Figure 1 G-I	SF1-I	HP	StAl	R	SF1-HP/StAR
YM ZT0	7.4±1.1		4.5±1	.9	3.1±0.9
YM ZT12	7.5±1.5		13.22±	2.1	5.6±0.5
OM ZT0	59.3±	4.0	76.6±	3.5	47.5±2.3
OM ZT12	61.7±	1.8	77.6±	3.2	49.9±2.7
					_
Figure 2 E	p16	5	γH2A	X	
6M	5.0±2	2.6	9.0±1	.8	
18M	55.0±3.2		42.3±	5.4	
24M	84.1±	5.1	75.5±4	4.9	_
					-
Figure 2G	53BI	53BP1		1	
YM	5.0 ± 2.5		1.8±0.	.76	
OM	67.7±	67.7±5.2		3.3	_
					-
Figure 2 I	p16	p16		ΗP	
YM ZT0	4.0±1	4.0±1.3		2.5	
YM ZT12	$5.7{\pm}1.8$		13.6±	2.4	
OM ZT0	83.4±2.1		56.0±	3.7	
OM ZT12	82.7±	82.7±2.2		3.0	-
Figure 3 G, H, J	p16	SF1-HP	StAR		
Control (OM)	82.1±4.5	57.1±3.7	71.3±5.3		
DQ (OM)	19.9±9.0	20.1±4.9	2.5±2.4		
Figure 4 C	SF1-]	HP			
OM IL1 β (+)	70.9±	12.0			
OM IL1β (-)	72.4±	15.4			

Supplementary Table 1. List of Quantitative Results of Immunostaining.

Figure 4 C	IL1β			
YM	4.6±2.8			
OM	50.0±21.9			
Figure 4 E	IL1β			
Control (OM)	47.7±21.1			
DQ (OM)	9.2±2.8			
Figure 4 I	Iba1			
YM	3.8±1.3			
Control (OM)	4.4±1.5			
DQ (OM)	6.0±1.6			
Figure 5 E, F, G	p16		SF1-HP	StAR
YM	1.6±1.6		3.8±1.0	11.6±2.2
α-IL1β OM	30.7±2.0		9.4±1.7	30.7±2.0
α-IgG OM	63.1±5.2		48.2±4.6	72.0±3.8
28M	75.1±4.2		66.1±2.6	71.5±5.7
				_
Figure 5 I, K, L	Iba1	IL1β	SF1-HP	
α-ΙL1β ΟΜ	5.2±1.6	20.7 ± 6.0	10.4 ± 5.7	
α-IgG OM	5.0±2.0	48.7±19.0	62.7±2.5	_
Figure 5 M	SF1-HP			
α-IL1 β OM IL1 β (-)	5.3±1.5			
α-IgG OM IL1β (-)	58.0±1.0)		
α-IL1β OM IL1β (+)) 17.0±7.6	5		
α -IgG OM IL1 β (+)	65.7±2.3	3		

Figure 6 C, D, F	p1	6	γH2A	X I	lba1	
Control	10.7	±1.7	0.0±0.	0 3.2	2±1.3	
Control Dex	50.6	±2.6	72.1±5	.0 3.	8±1.8	
DQ Dex	6.7±	1.8	29.0±4	.1 4.0	0±1.6	
ОМ	75.9	±5.5	81.6±2	.0 3.	8±1.9	
			_			
Figure S4 D, E	p16	SF1-HP				
6M	2.2 ± 1.5	8.6±1.9				
18M	66.6±7.2	29.3±4.7				
24M	89.8±3.9	56.7±2.2				
Figure S5 A	p16	γH2	AX	βgal		
Control (OM)	46.6±4.3	72.8	±9.6	39.2±9.2		
DQ (OM)	8.0 ± 2.4	8.6	±1.6	1.6±2.0		
Figure S5 B	p16	γΗ2ΑΣ	K	53BP1	βgal	
Control (OM)	83.2±3.3	65.4±18	8.3 6	7.5±2.7	68.9±15	.0
DQ (OM)	26.4±5.5	28.9±4.	.9 2	2.1±1.9	23.3±4.	9
Figure S6 C	γH2AX					
YM	2.1±1.3					
α-IL1β OM	74.6±1.6					
α-IgG OM	76.6±1.6					
28M	86.2±3.9					
Figure S7 B, D	p]	16 S	F1-HP	γΗ2ΑΣ	K	Iba1
28M Male	80.4	±3.0 6	1.1±2.9	80.4±1.	.8 4.	2±1.6
28M Female	54.8	±3.8 1'	7.6±1.8	39.5±2.	.6 10	.2±1.5
Figure S8 A, B, D	p16	SF1-HP	γH	2AX	Iba1	
YM	4.1±1.0	62.2±3.3	0.6	±1.0 2	2.2±1.5	
OM	59.8±4.9	9.8±2.9	48.0	D±5.3 1	2.0±2.3	

Figure S9 C, E	p16	γH2AX	SF1-HP	Iba1	IL1β
YM	5.3±2.3	$1.4{\pm}1.4$	60.2 ± 4.8	2.2±1.5	4.7±2.5
Control (OM)	54.8±3.2	50.5±4.4	17.9±2.6	10.2 ± 1.8	17.0±3.6
DQ (OM)	20.2±6.6	11.7±2.0	6.6±1.4	5.6±2.3	6.7±2.1
Figure S10 B	TUNEL				
YM	0.0 ± 0.0				
Control (OM)	0.0 ± 0.0				
DQ (OM)	0.4 ± 0.5				
E14.5	16.0±2.0				
Figure S10 C	Ki67				
4M (YM)	19.2±3.9				
8M (YM)	0.6 ± 0.9				
Control (OM)	0.6±0.9				
DQ (OM)	0.8 ± 0.8				

Supplementary	Table 2 The	primer sequences	s used in this stud	y are listed.
----------------------	-------------	------------------	---------------------	---------------

primer name	Sequence (5' to 3')
mop16-Fw	CCAGGGCCGTGTGCAT
mop16-Rv	TACGTGAACGTTGCCCATCA
moSF1-Fw	AGTTGCTATTGTGCCTGGTG
moSF1-Rv	TCGTTGCCCAAATGCTTGTG
moStAR-Fw	TTGGGCATACTCAACAACCA
moStAR-Rv	TGATGACCGTGTCTTTTCCA
moCYP11A1-Fw	GCTGGAAGGTGTAGCTCAGG
moCYP11A1-Rv	CACTGGTGTGGAACATCTGG
moCYP11B1-Fw	CAGGAGCCTGACCCGATGGACA
moCYP11B1-Rv	GACTGTGGACGACCCTCTGCCA
moPer2-Fw	ACGACAATGGGAAGGAGCTG
moPer2-Rv	TGTGCTCTGCCTCTGTCATC
moBmal-Fw	CAAGCACCTTCCTTCCAATG
moBmal-RV	GATTGCAGTCCACACCACTG
moclock-Fw	CTCCACATGCCTCCCACTTT
moclock-Ry	ATCCCCAGGCATGAGAGTCT
moCry1-Fw	GGTTGCCTGTTTCCTGACTCGT
moCry1-Ry	GACAGCCACATCCAACTTCCAG
moTRP_Fw	
moTBP_Rv	GGGGTAGATGTTTTCAAATGC
moMPC1 Fw	
moMRC1 Ry	GAGGACCACGGTGACCACT
moCD68 Ew	TCTCTAACCCTACACCCCCT
moCD68 Py	
moTDEM2 Ew	
III01KEM2-FW	
III01KEIVI2-KV	
moCSE1 By	
$\frac{110005\Gamma1-KV}{m0E4/80}$	
110F4/80-FW	
IIIOF4/80-KV	
IIIOIL10-FW	
moillid-KV	
moccl2-Fw	
moCCL2-RV	
moCDIID-FW	
moCD11b-Rv	
moCX3CL1-Fw	
moCX3CL1-Rv	
moCXCL1-Fw	
moCXCL1-Rv	AACCAAGGGAGCTTCAGGGTCA
molL6-Fw	TACCACTTCACAAGTCGGAGGC
moIL6-Rv	CTGCAAGTGCATCATCGTTGTTC
moCCL5-Fw	CCTGCTGCTTTGCCTACCTCTC
moCCL5-Rv	ACACACTTGGCGGTTCCTTCGA
moMMP3-Fw	CTCTGGAACCTGAGACATCACC
moMMP3-Rv	AGGAGTCCTGAGAGATTTGCGC
moTNFα-Fw	GGTGCCTATGTCTCAGCCTCTT
moTNFα-Rv	GCCATAGAACTGATGAGAGGGAG
moCasapase9-Fw	AGAGGTTCTCAGACCAGAAACA
moCasapase9-Rv	CATATCTGCATGTCCCCTGA
moMicroglobulin-Fw	CCACTGAAAAAGATGAGTATGCCT
moMicroglobulin-Rv	CCAATCCAAATGCGGCATCTTCA

Antibody name	Supplier (Catalog No.)	Clonality (Clone)	Reactivity	Application
Anti-CDKN2A/p16INK4a Antibody	abcam (ab211542)	Rabbit mono (EPR20418)	Mouse	IF (1:200)
Anti-mouse Nr5a1 (Ad4BP/SF1) monoclonal Antibody rat mAb	Transgenic (KO610)	mouse mono (1B1F10)	Mouse	IF (1:500) IHC (1:200)
StAR Rabbit Polyclonal antibody	Proteintech (12225-1-AP)	Rabbit poly	Human Mouse Rat Pig	IF (1:100)
Phospho-Histone H2A.X(Ser139) (20E3) Rabbit mAb	Cell Signaling Technology (#9718)	Rabbit mono (20E3)	Human Mouse Others	IF (1:500)
53BP1 antibody	Novusbio (NB100-304)	Rabbit poly	Human Mouse Others	IF (1:250)
ki67 antibody	Novusbio (NB110-89719)	Rabbit poly	Human Mouse Rat	IHC (1:100)
Iba1 antibody	GeneTex (GTX100042)	Rabbit poly	Human Mouse Rat	IHC (1:50)
IL1β antibody	Bioss (bs-0812R)	Rabbit poly	Human Mouse Others	IHC (1:100)
Cy3-conjugated Donkey Anti-Rat IgG (H+L)	Jackson Immuno Research (712-165-153)	-	-	IF secondary antibody (1:1000)
Alexa Fluor 647 Goat anti-rabbit IgG (H+L)	Thermo Fisher Scientific (A-21245)	-	-	IF secondary antibody (1:1000)

Supplementary Table 3 The manufacturers and conditions of use of the antibodies used in this study are summarized below.