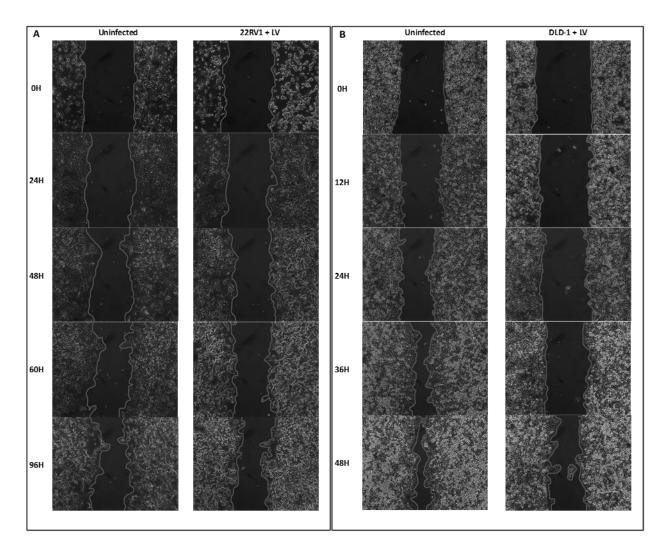

In vitro analysis suggests that SARS-CoV-2 infection differentially modulates cancer-like phenotypes and cytokine expression in colorectal and prostate cancer cells.


Alberta Serwaa^{1,2}, Fatima Oyawoye¹, Irene Amoakoh Owusu¹, Daniel Dosoo¹, Aaron Adom Manu^{1,2}, Augustine Kojo Sobo^{1,2}, Kwadwo Fosu^{1,2}, Charles Ochieng' Olwal^{1,2}, Peter Kojo Quashie^{1,3}*, Anastasia Rosebud Aikins^{1,2}*

¹West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Ghana


² Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana

³ Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom

Figure S2. SARS-CoV-2 Infection may not significantly affect 22RV1 migration but reduces DLD-1 cell migration. A diagram showing representative wound healing images of (a) uninfected and SARS-CoV-2 infected 22RV1 cell lines at different time points and (b) uninfected and SARS-CoV-2 infected DLD-1 cell lines at different time points. Magnification x100. Clear dark area = wound area. White patched area = area covered with cells.

Target	Set	Sequence (5'-3')	Annealing	References
Gene			temperature (°C)	
Reverse	TCGATTGGATGGCAGTAGCTG			
BCL-2	Forward	TGCACCTGACGCCCTTCAC	59	3
	Reverse	AGACAGCCAGGAGAAATCAAACAG		
KI-67	Forward	AATTCAGACTCCATGTGCCTGAG	60	4
	Reverse	CTTGACACACACATTGTCCTCAGC		
MMP9	Forward	ACGCACGACGTCTTCCAGTA	61	5
	Reverse	CCACCTGGTTCAACTCACTCC		
VIM	Forward	TCTCTGAGGCTGCCAACCG	62	6
	Reverse	CGAAGGTGACGAGCCATTTCC		
TNF-α	Forward	AGTGACAAGCCTGTAGCCC	57	7
	Reverse	GCAATGATCCCAAAGTAGACC		
IL-16	Forward	GCACGATGCACCTGTACGAT	59	8
	Reverse	CACCAAGCTTTTTTGCTGTGAGT		
IL-6	Forward	CAATGAGGAGACTTGCCTGGTGA	62	9,10
	Reverse	TGGCATTTGTGGTTGGGTCAG		
IL-8	Forward	CACCGGAAGGAACCATCTCACT	59	10
	Reverse	TCAGCCCTCTTCAAAAACTTCTCC		
GAPDH	Forward	TGCACCACCAACTGCTTA	60	11
	Reverse	GGATGCAGGGATGATGTTC		

 Tables

 Table S1. Oligonucleotide sequences used in this study.

References

- 1. Herkenne, S. *et al.* Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. *Cell Metab.* **31**, 987-1003.e8 (2020).
- 2. Norol, F. *et al.* GFP-transduced CD34+ and Lin- CD34- hematopoietic stem cells did not adopt a cardiac phenotype in a nonhuman primate model of myocardial infarct. *Exp. Hematol.* **35**, 653–661 (2007).
- 3. Sun, H. *et al.* A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. *Biochim. Biophys. Acta Gen. Subj.* **1840**, 3052–3057 (2014).
- 4. Bai, Y. *et al.* Ki-67 is overexpressed in human laryngeal carcinoma and contributes to the proliferation of HEp2 cells. *Oncol. Lett.* **12**, 2641–2647 (2016).
- 5. Fan, Y. *et al.* NLRC5 promotes cell migration and invasion by activating the PI3K/AKT signaling pathway in endometrial cancer. *J. Int. Med. Res.* **48**, 1–13 (2020).
- 6. Sittiju, P. *et al.* Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. *Biology (Basel).* **11**, 1–14 (2022).

- Zhao, C., Lu, X., Bu, X., Zhang, N. & Wang, W. Involvement of tumor necrosis factor-α in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori. *BMC Cancer* 10, 419 (2010).
- 8. Bhat, I. A. *et al.* Association of interleukin 1 beta (IL-1β) polymorphism with mRNA expression and risk of non small cell lung cancer. *Meta Gene* **2**, 123–133 (2014).
- 9. Liu, D., Perkins, J. T., Petriello, M. C. & Hennig, B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65. *Toxicol. Appl. Pharmacol.* **289**, 457–465 (2015).
- 10. Zhao, W. *et al.* Activation of Rev-erbα attenuates lipopolysaccharide-induced inflammatory reactions in human endometrial stroma cells via suppressing TLR4-regulated NF-κB activation. *Acta Biochim. Biophys. Sin. (Shanghai).* **51**, 908–914 (2019).
- 11. Wu, D. *et al.* Long noncoding RNA NNT-AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA-496 thereby increasing HMGB1 expression. *Aging (Albany. NY).* **11**, 12624–12640 (2019).