKATPGARPRRSSMENLELVAMTPE	LVAGS	DYDTSHAEGTACCVYIRPVOESHL*
SpAGS	AKMNLQDLQTLFGISTADLSEVSTTVQTPLQESKGARPRRRSMENLELVAMTPEKKT		
SgAGS	AKMNLQDLQSLFGISTSDLSDVSTTVQTPLQETKGARPRRRSMENLELVAMTPEKKA	TPR motifs	
LVAGS	AKMNLQDLQSLFGISTSDISDVSTTVQTPLQETKGARPRRRSMENLELVAMTPEKKA	TPR-like motifs	
	*:*** ** :.* ** ***.**:: :**:	GL motifs	
	I PK MOUIS		
	TPR-like motifs		

Supplemental Figure 2 Echinoderm AGS sequence alignment

Supplement GL motifs

the N-terminus with the

predicted conserved TPR motifs (blue) but are highly variable in the C-terminus with the predicted GL motifs (yellow).

Supplemental Figure 3

Supplemental Figure 3. SbAGS does not fully localize at the vegetal cortex. A, Design of 2XGFP-AGS constructs that contain AGS orthologs from two different species tested in this study, namely, *S. purpuratus* (Sp; sea urchin), and *S. briareus* (Sb; sea cucumber). TPR motifs are marked in blue, and GL motifs are in orange. **B**, Alignment of GL1 motif sequences among echinoderms. **C**, Single Z-slice confocal images of sea urchin (Sp) or sea cucumber (Sb) embryos at 16-cell stage showing localization of 2x-GFP-AGS. Embryos were injected with 0.2-0.3µg/µl stock of GFP-AGS mRNA and 0.25µg/µl stock of 2x-mCherry-EMTB mRNA. The white arrowhead indicates vegetal cortical localization of GFP-AGS. **D**, Left graph, the number of embryos with vegetal cortical localization of 2x-GFP-AGS in 16~32-cell embryos was scored and normalized to that of the control group (SpAGS). Right graph, the ratio of the vegetal cortex-to-animal cortex mean intensity. Statistical analysis was performed against the control (SpAGS) by *t*-test. n indicates the total number of embryos scored. * represents p-value < 0.05. Each experiment was performed at least two independent times. Error bars represent standard error. Scale bars=10µm.

Supplemental Figure 4 SpAGS, EtAGS and PmAGS linker domain sequence alignment

Supplemental Figure 4. The linker domain and GL2-GL3 regions are important for AGS localization and function, A, Alignment of linker domain between echinoderms including sea urchin (SpAGS), pencil urchin (EtAGS), and sea star (PmAGS). Bold letters represent the conserved core linker domain. The vellow, blue, or green highlights indicate the CK1, Aurora, or CMGC/CDK phosphorylation sites predicted by GPS 6.0. The red letters indicate PmAGS amino acids mutated to those of SpAGS to construct the PmAGS-SpLinker mutant. B, Design of GFP-AGS mutant constructs tested in this study. TPR motifs are marked in blue, and GL motifs are in orange. The brown section indicates the SpAGS sequence, and the red and grey boxes show the non-sea urchin (non-SpAGS) introduced at the C-terminus. The dotted lines represent single amino acid mutations. C Single zslice confocal images of sea urchin embryos at 8~16-cell stage showing localization of GFP-AGS-S389A mutant. Embryos were injected with 0.3µg/µl stock of GFP-AGS mRNA and 0.25µg/µl stock of 2x-mCherry-EMTB mRNA. The white arrowhead indicates vegetal cortical localization of GFP-AGS. D, % of the embryos with vegetal cortical localization of GFP-AGS mutants (left) and the ratio of the vegetal cortex-to-animal cortex mean intensity (right) in 16~32-cell embryos. Statistical analysis was performed against Full AGS by One-Way ANOVA. E-F, Embryos were injected with 0.15µg/µL stock of GFP-AGS mRNAs and 0.75mM SpAGS MO. The number of embryos forming micromeres (E) and developing to gastrula or pluteus stage (F) were scored, and each of which was then normalized to that of the Full AGS. Statistical analysis was performed by One-Way ANOVA. G, Design of GFP-AGS constructs tested in this study from S. purpuratus (Sp) and P. miniata (Pm). TPR motifs are marked in blue, and GL motifs are in orange. The dotted lines represent single amino acid mutations. H. Single Z-slice confocal images of sea urchin embryos at 8~16-cell stage showing localization of GFP-AGS. Embryos were injected with 0.3µg/µl stock of GFP-AGS mRNAs and 0.25µg/µl stock of 2x-mCherry-EMTB mRNA. The white arrowhead indicates vegetal cortical localization of GFP-AGS. I, The number of embryos with vegetal cortical localization of GFP-AGS mutants in 16~32-cell embryos was scored and normalized to that of the SpAGS (left graph). Right graph shows the ratio of the vegetal cortex-to-animal cortex mean intensity. Statistical analysis was performed against SpAGS by One-Way ANOVA. J-K, Embryos were injected with 0.3µg/µl stock of GFP-AGS mRNAs and 0.75mM SpAGS MO. The number of embryos making micromeres (J) and developing to gastrula or pluteus stage (K) were scored and normalized to that of the SpAGS. Statistical analysis was performed by One-Way ANOVA. n indicates the total number of embryos scored. * represents p-value<0.05, ** p-value<0.01, and *** p-value<0.001. Each experiment was performed at least two independent times. Error bars represent standard error. Scale bars=10µm.

Supplemental Figure S5 GoLoco Domain sequence alignment

SpAGS_GL DmPins_GL PmAGS_GL EtAGS_GL HsLGN_GL HsAGS3_GL	461 455 479 459 468 460	RKGGEPIQMLDDA DNFFEALSRFQSNRMDEQR CSFGRLQKKLA EKLRAQATRKAKD DDFFEMLSRSQSKRMDDQR CSIKVNPAGAPAVATGATRKPL PQQRSSPEFMDDDDSFFDV LSRFQGKRMDEQR CSFNRMQDKQRERE QKGGEPQEMLDDA DNFFEALSRFQSNRMDEQR CSFGRMQRKLQE
SpAGS_GL DmPins_GL PmAGS_GL EtAGS_GL HsLGN_GL HsAGS3_GL		DEEGNGLPEK EELLDEIAKLQGSRLNEQR AFSVKRLPGLPGLR-ANEDVVGKLL VQQNSLFVDPTNLPGLKSPSSANPSAIGHGPLAR NDEDRDYPMKEELMNQIASFQRSRLNEQRSSICNLPGLKTNNEEVLGQLL DEEANGLPEK EELLDEIAKLQGSRLNEQR AFSAQRLPGLPGLR-ANENVLGKLL SSVPVVSPNT DEFLDLLASSQSRRLDDQR ASFSNLPGLRLTQNSQ-SVLSHL QPSMTASPQT EEFFDLIASSQSRRLDDQR ASVG <mark>S</mark> LPGLRITHSNA-GHLRG- *: .****: .
SpAGS_GL DmPins_GL PmAGS_GL EtAGS_GL HsLGN_GL HsAGS3_GL		AKGERAEPDDDFFEMIIRCQGARIEDQRSTLP-I
SpAGS_GL DmPins_GL PmAGS_GL EtAGS_GL HsLGN_GL HsAGS3_GL		-QAPAPTVPDEDFFSLIQRIQSKRIEEQRSIAPWEKGSGTSCVCFYDYDTSR QTGRGATVPDEDFFSLIMKVQSGRMEDQRASIPFRNANNNNNSRSNNNG -LQPAPTVPDEDFFALIQRVQSKRMDAQRSDKGPQEQTKTSD -PTPAPTVPDEDFFTLIQRIQSRRIEEQRTIPPWEKGPKPSDK -TTKGPTVPDEDFFSLILRSQGKRMDEQRVLLQRDQNRDTDFGLKDFLQNNALLEFKNSG -LPRGPTMPDEDFFSLIQRVQAKRMDEQRVDLAGGPEQGAGGPPEPQQQCQPG . *:******:** : *. *:: **
SpAGS_GL DmPins_GL PmAGS_GL EtAGS_GL HsLGN_GL HsAGS3 GL		TEGTACCVYSRPVQESHL SAGGAGK KKSADH AS

Supplemental Figure 5. Alignment of C-terminus GoLoco domain sequences used for chimeric mutants. Sea urchin *S. purpuratus* (SpAGS_GL), *Drosophila* (DmPins_GL), sea star *P. miniata* (PmAGS_GL), pencil urchin *E. tribuloides* (EtAGS_GL), human *H. sapiens* LGN (HsLGN_GL) and human *H. sapiens* AGS3 (HsAGS3_GL). Bold letters indicate GoLoco motif sequences. The green highlight indicates additional serine amino acid present uniquely in HsAGS3_GL and mutated to Alanine in AGS_AGS3GL_3S/A mutant. The highlighted amino acids between GL2 and GL3 and within GL3 are those mutated to match HsLGN_GL in AGS_AGS3GL_GL2GL3 mutant.

Supplemental Figure 6

Supplemental Figure 6. Insc protein expression during embryonic development. A, Endogenous Insc protein localization by immunofluorescence. Embryos were stained with three Insc antibodies (green) designed for different Insc amino acid sequence sections. Embryos were stained with Gai antibody (magenta) and Hoechst dye (blue). During the 16-cell stage, all antibodies show signal enriched at the vegetal pole. With #2 and #3 antibodies, some non-specific cortex signals were also observed around the entire embryo. **B**, Insc immunoblot analysis. Embryos were collected at 0, 2, 4.5, 15, 24, 48, 72, and 96 hours post fertilization and subjected to immunoblot with Insc #1 antibody. Actin (42kDa) was used as a loading control. The expected size of Insc is 53kDa. **C**, Peptide competition assay with Insc #1 antibody. The 24-hour lysate was used. Each experiment was performed at least two independent times. Scale bars=10µm.

Supplemental Figure S7

Supplemental Figure 7. SpAGS colocalizes with micromere-specific fate determinants. A, Embryos were coinjected with 2x-mCherry-EMTB ($0.5\mu g/\mu l$ stock) mRNA with or without GFP-AGS ($0.5\mu g/\mu l$ stock) mRNA. B, Embryos were co-injected with mCherry-NuMA ($0.15\mu g/u l$) mRNA with or without GFP-AGS ($0.5\mu g/\mu l$ stock). C, Embryos were co-injected with Vasa-GFP ($1\mu g/\mu l$ stock) mRNA with or without AGS-mCherry ($0.5\mu g/\mu l$ stock) mRNA. The intensity of each signal, from one cortex to the other, was measured and plotted from point 1 to 2 on the corresponding graph (right) using *ImageJ*. White arrows indicate the cortical colocalization of each construct. All images represent over 50% of the embryos observed (n=30 or larger) per group. Scale bars=20 μ m.

Supplemental Figure 8 Sea urchin SpDlg and sea star PmDlg sequence alignment

SpDlg PmDlg	MNNI EEWE YE <mark>DI I LNRGGAG LGFS I AGGVDNPHV PDDPSIFI TKLI PGGAAAVGGR LR LN</mark>	0 60
SpDlg PmDlg	MVLRRWPRNPSTG <mark>KTLSIELIKGSKGLGFS DVIIRVNETEIHNVPHQNAVDALKKTGSIVNLVV</mark> RRRQRRTGD <mark>VIRIKLVKGTKGLGFS :: * *: **: *:*:**:**</mark>	30 120
SpDlg PmDlg	IAGGQGNQHVEGDNGIEVTKIIDGGAAEQDGRLQVGDKITAVGDNNLVEVTHEDAVAVLK IAGGCGNQHVAGDNGIEVTKIIDGGAAQMDGNLQIGDKIIAVGNDKLEEVTHENAVAVLK **** ***** **************************	90 180
SpDlg PmDlg	ATSNRVLLTVIKN <mark>ATLLAGTQMAPYSQNDENAQPPDVSNVDMSAANFVYAT ATSEVVLLTVIKG</mark> AVISYPSPASITSQPDVSTMQPSSPPPPYPEAIVSSVAGV ***: *******.: : * : * : ****:: *: * *	141 234
SpDlg PmDlg	MQPTLMQEPRSSDLQELDGAFGTNVAFGTNVANGANGANGSNGEPPSYNRVTNSQPP SLQSEPAL-QRPPTPPHQEMSNMMNPPLTYHQPPQDTAYGSMKKMHVPPSP :*:* *.* : **: :. ::: : * *: ::: *	198 284
SpDlg PmDlg	NAFNNTPAPKIFIQNDDGIPRE <mark>PRQVVLNKGATGLGFNIVGGEDGEGIFISFILAGGVAD</mark> TANYEGNGVKPYVQNDDDFPR <mark>EARTVVLNKGATGLGFNIVGGEDGEGIFISFILAGGVAD</mark> .* : .* ::**** :*** * *****************	258 344
SpDlg PmDlg	LSGALRRGDQILAVNSKDLVNATHEDAALALKGAGQVVTI LSGELKRGDQILSVNKKDLRGATHEDAALALKGTGQTVLIEAQYKE *** *:******:**.*** .*** .*************	318 404
SpDlg PmDlg	EEMMQNSVSPTGSLRTSAKRTL <mark>FVRTLFDYDKSRDSGLPSQGLSFDFGDIIHVTNASD</mark> EEMMNSSVSSTTTGSLRTSAKRSL <mark>YVRALFDYDKTKDSGLPSQGLSFNYGDILHVTNASD</mark> ****:.*** ************	376 464
SpDlg PmDlg	DEWWQARHILPNGEEGEIGIIPSKRRVERKEKARLRSVKFSGNKDRNNIQEPAGTVNSKG DEWWQAKQVLPTGEEGEMGVIPSKRRVEKRERARLKSVKFSGRGGSLESKGSMNEKR ******:::**.**.****:*:**********	436 521
SpDlg PmDlg	KKGFF-RKFKKNRDSDQETSDPEPFTSNASDSESSYRNEEVILSYEAVVQQEIK <mark>YTRPVI</mark> KKGFFSRKFKKGRESDLDTSDAEHITSNASDSESSYRNDEMILSYEGVVQQEVK <mark>YTRPVI</mark> ***** *****.*:** :*** * :****	495 581
SpDlg PmDlg	ILGPGKDRINDDLISEMPDEFGSCVPHTTRARRPHEVDGRDYHFVESREQMEKDIQNHLF ILGSGKDRVNDDLISEMPEKFGSCVPHTTRPRRPHEVDKRDYHFVESREQMEKDIQDHLF *** ****:************	555 641
SpDlg PmDlg	IEAGQYNENLYGTSVASVKEVSEKGKHCILDVSGNAIKRLQVAQLYPIAIFLKPKSVESI IEAGQYNENLYGTSVASVREVADKGKHCILDVSGNAIRRLQVANLHPIAIFIRPKSVESV **********	615 701
SpDlg PmDlg	VEMNRRVSEDQARKTYERALKLEQEFLEYFTAIILGDTIDDIYQQSKEIIHEQSGPTIWI MEMNRRMSREQAEKTYERAIKLEIEFGEFFTAIISGDTLDEIYYKCKEVIHDQSGSTIWV :*****::*****.***	675 761
SpDlg PmDlg	PAKEKL 681 PAKDKL 767 ***:**	

PDZ ŧЛ

- - - -

Supplemental Figure 8. Sea urchin (SpDlg) and sea star (PmDlg) sequence alignment. Blue, yellow, and green highlights indicate the PDZ, SH3, and GUK domains, respectively.

Supplemental Figure 9 Sea urchin SpInsc, pencil urchin EtInsc and sea star PmInsc sequence alignment

PmInsc	MNGFNES-ALAGWLADDVIEMHMTDE <mark>DSVVRWLQDLRTMTECECMCILQG</mark>	49	
SpInsc	MSDNKNTESFP-EKKLMQRCDV <mark>DSVQQWLIDIRLMPEQECTTVMET</mark>		
EtInsc	MTCLYGVVRTMYGPQAPVICEEKLPTSTSRFQLT <mark>EVRSVQQWLSDLQGMMECECN-ILET</mark>	59	
	*		
PmInsc	KPIRTSAHDMAKVTSSARDNIYILRQRASSISADFAKLYYKLDSGSWDQVH-WLCLSLTI	108	
SpInsc	<mark>KPI</mark> HNSPLNLENLAATVKESVYRLQSIKDGLFSDLSQIYMCLDLSDQ	92	
EtInsc	<mark>KPI</mark> HNSPLNLENVAAATKENIYRLRNRAENLARELQQLYHKLTSGTYSQRLRPAVLALTL	119	
	***:.* :: :::::* *:: :: ::* * .		
PmInsc	${\tt RLRTFLHECTSYVPTMPLHLFQRQQTVLEECGRLVKHAESFEELNGTLPPALPTLNVLSS}$	168	
SpInsc	SVKLFIQSLTT		
EtInsc	${\tt HVRSCLEECNEYCPDF-LHMKEKQQVVIDAMATLVKNFEMYDNSKGCELDSLIHSLTS}$	176	
	:: [*] ::		
PmInsc	LGKAFNDLVHMVQGILIQTVVRSIHESASEYNIKIAINSIHCLSEDDSEIRRLLAKEGAI	228	
SpInsc	VAKAIKAYLEMVQGALVRKLVDMVQGAATELNVKFAVLTVHSLAQDGVWLRRLLIQEDTM	163	
EtInsc	$\tt LGNALNSIRQTVQSALVRKLVMMIQDSASELNVKFAVITAHSLSQDSIWLRRILIQENAM$	236	
	:.:*:: . **. *::.:* :: :*:* *:*:*: : *.*:*. :**:*		
PmInsc	QALLQLCQQASLNAMKPMALKTVANLCNVAEGRQELERASGVEYLSEILSSPTATESV	286	
SpInsc	$\begin{tabular}{ll} RALLAICRITTFSIRSIPMTALEIVSILCTEVEGRAELEKVGGVGALSEILASPITLEAV \end{tabular}$	223	
EtInsc	GALFAVCRITTLSIPSIVTTALQAISTLCAEPEGRVELEKIGGLGFLGEILSSPSTSEAV	296	
	: :*: ::: **: :: ** *: .*: *.***: *: *.***:		
PmInsc	KAEAASVIAQITSPNIDNYHHLLGFIEYMEDLLKDLTALSGSASSSSVFVIATSAIANIT	346	
SpInsc	$\tt KKEAASVLAEITSPDADIFHRMLCFIEHMEDLLRNLTVLCDQTSSPGVFLVATTAIANIT$		
EtInsc	$\tt KLEAASVLAEITSPDINSYHRMLCFIEHMEDLLKNLTALCDQTSNPLVFLVSASAIANIT$	356	
	* *****:*:*:****: : :*::* ***:****::**.*.**.**.**.**.		
PmInsc	${\tt FMDSMaCDCLASFHTARALVKGCNNGMANTLYCKDQVATILANMAVTDQCRKEIMVSGGT$	406	
SpInsc	FMDAMASDYLAEFQTAEVLIQGYLKGKAPSIYSKHQVITIIANISCSKSCREQIVSSGGM	343	
EtInsc	${\tt FMDTMSSDFLAMENTATILIDGYTSGKAQNMYSKDQVVTIIANMSGSEKCREQIIKAGGM$		
	***:*:.* ** *:** *:.* .* * .:*.** **:**:: :**:**: :**		
PmInsc	ELLVDFLHTRALVHPSSAKKGLKGSGLSGGCSSGGKQDVVMSSSCEKVHQKAAIALA	463	
SpInsc	NILAELLQGVPSTSRPTSLSRKLSFDGNVSLGQMGEESAYEDIYQKAATALG	395	
EtInsc	KVLVELLHTRAPFTTVKTNGVNQRADSKAACGMASTCEHVHQKSAIALG	465	
	::*.::*: .: . *: *.::***:* **.		
PmInsc	RLARDQDSAELILELDAIPRLVELCCNRRERNDSEPVLVACLAALRKLHNLLGPSVFKSS	523	
SpInsc	RLCQDYETCKMAVDLKVVSRLADLCKHARERNHRSDVLVACLAALRRIHSHIGSSPLKEN	455	
EtInsc	RLCQDHDTAMMAVDLGVIPRLVDMCRHRRERNDSEPVLVACLAALRKLHSVVGASKFEPK	525	
	.:* ::. : ::* .: **.::* : ** ********		
PmInsc	DVDQLIKPRLIDSYLMCSATKESFV 548		
SpInsc	DVEQLIQPRLMESFLHCSTTVRRETFV 482		
EtInsc	ALQQLIRPRLIESFVTCSSIGSTETFV 552 ::***:***::*:: **: *:**		

LBD (LGN-binding domain)

Supplemental Figure 9. Sea urchin (SpInsc), pencil urchin (EtInsc), and sea star (PmInsc) sequence alignment. The blue highlight indicates the LBD domain.