
Supplementary Information for

“Introducing Edge Intelligence to Smart

Meters via Federated Split Learning”

Yehui Li1†, Dalin Qin1†, H. Vincent Poor2*, Yi Wang1*

1Department of Electrical and Electronic Engineering, The University of
Hong Kong, Hong Kong SAR, China.

2Department of Electrical and Computer Engineering, Princeton
University, Princeton, NJ, USA.

*Corresponding author(s). E-mail(s): poor@princeton.edu;
yiwang@eee.hku.hk;

Contributing authors: yhli@eee.hku.hk; dlqin@eee.hku.hk;
†These authors contributed equally to this work.

1

Supplementary Notes

Supplementary Note 1: Experimental setting

In our experiments, L2 loss is adopted for both the label loss and knowledge distilla-
tion loss. The models are trained using the Adam optimizer with an initial learning
rate of 5e-4. The mini-batch size is set to 32. The weights of label loss and knowledge
distillation loss are both set to 0.5. To simulate the device heterogeneity in a real smart
grid, 30 microcontrollers are randomly set to different operating frequencies between
21MHz and 84MHz (see Supplementary Fig. 7). In synchronous aggregation, the global
training rounds for each experiment are fixed at 100 rounds. In asynchronous aggre-
gation methods, the deviation of a single cluster gradient makes the training rounds
longer for convergence, so we manually chose the number of training rounds at dif-
ferent numbers of clusters based on the loss of global training to ensure global model
convergence (see Supplementary Fig. 8). Note that a local fine-tuning personaliza-
tion strategy is incorporated into all federated-based methods for 30 rounds. Each
experiment is repeated 5 times to eliminate the effect of randomness.

Supplementary Note 2: Evaluation metrics

Expressions of RMSE, MAPE, sMAPE, and MAE are as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (2)

sMAPE =
1

n

n∑
i=1

|yi − ŷi|
yi + ŷi

× 100% (3)

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)

where ŷi and yi are the i-th forecasted and real load values, respectively, and n is the
number of samples.

Supplementary Note 3: Method description

The implementation details of the full method are as follows and also given in
Algorithm 1 and Algorithm 2.

1. Model splitting: the cloud server first finds the optimal split ratio to split the
initial model w0 into three parts w0

e, w
0
p, and w0

r and then distributes them to edge
servers and smart meters, respectively. After that, each smart meter generates an
auxiliary regressor w0

a.

2

2. Model training: In the round t, smart meters perform forward propagation for
each sample on the feature extractor wt

e and uploads the activation he to edge
servers. Then he is sequentially forwarded as input through the feature processor
wt

p and the regressor wt
r, and the loss ℓs of the main model is calculated. Simulta-

neously, the auxiliary regressor wt
a also propagates forward with he to obtain the

prediction yc, which is combined with the main model’s prediction ys to calculate
the auxiliary model’s distillation loss ℓc. Afterwards, smart meters calculate the
gradient for wt

r based on the error ℓs,k. After receiving the gradient from smart
meters, edge servers next calculate the gradient for wt

p. In parallel with the above
process, smart meters calculate the gradients for wt

a and wt
e locally based on the

error ℓc,k. Eventually, the model parameters are updated based on the calculated
gradients to complete a round of training.

3. Model aggregation: In the initialization phase, the cloud server designates smart
meters to the edge servers to collaborate with by clustering their feature vectors Vk.
After each smart meter finishes the model training in the t-th round, edge servers
aggregate their parameters wt+1

k to form the complete model wt+1
(i) . Finally, edge

servers upload their aggregated model to update the global model wt+1. Cloud
server distributes wt+1 to turn on the next round of model training.

3

Algorithm 1 Collaborative Split Learning

Function Model Splitting(w0):
Choose optimal ratio α∗ to split model: w0 → w0

e ,w
0
p,w

0
r

Cloud server allocates models to edge servers and smart meters
Smart meters generate auxiliary regressor w0

a

Function Model Training(wt):
for each x ∈ D do

// Forward Propagation:

he ← f(wt
e, x)

Smart meters send he to edge servers
hp ← f(wt

p, he)
Edge servers return hp to smart meters
ys ← f(wt

r, hp) and yc ← f(wt
a, he)

ℓs ← ℓ(y, ys) and ℓc ← γℓ(y, yc) + (1− γ)ℓ(ys, yc)
// Backward Propagation:

Smart meters calculate ∇rℓs(w
t
s, x) and send it to edge servers

do in parallel
Edge servers calculate ∇pℓs(w

t
s, x)

do in parallel
Smart meters calculates ∇aℓc(w

t
c, x) and ∇eℓc(w

t
c, x)

// Parameter Update:

wt+1
r ← wt

r − ηt∇rLs(w
t
s)

wt+1
p ← wt

p − ηt∇pLs(w
t
s)

wt+1
a ← wt

a − ηt∇aLc(w
t
c)

wt+1
e ← wt

e − ηt∇eLc(w
t
c)

wt+1 ← [wt+1
e ,wt+1

p ,wt+1
r ,wt+1

a]

Return wt+1

4

Algorithm 2 Semi-Asynchronous Federated Learning

// Initialization:

for each k ∈ A do in parallel
Smart meters upload feature vector Vk ← [1

PED
, 1
R] to cloud server

Cloud server designates smart meters to the i-th edge server: Ai ← Cluster(Vk)
w0

k ← Model Splitting (w0)

Function Model aggregation():
for each round t = 1, 2, ..., T do

for each i = 1, 2, ...,M do in parallel
for each k = 1, 2, ...,Ki do in parallel

Downloads global model wt from cloud server
wt

k ← wt

wt+1
k ← Model Training (wt

k)

// Synchronous aggregation at edge servers:

Smart meters upload model wt+1
k to edge servers

wt+1
(i) ←

1
Ki

Ki∑
k=1

wt+1
k

// Asynchronous aggregation at cloud server:

Edge servers upload model wt+1
(i) to cloud server

wt+1 = (1− τi)w
t + τiw

t+1
(i)

5

Supplementary Note 4: Short-term scheduling formulation

The objective of the short-term scheduling is to schedule the energy consumption of
home appliances to help consumers reduce electricity costs based on forecasted load,
which can be expressed as:

minC =

T∑
t=1

λt

(
P fcst
t + PAC

t + PEV
t + PESS

t − P solar
t

)
(5)

where T denotes the scheduling time scale; λt denotes the time-of-use electricity price;
P fcst
t denotes the forecasted load consumption; PAC

t , PEV
t , PESS

t , and P solar
t denote

the power of air conditioner (AC), electric vehicle (EV), energy storage system (ESS),
and solar panel, respectively. The positive and negative signs of PESS

t correspond to
the discharge and charging states of the ESS.

The feasibility constraints limit the operating power of appliances within a feasible
range, which can be formulated as follows:

PAC
min ≤ PAC

t ≤ PAC
max

PEV
min ≤ PEV

t ≤ PEV
max

−PESS
max ≤ PESS

t ≤ PESS
max

(6)

where PAC
min and PAC

max denote the minimum and maximum operating power of the AC,
respectively; PEV

min and PEV
max denote the minimum and maximum charging power of

the EV, respectively; PESS
max denote the maximum charging and discharging power of

the ESS.
The thermal dynamics constraints restrict the indoor temperature within a

comfortable range, which can be formulated as follows:

T in
t+1 = εT in

t + (1− ε)
(
T out
t + ηAC · λ · PAC

t ·∆T
)

T in
min ≤ T in

t ≤ T in
max

(7)

where T in
t denotes the indoor temperature at time t; ε denotes the inertia factor; ηAC

the thermal conversion efficiency; λ denotes the reciprocal of the thermal conductiv-
ity; ∆T denotes the scheduling resolution; T in

min and T in
max denote the minimum and

maximum values of household preferred indoor temperatures, respectively.
The battery constraint restricts the temporal coupling of EV and ESS, which can

be expressed as:

SoCEV
t+1 = SoCEV

t + ηEV
i,cha · PEV

t ·∆T/CEV
max

SoCESS
t+1 =

{
SoCESS

t + ηESS
i,cha · PESS

t ·∆T/CESS
max, PESS

t ≥ 0

SoCESS
i,t + ηESS

i,dis · PESS
t ·∆T/CESS

max, PESS
t < 0

SoCEV
min ≤ SoCEV

t ≤ SoCEV
max

SoCESS
min ≤ SoCESS

t ≤ SoCESS
max

(8)

6

where SoCEV
t+1 and SoCEV

t+1 denote the state of charge (SoC) of the EV and ESS,
respectively; ηi,cha denotes the charging efficiencies of the EV; ηi,cha and ηi,dis denote
the charging and discharging efficiencies of the ESS, respectively; CEV

max and CESS
max

denotes the battery capacity of the EV and ESS, respectively; SoCEV
min and SoCEV

max

denote the minimum and maximum SOC values of the EV, respectively; SoCESS
min and

SoCESS
max denote the minimum and maximum SOC values of the ESS, respectively.

7

Supplementary Figures

Supplementary Fig. 1: Comparison of forecasting results for six on-device feasible
methods. We report the time series values of real and forecasting electrical load on datasets
BDG2 and CBTs. The forecasting values of the proposed method are closest to the true
values, especially in the case of high load volatility. Source data are provided as a Source
Data file.

8

Supplementary Fig. 2: Performance evaluation of six on-device feasible methods
on different client numbers. We compare the model accuracy of our method with bench-
mark methods for the first 5 clients. In federated learning-based approaches, more client
participation can improve the model performance. We can observe that the proposed method
always achieves the highest accuracy for different client numbers. Source data are provided
as a Source Data file.

9

Supplementary Fig. 3: Comparison of forecasting accuracy versus training time
for six on-device feasible methods. The federated learning-based method performs 30
rounds of local fine-tuning. We can see that the proposed method achieves the best per-
formance while significantly reducing the training time compared to vanilla federated split
learning methods. Source data are provided as a Source Data file.

10

Supplementary Fig. 4: Comparison of forecasting accuracy when splitting at dif-
ferent hidden layers. The experimental results reveal that splitting at different hidden
layers does not significantly affect the forecasting accuracy of the model on both datasets.
Source data are provided as a Source Data file.

11

Supplementary Fig. 5: Effectiveness of the efficiency-optimal model splitting
strategy considering deeper neural network with 7 hidden layers. Each hidden layer
is considered a split layer. The split layers for best efficiency are annotated. The hidden layers
contained in the feature extractor, feature processor, and regressor after the optimal split are
indicated with different colours. Total training time under four distinct hardware configura-
tions when choosing different split layers is provided. The stacked histograms represent the
measured time for communication, forward propagation of the edge server and smart meter,
and parallel backward propagation, arranged from bottom to top. Source data are provided
as a Source Data file.

12

Supplementary Fig. 6: Comparison of forecasting accuracy for choosing different
loss weights on dataset BDG2. Columns: weight of distillation loss. Rows: weight of label
loss. We find that models trained with too small label loss weights perform poorly. The model
generally performs better when the two weights are closer together. Source data are provided
as a Source Data file.

13

Supplementary Fig. 7: Heterogeneous hardware configurations for 30 smart
meters. To simulate the device heterogeneity in a real smart grid, 30 smart meters are ran-
domly set to different operating frequencies between 21MHz and 84MHz, with an average
frequency of 42MHz. The operational frequency settings of smart meters in our experiments
range from 1/2 to 1/8 of the maximum values, which is an engineering experience value
derived from the perspective of task occupancy rate. In this setup, the computational power
of the fastest smart meter is about four times the computational power of the slowest one.
Note that the clock cycle is inversely proportional to the operating frequency. Source data
are provided as a Source Data file.

14

Supplementary Fig. 8: Aggregation round selected for the semi-asynchronous
aggregation method. In each edge-cloud aggregation, only one cluster uploads the model
gradient to update the global model in each round. We can observe that as the number of
clusters increases, the deviation of individual cluster gradients makes the training rounds
longer for convergence. Note that clusters with shorter training times upload model gradients
more frequently than clusters with longer training times at a given time. Source data are
provided as a Source Data file.

15

(a)

(b)

Supplementary Fig. 9: Impact of the cluster number on the model performance.
(a) Schematic diagram of edge energy management for buildings/homes with flexible energy
resources. (b) Comparison of training time and communication versus cluster number. Simi-
larly, the training time and communication overhead decrease at a faster rate as the number
of clusters increases. It shows that our method can dramatically enhance training efficiency
without sacrificing precision. Source data are provided as a Source Data file.

16

Supplementary Fig. 10: Accuracy comparison of benchmark and proposed meth-
ods in a large-scale scenario. The performance of the benchmark models is indicated by
the x-axis, and the y-axis indicates that of the proposed model. Points below the dashed
line indicate households where the proposed model performs better than the baseline model.
The fact that most of the points are below the dashed line implies that the proposed model
can perform well on most households and achieve significant improvement on a few of them.
Source data are provided as a Source Data file.

17

Supplementary Fig. 11: Performance evaluation of the proposed method with
different neural networks as the backbone. We compare the accuracy of our method
with other device-friendly methods with a CNN, RNN, GRU, or LSTM as the backbone. The
mean accuracy with 95% confidence intervals is presented with 5 independent experiments.
Source data are provided as a Source Data file.

18

Supplementary Tables

Supplementary Table 1: Number of network
parameters for various layers

Layer |w| |b|
Fully connected layer M·N N
Convolutional layer F·C·K F
Recurrent layer (M+N)·N N
LSTM layer 4·(M+N)·N 4·N

M : number of neurons in the previous layer.

N : number of neurons in the current layer.

F : number of filters in the previous layer.

N : number of filters in the current layer.

K : kernel size.

Supplementary Table 2: Number of intermediate parameters
for various layers

Layer |a|
∣∣∣ ∂l
∂w

∣∣∣ ∣∣∣ ∂l
∂b

∣∣∣ ∣∣∣ ∂l
∂a

∣∣∣
Fully connected layer N M·N N N
Convolutional layer F ·(M-K+1) F·C·K F C·N
Recurrent layer S·N (M+N)·N N S·N
LSTM layer S·N 4·(M+N)·N 4·N S·N

Activation layer M - - M
Pooling layer F - - F·M
Flatten layer F·M - - F·M

S : length of input series.

19

Supplementary Table 3: Performance of different methods on BDG2 and CBTs in terms
of accuracy, memory, training time, and communication overhead per round when considering
deeper 7 hidden layers.

Method
BDG2 CBTs Memory

(KB)
Training Time
(s)

Communication
(KB)RMSE MAPE MAE RMSE MAPE MAE

Local-M 22.75 7.68 8.03 0.4678 26.68 0.2721 5178.25 (1.0x) 4335.86 (1.01x) -

FedAvg-M 22.33 6.84 7.44 0.4617 26.28 0.2638 5178.25 (1.0x) 4387.33 (1.0x) 761.5 (1.0x)

FedProx-M 22.42 7.01 7.52 0.4620 26.17 0.2641 5178.25 (1.0x) 4387.33 (1.0x) 761.5 (1.0x)

Split 22.93 7.89 8.14 0.4694 26.74 0.2713 103.75 (49.9x) 281.86 (15.55x) 91.25 (8.34x)

SFLV1 22.56 7.03 7.57 0.4963 26.43 0.2650 103.75 (49.9x) 282.84 (15.51x) 96.75 (7.87x)

SFLV2 22.75 7.18 7.66 0.4647 26.39 0.2663 103.75 (49.9x) 282.84 (15.51x) 96.75 (7.87x)

Proposed 22.22 6.86 7.38 0.4626 26.12 0.2637 115.07 (45x) 214.68 (20.43x) 74.43 (10.23x)

1 The best-performing and the second-best-performing methods are bolded and underlined, respectively.
2 -M indicates the model has multiple hidden layers.

Supplementary Table 4: Performance evaluation of different methods on BDG2 and CBTs
under passive membership inference attack.

Method

Attack Accuracy

BDG2 CBTs

FedAvg-S 0.6738 0.4804
Split 0.8387 0.4628
SFLV1 0.5783 0.3894
SFLV2 0.6012 0.4152
Proposed 0.532 0.3849

20

Supplementary Proofs

Supplementary Proof 1: Efficiency-optimal split ratio

Considering the first case, we have α ≥ (Pes

KPsm
+ 1)

−1
which is equivalent to

α (1− β)n |D| |w|
Psm

≥ (1− α) (1− β)n |D| |w|K
Pes

(9)

Hence, the training time can be rewritten as

T =
3s |D|+ 2α |w|

R
+

αn |D| |w|
Psm

+
(1− α)nβ |D| |w|K

Pes

(10)

Here when Pes ≥ βK(2
nR|D| +

1
Psm

)
−1

, (10) is an increasing function of α and the

optimal ratio minimizing the training time is α∗ = (Pes

KPsm
+ 1)

−1
provided that α∗ is

not larger than the upper bound αupper. Otherwise (10) is a decreasing function, i.e.,
the optimal ratio is the upper bound αupper.

Then, considering the second case, we have α ≤ (Pes

KPsm
+ 1)

−1
, which is equivalent

to
α (1− β)n |D| |w|

Pes
≤ (1− α) (1− β)n |D| |w|K

Psm
(11)

Hence, the training time can be rewritten as

T =
3s |D|+ 2α |w|

R
+

αβn |D| |w|
Psm

+
(1− α)n |D| |w|K

Pes

(12)

Here when Pes ≤ K(1
nR|D| +

β
Psm

)
−1

, (12) is a decreasing function of α and the optimal

ratio minimizing the training time is α∗ = (Pes

KPsm
+ 1)

−1
provided that α∗ is not

smaller than the lower bound αlower. Otherwise (12) is an increasing function, i.e., the
optimal ratio is the lower bound αlower. Note that β is between 0 and 1, so the upper
bound is larger than the lower one. Hence, we complete the proof of the optimal ratio.

21

Supplementary Proof 2: Convergence of auxiliary model

Under Assumption 1, we can write

Lc(w
t+1
c)− Lc(w

t
c) ≤ ∇Lc(w

t
c)

T
(wt+1

c −wt
c) +

L

2

∥∥wt+1
c −wt

c

∥∥2. (13)

Note that we have

wt+1
c = wt

c − τiηt
1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k) (14)

Substituting wt+1
c −wt

c, we have

Lc(w
t+1
c)− Lc(w

t
c) ≤ −τiηt∇Lc(w

t
c)

T

(
1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

)

+
L

2
τ2i η

2
t

∥∥∥∥∥ 1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2

.

(15)

Taking expectation over (15) as follows

E
[
Lc(w

t+1
c)

]
− E

[
Lc(w

t
c)
]
≤ −τiηt E

[
∇Lc(w

t
c)

T

(
1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

)]
︸ ︷︷ ︸

A1

+
L

2
τ2i η

2
t E

∥∥∥∥∥ 1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2


︸ ︷︷ ︸
A2

.

(16)

In the following, we will bound A1 and A2, respectively. The equivalent form of
A1 is

A1 = E

[
∇Lc(w

t
c)

T

(
1

Ki

∑
k∈Ai

∇Lc,k(w
t
c)

)]

=
1

2
E
[∥∥∇Lc(w

t
c)
∥∥2]+ 1

2
E

∥∥∥∥∥ 1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2


− 1

2
E

∥∥∥∥∥∇Lc(w
t
c)−

1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2


︸ ︷︷ ︸
B

.

(17)

22

Since the sampled gradient of each cluster is an unbiased estimator of the full gradient,

i.e., ∇Lc(w
t
c) = E

[
1
Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

]
, so we have

B = E

∥∥∥∥∥∇Lc(w
t
c)−

1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2


= E

[∥∥∥∥∥E
[

1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

]
− 1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2]

≤ E

∥∥∥∥∥ 1

Ki

∑
k∈Ai

∇Lc,k(w
t
c,k)

∥∥∥∥∥
2
− E

[∥∥∇Lc(w
t
c)
∥∥2]

(18)

Substituting (18) into (17), we have

A1 = E
[∥∥∇Lc

(
wt

c

)∥∥2] . (19)

Then we apply Cauchy-Schwarz inequality and Assumption 2 to find the lower
bound of A2:

A2 = E

∥∥∥∥∥ 1

K

∑
k∈At

∇Lc,k

(
wt

c,k

)∥∥∥∥∥
2


≤ 1

Ki

∑
k∈Ai

E
[∥∥∇Lc,k

(
wt

c,k

)∥∥2]
≤ 1

Ki

∑
k∈Ai

1

|Dk|
∑
x∈Dk

E
[
∥∇ℓc,k(wc,k, xk)∥2

]
≤ G1.

(20)

Substituting (19) and (20) into (16), it follows that

E
[
Lc(w

t+1
c)

]
≤ E

[
Lc(w

t
c)
]
− τiηtE

[∥∥∇Lc(w
t
c)
∥∥2]+G1

L

2
τ2i η

2
t . (21)

Now by summing up for all global rounds t = 1, ...T , we have

E
[
Lc(w

T
c)
]
≤ E

[
Lc(w

0
c)
]
− τi

T∑
t=1

ηtE
[∥∥∇Lc(w

t
c)
∥∥2]+G1

L

2
τ2i

T∑
t=1

η2t . (22)

Finally due to Lc(w
∗
c) ≤ E

[
Lc(w

T
c)
]
, we have

T∑
t=1

ηtE
[∥∥∇Lc(w

t
c)
∥∥2] ≤ 1

τi

[
Lc(w

0
c)− Lc(w

∗
c)
]
+G1

L

2
τi

T∑
t=1

η2t , (23)

23

where τi can be regarded as a constant due to the equal number of smart meters in
each cluster. Hence, we complete the convergence proof for the auxiliary model.

24

Supplementary Proof 3: Convergence of main model

Under Assumption 1, We obtain the same form as the auxiliary model

E
[
Ls(w

t+1
s)

]
− E

[
Ls(w

t
s)
]
≤τiηt E

[
−∇Ls(w

t
s)

T

(
1

Ki

∑
k∈Ai

∇Ls,k(w
t
s,k)

)]
︸ ︷︷ ︸

C1

+
L

2
τ2i η

2
t E

∥∥∥∥∥ 1

Ki

∑
k∈Ai

∇Ls,k(w
t
s,k)

∥∥∥∥∥
2


︸ ︷︷ ︸
C2

.

(24)

In the following, we will bound C1 and C2, respectively. Applying the Cauchy-
Schwarz inequality, we have

C1 ≤ E

[
∇
∥∥Ls(w

t
s)
∥∥2 −∇Ls(w

t
s)

T

(
1

Ki

∑
k∈Ai

∇Ls,k(w
t
s,k)

)]

= E

[
∇Ls(w

t
s)

T

(
∇Ls(w

t
s)−

1

Ki

∑
k∈Ai

∇Ls,k(w
t
s,k)

)]

≤ E
[∥∥∇Ls(w

t
s)
∥∥]︸ ︷︷ ︸

D1

·E

[∥∥∥∥∥∇Ls(w
t
s)−

1

Ki

∑
k∈Ai

∇Ls,k(w
t
s,k)

∥∥∥∥∥
]

︸ ︷︷ ︸
D2

(25)

We first find a lower bound of D1 as

D1 = E
[∥∥∇Ls(w

t
s)
∥∥]

≤
√

G2

(26)

We apply Fubini’s theorem to find a lower bound of D2 as

D2 = E

[∥∥∥∥∥∇Ls(w
t
s)−

1

Ki

∑
k∈Ai

∇Ls,k(w
t
s)

∥∥∥∥∥
]

≤ 1

Ki

∑
k∈Ai

E

[∥∥∥∥∥ 1

|Dk|
∑
x∈Dk

∇ℓs,k(wt
s,k, h

∗
e,k(x))−∇ℓs,k

(
wt

s,k, h
t
e,k(x)

) ∥∥∥∥∥
]

≤ 1

Ki

∑
k∈Ai

E
[∫ ∥∥∇ℓs,k(wt

s,k, h)
∥∥∥∥ptc,k(h)− p∗c,k(h)

∥∥dh]
≤
√

G2
1

Ki

∑
k∈Ai

√
dtc,k.

(27)

25

By combining (25), (26) and (27), we have

C1 ≤ G2τiηt
1

Ki

∑
k∈Ai

√
dtc,k − τiηtE

[
∇
∥∥Ls(w

t
s)
∥∥2] . (28)

With the same derivation process for the auxiliary model, we find a lower bound of
C2 as

C2 = E

∥∥∥∥∥ 1

Ki

∑
k∈Ai

∇Ls,k(w
t
s,k)

∥∥∥∥∥
2


≤ G2.

(29)

Substituting (28) and (29) into (24), it follows that

E
[
Ls(w

t+1
s)

]
≤ E

[
Ls(w

t
s)
]
−τiηtE

∥∥∇Ls(w
t
s)
∥∥2+G2

(
τiηt

1

Ki

∑
k∈Ai

√
dtc,k +

L

2
τ2i η

2
t

)
.

(30)
Now by summing up for all global rounds t = 1, ...T, we have

E
[
Ls(w

T
s)
]
≤ E

[
Ls(w

0
s)
]
− τi

T∑
t=1

ηtE
[∥∥∇Ls(w

t
s)
∥∥2]

+G2

(
τi

T∑
t=1

ηt
1

Ki

∑
k∈Ai

√
dtc,k +

L

2
τ2i

T∑
t=1

η2t

)
.

(31)

Finally due to Ls(w
∗
s) ≤ E

[
Ls(w

T
s)
]
, we have

T∑
t=1

ηtE
[∥∥∇Ls(w

t
s)
∥∥2] ≤ 1

τi

[
Ls(w

0
s)− Ls(w

∗
s)
]
+G2

(
T∑

t=1

ηt
1

Ki

∑
k∈Ai

√
dtc,k +

L

2
τi

T∑
t=1

η2t

)
,

(32)
Since Supplementary Proof. 2 has proved that the auxiliary model is convergent, we

have
T∑

t=1
dtc,k <∞. Hence, we complete the convergence proof for the main model.

26

