#### **Supplementary Material**

Table S1: Search strategy-page 2

Table S2: Countries included in analysis listed by income level - page 3-7

Table S3A: PICO summary of included studies for treatment-naive children prevalence analysis – page 8-15

 Table S3B: PICO summary of included studies for treatment-experienced children prevalence analysis –

 page 16-33

Table S4A: Quality assessment of included DR studies for treatment-naive children prevalence analysis –page 34- 35

 Table S4B: Quality assessment of included DR studies for treatment-experienced children prevalence

 analysis – page 36-37

Table S5A: Pooled prevalence of drug resistance among treatment-naive children after 2015. - page 38

Table S5B: Pooled prevalence of drug resistance among treatment-experienced children after 2015. – page39

Table S6A: Meta regression analysis for the variation of the prevalence of naive HIV-infected children – page 40

Table S6B: Meta regression analysis for the variation of the prevalence of treated HIV-infected children –page 41

Figure S1: Demonstration of countries and regions included in the study - page 42

Figure S2A: Forest plot of the drug resistance prevalence among treatment-naive groups – page 43

Figure S2B: Forest plot of the drug resistance prevalence among treatment-experienced groups – page 44

Figure S3A: Sensitivity analysis for the variation of the prevalence of naive HIV-infected children – page 45 Figure S3B: Sensitivity analysis for the variation of the prevalence of treated HIV-infected children – page 46

Figure S4A: Forest plot of the NNRTI mutation prevalence among treatment-naive groups – page 47 Figure S4B: Forest plot of the NNRTI mutation prevalence among treatment-experienced groups – page 48 Figure S5A: Forest plot of the NRTI mutation prevalence among treatment-naive group – page 49 Figure S5B: Forest plot of the NRTI mutation prevalence among treatment-experienced group – page 50 Figure S6A: Forest plot of the PI mutation prevalence among treatment-naive group – page 51 Figure S6B: Forest plot of the PI mutation prevalence among treatment-naive group – page 52 Figure S6B: Forest plot of the PI mutation prevalence among treatment-experienced group – page 52 Figure S7A: Forest plot of the INSTI mutation prevalence among treatment-naive group – page 53 Figure S7B: Forest plot of the INSTI mutation prevalence among treatment-experienced group – page 54 Figure S8A: Forest plot of the dual-class mutation prevalence among treatment-naive group – page 55 Figure S8B: Forest plot of the dual-class mutation prevalence among treatment-naive group – page 56 Figure S9A: Forest plot of the triple-class mutation prevalence among treatment-naive group – page 57 Figure S9B: Forest plot of the triple-class mutation prevalence among treatment-naive group – page 57 Figure S9B: Forest plot of the triple-class mutation prevalence among treatment-naive group – page 57

1

PRISMA Checklist – page 59-60

#### Table S1: Search strategy

| Database          | Search strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| PubMed            | (("resistan*"[Title]) AND ("HIV"[Title] OR "human immunodeficiency virus"[Title] OR "AIDS"[Title] OR "acquired<br>immunodeficiency syndrome"[Title]) AND ("child*"[Title/Abstract] OR "adolecen*"[Title/Abstract] OR<br>"infant*"[Title/Abstract] OR "newborn*"[Title/Abstract] OR "pediatri*"[Title/Abstract]) ) NOT ("Case<br>Reports"[Publication Type] OR "Comment"[Publication Type] OR "Editorial"[Publication Type] OR<br>"Review"[Publication Type] OR "Meta-analysis"[Publication Type])) AND (humans[Filter])<br>up to 28 June 2024 | 461     |
| Embase            | ('hiv'/exp OR 'aids'/exp OR hiv:ti OR 'human immunodeficiency virus':ti OR aids:ti OR 'acquired immunodeficiency<br>syndrome':ti) AND resistan*:ti AND (child*:ab,ti OR adolescent*:ab,ti OR infant*:ab,ti OR newborn*:ab,ti OR<br>pediatr*:ab,ti) AND [article]/lim AND [humans]/lim AND [english]/lim<br>up to 28 June 2024                                                                                                                                                                                                                 | 945     |
| Web Of<br>Science | TI=(resistan*) AND (TI=(child* or adolescen* or infan* or newborn* or pediatri*) OR AB=(child* or adolescen* or infan* or newborn* or pediatri*)) AND TI=(aids OR "acquired immunodeficiency syndrome" OR HIV OR "human immunodeficiency virus")<br>up to 28 June 2024                                                                                                                                                                                                                                                                        | 876     |

# Table S2: Countries included in analysis listed by income level

(In the order of data extraction process)

| First author            | Study performed country | Region                     | World Bank Income level | Median        | Age     |
|-------------------------|-------------------------|----------------------------|-------------------------|---------------|---------|
|                         |                         |                            |                         | sampling year | (month) |
| Lindström, 2010         | Malawi                  | Southern Africa            | Low income              | 2007          | 3.3     |
| Lindström, 2010         | Malawi                  | Southern Africa            | Low income              | 2007          | 3.3     |
| Towler, 2010            | Uganda                  | Eastern Africa             | Low income              | 2005          | 51.5    |
| Towler, 2008            | Uganda                  | Eastern Africa             | Low income              | /             | 1.4     |
| Fogel, 2011             | Malawi                  | Southern Africa            | Low income              | 2008          | 3       |
| Van Dyke, 2016          | United States           | North America              | High income             | 2011          | 37.2    |
| Kurle, 2007             | India                   | Asia                       | Lower middle income     | /             | 0.7     |
| Kurle, 2007             | India                   | Asia                       | Lower middle income     | /             | 6       |
| Vignoles, 2009          | Argentina               | South America              | Upper middle income     | 2005          | 51.2    |
| Gibb, 2002              | UK, Italy, Spain        | Europe                     | /                       | 1999          | 6       |
| Nelson, 2015            | Malawi                  | Southern Africa            | Low income              | 2007          | 3.62    |
| Nelson, 2015            | Malawi                  | Southern Africa            | Low income              | 2007          | 3.62    |
| Nelson, 2015            | Malawi                  | Southern Africa            | Low income              | 2007          | 8.63    |
| Louis, 2019             | Haiti                   | North America              | Lower middle income     | 2013          | 6.5     |
| Boerma, 2016            | Nigeria                 | Western and Central Africa | Lower middle income     | 2012          | 57.6    |
| Bennett, 2020           | Zambian                 | Southern Africa            | Lower middle income     | 2017          | 5       |
| Inzaule, 2018           | Nigeria                 | Western and Central Africa | Lower middle income     | 2015          | 5.1     |
| Crowell, 2017           | Mali                    | Western and Central Africa | Low income              | 2012          | 31.2    |
| Salou, 2016             | Тодо                    | western and Central Africa | Low income              | 2012          | 5       |
| Kityo, 2016             | Uganda                  | Eastern Africa             | Low income              | 2010          | 58.8    |
| Dow, 2017               | Tanzania                | Eastern Africa             | Lower middle income     | 2013          | 3.73    |
| Hunt, 2011              | Southern Africa         | Southern Africa            | Upper middle income     | 2006          | 24      |
| Zeh, 2011               | Kenya                   | Eastern Africa             | Lower middle income     | 2005          | 6       |
| Nii-Trebi, 2013         | Ghana                   | Western and Central Africa | Lower middle income     | 2009          | 60      |
| Neubert, 2016           | Germany                 | Europe                     | High income             | 2005          | 24      |
| Taylor, 2011            | Southern Africa         | Southern Africa            | Upper middle income     | 2005          | 8       |
| Fofana, 2023            | Mali and Benin          | Western and Central Africa | /                       | 2019          | 31.2    |
| Hunt, 2019              | Southern Africa         | Southern Africa            | Upper middle income     | 2012          | 1.2     |
| Parker, 2003            | United States           | North America              | High income             | 1998          | 3       |
| Parker, 2003            | United States           | North America              | High income             | 1998          | 3       |
| Karchava, 2006          | United States           | North America              | High income             | 2001          | 6       |
| Frange, 2018            | France                  | Europe                     | High income             | 2012          | 26      |
| Ngo-Giang-              | Europe and Thailand     | Asia                       | /                       | 2003          | 79.2    |
| Huong, 2016             |                         |                            | · ·                     | 2010          | 100     |
| Tadesse, 2019           | Ethiopia                | Eastern Africa             | Low income              | 2018          | 108     |
| Jordan, 2022            | Namibia                 | Southern Africa            | Upper middle income     | 2016          | 18      |
| Soeria-Atmadja,<br>2020 | Ugandan                 | Eastern Africa             | Low income              | 2015          | 74.4    |
| Aulicino. 2019          | Argentina               | South America              | Upper middle income     | 2010          | 2.3     |
|                         | <b>U</b>                |                            | r r                     |               |         |

| Abidi, 2021                      | Pakistan                                                                                                   | Asia                       | Lower middle income | 2019 | 36   |
|----------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|------|------|
| Kovacs, 2005                     | United States                                                                                              | North America              | High income         | /    | 2.6  |
| Delaugerre, 2009                 | France                                                                                                     | Europe                     | High income         | 2001 | 0.97 |
| Ikomey, 2017                     | Cameroon                                                                                                   | Western and Central Africa | Lower middle income | 2015 | 30   |
| de Andrade, 2017                 | Brazil                                                                                                     | South America              | Upper middle income | 2013 | 44.4 |
| Kuhn, 2015                       | Southern Africa                                                                                            | Southern Africa            | Upper middle income | 2011 | 4.43 |
| Kuhn, 2015                       | Southern Africa                                                                                            | Southern Africa            | Upper middle income | 2011 | 24   |
| Fokam, 2011                      | Cameroon                                                                                                   | Western and Central Africa | Lower middle income | 2010 | 72   |
| Han, 2009                        | China                                                                                                      | Asia                       | Upper middle income | 2006 | 6    |
| Eshleman, 2001                   | Uganda                                                                                                     | Eastern Africa             | Low income          | 2000 | 1.63 |
| Martinson, 2007                  | Southern Africa                                                                                            | Southern Africa            | Upper middle income | 2002 | 6    |
| Vaz, 2012                        | Mozambique                                                                                                 | Southern Africa            | Low income          | 2008 | 25.2 |
| Olusola, 2021                    | Nigeria                                                                                                    | Western and Central Africa | Lower middle income | 2016 | 76.8 |
| Guimarães, 2015                  | Brazil                                                                                                     | South America              | Upper middle income | 2013 | 108  |
| Masquelier, 2001                 | France                                                                                                     | Europe                     | High income         | 1995 | 6    |
| Jordan, 2017                     | 5 sub-Saharan African<br>countries (Mozambique,<br>Swaziland, Southern<br>Africa, Uganda, and<br>Zimbabwe) | Southern Africa            |                     | 2012 | 4    |
| Jordan, 2017                     | Mozambique                                                                                                 | Southern Africa            | Low income          | 2012 | 4    |
| Jordan, 2017                     | Swaziland                                                                                                  | Southern Africa            | Lower middle income | 2012 | 4    |
| Jordan, 2017                     | Uganda                                                                                                     | Eastern Africa             | Low income          | 2012 | 4    |
| Jordan, 2017                     | Zimbabwe                                                                                                   | Southern Africa            | Lower middle income | 2012 | 4    |
| Yeganeh, 2018                    | Southern Africa, Brazil,<br>Argentina                                                                      | South America              | Upper middle income | 2008 | 3    |
| Neogi, 2012                      | India                                                                                                      | Asia                       | Lower middle income | 2009 | 96   |
| de Azevedo, 2022                 | Brazil                                                                                                     | South America              | Upper middle income | 2004 | 6    |
| de Azevedo, 2022                 | Brazil                                                                                                     | South America              | Upper middle income | 2010 | 12   |
| Rogo, 2015                       | United States                                                                                              | North America              | High income         | 2001 | 180  |
| Chalermchockchar<br>oenkit, 2009 | Thailand                                                                                                   | Asia                       | Upper middle income | 2002 | 1    |
| Phung, 2015                      | Vietnam                                                                                                    | Asia                       | Lower middle income | 2010 | 50   |
| Antunes, 2015                    | Mozambique                                                                                                 | Southern Africa            | Low income          | 2011 | 7    |
| Almeida, 2009                    | Brazil                                                                                                     | South America              | Upper middle income | 2002 | 21.5 |
| Fogel, 2013                      | Southern Africa, Tanzania,                                                                                 | Southern Africa            | /                   | 2012 | 18   |
|                                  | Uganda, and Zimbabwe                                                                                       |                            |                     |      | -    |
| Chaix, 2007                      | Coîte d'Ivoire                                                                                             | Western and Central Africa | Lower middle income | 2006 | 3    |
| Jarchi, 2019                     | Iran                                                                                                       | Asia                       | Lower middle income | 2017 | 144  |
| Green,2006                       | Italy,Brazil,UK,Spain,Ger                                                                                  | Europe                     | /                   | 2001 | 114  |
| Boender, 2016                    |                                                                                                            | Factorn Africa             | Low income          | 2010 | 64.8 |
| ,                                | Uganda                                                                                                     | Lastern Annea              | Low meene           | 2010 | 01.0 |
| Towler, 2010                     | Uganda                                                                                                     | Eastern Africa             | Low income          | 2005 | /    |

| Coetzer, 2013    | Cambodia                   | Asia                         | Lower middle income | 2007 | 96    |
|------------------|----------------------------|------------------------------|---------------------|------|-------|
| Rossouw, 2015    | Southern Africa            | Southern Africa              | Upper middle income | 2010 | 56.3  |
| Chaix, 2005      | Côte d'Ivoire              | Western and Central Africa   | Lower middle income | 2002 | 76.2  |
| Machado, 2004    | Brazil                     | South America                | Upper middle income | 2000 | 7.6   |
| Rodríguez-Galet, | Equatorial Guinea          | Western and Central Africa   | Upper middle income | 2020 | 6     |
| 2023             |                            |                              |                     |      |       |
| Rubio-Garrido,   | the Democratic Republic of | Western and Central Africa   | Low income          | 2017 | 48    |
| 2021             | Congo<br>Southarn Ethionia | Eastorn Africa               | Lowincomo           | 2016 | 144   |
| Massara Kninda   | the Control African        | Wastern and Cantral A fries  |                     | 2010 | 144   |
| 2017             | Republic                   | western and Central Africa   | Low income          | 2015 | 144   |
| Kebe, 2013       | Senegalese                 | Western and Central Africa   | Lower middle income | 2010 | 84    |
| Crowell, 2017    | Mali                       | Western and Central Africa   | Low income          | 2012 | 31.2  |
| Stoddart, 2014   | Southern African           | Southern Africa              | Upper middle income | 2011 | 96    |
| Aboulker 2004    | France Spain Germany       | Europe                       | /                   | 2000 | 2.5   |
| 100000000, 2000  | Italy, UK                  | Larop                        | ,                   | 2000 | 2.0   |
| Puthanakit, 2010 | Thailand                   | Asia                         | Upper middle income | 2005 | 109.2 |
| Nyandiko, 2022   | Kenya                      | Asia                         | Lower middle income | 2011 | 96    |
| Taylor, 2011     | Southern Africa.           | Southern Africa              | Upper middle income | 2005 | 7.3   |
| Fofana, 2023     | Mali and Benin             | Western and Central Africa   | /                   | 2019 | 120   |
| Contreras, 2013  | United States              | North America                | High income         | 2003 | 75.6  |
| Delaugerre, 2007 | France                     | Europe                       | High income         | 2002 | 144   |
| Agwu, 2014       | United States, Puerto Rico | North America                | /                   | 2006 | 121.2 |
| Inzaule, 2016    | Kenya                      | Eastern Africa               | Lower middle income | 2006 | 6     |
| Kityo, 2017      | Ugnda                      | Eastern Africa               | Low income          | 2010 | 58.8  |
| Soeria-Atmadja,  | Ugandan                    | Eastern Africa               | Low income          | 2015 | 74.4  |
| 2020             |                            |                              |                     |      |       |
| Jittamala, 2009  | Thailand                   | Asia                         | Upper middle income | 2004 | 85.2  |
| Abidi, 2021      | Pakistan                   | Asia                         | Lower middle income | 2019 | 36    |
| Chohan, 2015     | Kenya                      | Eastern Africa               | Lower middle income | 2008 | 45.6  |
| Shet, 2013       | India                      | Asia                         | Lower middle income | 2009 | 120   |
| Theodore, 2011   | Ugandan                    | Eastern Africa               | Low income          | 2010 | 64.8  |
| Yan, 2022        | China                      | Asia                         | Upper middle income | 2020 | 84    |
| Zhao, 2011       | China                      | Asia                         | Upper middle income | 2007 | 166.8 |
| Bratholm, 2010   | Tanzanian                  | Eastern Africa               | Lower middle income | 2009 | 60    |
| Gupta, 2010      | Zambian                    | Southern Africa              | Lower middle income | 2004 | 94.8  |
| Beghin, 2020     | Southern African           | Southern Africa              | Upper middle income | 2008 | 8.6   |
| Beghin, 2020     | Southern African           | Southern Africa              | Upper middle income | 2008 | 54    |
| Ventosa-Cubillo, | Panama                     | South America                | High income         | 2018 | 144   |
| 2023             |                            |                              |                     |      |       |
| Muri, 2017       | Tanzania                   | Eastern Africa               | Lower middle income | 2016 | 132   |
| Vaz, 2018        | Mozambique                 | Southern Africa              | Low income          | 2013 | 103   |
| Makadzange, 2015 | Zimbabwe                   | Southern Africa              | Lower middle income | 2012 | 136.8 |
| Yendewa, 2021    | Sierra Leone               | Western and Central Africa   | Low income          | 2019 | 108   |
| Brice, 2020      | Mali                       | Western and Central Africa   | Low income          | 2013 | 118.8 |
| Vaz, 2009        | Mozambique                 | Southern Africa              | Low income          | 2005 | 49    |
| Sylla, 2019      | Mali                       | Western and Central Africa 5 | Low income          | 2013 | 150   |

| Vaz, 2012               | Mozambique                      | Southern Africa                 | Low income          | 2008 | 25.2  |
|-------------------------|---------------------------------|---------------------------------|---------------------|------|-------|
| Brindeiro, 2002         | Brazil                          | South America                   | Upper middle income | 1999 | 68.28 |
| Adje-Toure, 2008        | Côte d'Ivoire                   | Western and Central Africa      | Lower middle income | 2001 | 84    |
| Tagnouokam              | Cameroon                        | Western and Central Africa      | Lower middle income | 2009 | 4.2   |
| Ngoupo, 2021            |                                 |                                 |                     |      |       |
| Amani-Bossé,            | Burkina Faso, Côte d'           | Western and Central Africa      | /                   | 2012 | 13.9  |
| 2017                    | Ivoire                          | Destana Africa                  | T                   | 2006 | (1.9  |
| Anoua, 2011             | Uganda                          | Eastern Africa                  | Low income          | 2006 | 64.8  |
| Ahoua, 2011             | Uganda                          | Eastern Africa                  | Low income          | 2006 | 66    |
| Mutwa, 2014             | Rwanda                          | Eastern Africa                  | Low income          | 2010 | 129.6 |
| Rogo, 2015              | United States                   | North America                   | High income         | 2001 | /     |
| Mulder, 2011            | Spain                           | Europe                          | High income         | 2001 | 182.4 |
| Fitzgibbon, 2001        | United States                   | North America                   | High income         | 2004 | 94.8  |
| Francesca, 2019         | Switzerland                     | Europe                          | High income         | 1999 | 168   |
| Ross, 2015              | North America, Europe           | North America, Europe, Southern | /                   | 2007 | 108   |
|                         | and Southern Africa             | Africa                          |                     |      |       |
| Ross, 2015              | Southern Africa, Mexico,        | Southern Africa, North America, | /                   | 2007 | 16    |
| 1 1 2007                | Argentina and Portugal          | Europe                          | T                   | 2002 | 00    |
| Lwembe, 2007            | Kenya                           | Eastern Africa                  | Lower middle income | 2003 | 90    |
| Al Hajjar, 2012         | Saudi Arab                      | Asia                            | High income         | 2008 | 84    |
| Makatini, 2019          | Southern Africa                 | Southern Africa                 | Upper middle income | 2014 | 96    |
| Camara-Cissé,           | Côte d'Ivoire                   | Western and Central Africa      | Lower middle income | 2012 | 132   |
| 2021                    | D 1                             |                                 |                     | 2002 | 00.4  |
| Dumans, 2009            | Brazil                          | South America                   | Upper middle income | 2002 | 80.4  |
| Fokam, 2011             | Cameroon                        | Western and Central Africa      | Lower middle income | 2010 | 72    |
| Green, 2012             | Southern Africa                 | Southern Africa                 | Upper middle income | 2009 | 94.8  |
| Pillay, 2014            | Southern Africa                 | Southern Africa                 | Upper middle income | 2012 | 122.4 |
| Hunt, 2023              | Southern Africa                 | Southern Africa                 | Upper middle income | 2018 | 154.8 |
| Fofana, 2018            | Benin                           | Western and Central Africa      | Lower middle income | 2016 | 120   |
| Servais, 2002           | Belgian                         | Europe                          | High income         | 1999 | 114   |
| Ramkissoon, 2015        | Jamaica                         | North America                   | Upper middle income | 2015 | 120   |
| Saravanan, 2017         | India                           | Asia                            | Lower middle income | 2012 | 109.2 |
| Bismara, 2012           | Brazil                          | South America                   | Upper middle income | 2012 | 90    |
| Khanh Thu et            | Vietnam                         | Asia                            | Lower middle income | 2019 | 2     |
| Lehman et               |                                 |                                 |                     |      |       |
| al(2015)                | Kenya, America                  | Africa, North America           | /                   | 2007 | 4.7   |
| Fisher et al(2015)      | Southern Africa                 | Southern Africa                 | Upper middle income | 2008 | 3.4   |
| Ronen et al(2017)       | Kenya                           | Eastern Africa                  | Lower middle income | 2007 | 6     |
| Fokam et al(2018)       | Cameroon                        | Western and Central Africa      | Lower middle income | 2015 | 72    |
| Abuogi et al(2023)      | Kenya                           | Eastern Africa                  | Lower middle income | 2020 | 9     |
| Djiyou et al(2023)      | Cameroon                        | Western and Central Africa      | Lower middle income | 2021 | 192   |
| Khamadi et              |                                 |                                 |                     |      |       |
| al(2023)                | Tanzania                        | Eastern Africa                  | Lower middle income | 2020 | 144   |
| Charpentier et al(2012) | the Central African<br>Republic | Western and Central Africa      | Low income          | 2009 | 96    |
| Bouassa et<br>al(2019)  | the Central African<br>Republic | Western and Central Africa      | Low income          | 2008 | 132   |

| Pang et al(2024)         | China                                               | Asia            | Upper middle income | 2024 |     |
|--------------------------|-----------------------------------------------------|-----------------|---------------------|------|-----|
| Sivay et al(2024)        | Russia                                              | Europe          | Upper middle income | 2020 | 60  |
| Tambuyzer et<br>al(2016) | Thailand, Argentina,<br>United States, South Africa | /               | /                   | 2010 | 144 |
| Lange et al(2015)        | South Africa                                        | Southern Africa | Upper middle income | 2015 | 8   |
| Gopalan et<br>al(2019)   | India                                               | Asia            | Lower middle income | 2014 | 96  |
| Szubert et al(2017)      | Uganda, Zimbabwe                                    | /               | /                   | 2008 | 72  |

#### Table S3A: PICO Summary of included studies for treatment-naive children prevalence analysis

| Study               | Patient/Population                                                                                                                                                 | Intervention                                                                                                                                                                  | Comparison                                                                                                                                                      | Outcome                                                                                                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| J. Lidstrom, 2010   | Infant patients with utero HIV-1 infection                                                                                                                         | 6 weeks of PMTCT drugs : sdNVP+AZT                                                                                                                                            | 6 weeks of PMTCT drugs:<br>sdNVP+AZT+NVP                                                                                                                        | Overall HIV-1 pretreatment drug resistance                                                                                          |
| J. Lidstrom, 2010   | Infants infected with HIV in utero in Malawi, aged 0 to 14 weeks                                                                                                   | 6 weeks of PMTCT drugs : sdNVP+AZT                                                                                                                                            | 6 weeks of PMTCT drugs :<br>sdNVP+AZT+NVP                                                                                                                       | Overall HIV-1 pretreatment drug resistance                                                                                          |
| J. Lidstrom, 2010   | Infants infected with HIV in utero in Malawi, aged 0 to 14 weeks                                                                                                   | 6 weeks of PMTCT drugs: sdNVP+AZT+NVP                                                                                                                                         | 6 weeks of PMTCT drugs sdNVP+AZT                                                                                                                                | Overall HIV-1 pretreatment drug resistance                                                                                          |
| W. I. Towler, 2010  | HIV-infected children in Uganda                                                                                                                                    | sdNVP to prevent MTCT exposure; d4T+3TC+NVP                                                                                                                                   | Children previously exposed to sdNVP<br>compared with those who were not<br>exposed                                                                             | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| J. D. Church, 2008  | Newborn infants in Uganda from 2005 to 2008                                                                                                                        | PMTCT drugs:sdNVP at birth for the infant and the mother<br>in labor, extended NVP prophylaxis up to 6 weeks of age<br>for the infant                                         | Control Group: Infants who received<br>sdNVP only<br>Intervention Group: Infants who received<br>sdNVP plus daily NVP up to 6 weeks of<br>age                   | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| J. Fogel, 2011      | Neonates to 14-week-old infants in Malawi                                                                                                                          | 36 weeks of PMTCT drugs: extended NVP arm for infants.<br>sdNVP+ZDV for 1 week, sdNVP+NVP up to 14 weeks of<br>age, sdNVP+NVP+ZDV up to 14 weeks of age                       | Infants receiving sdNVP +ZDV for 1 week                                                                                                                         | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| R. B. V. Dyke, 2016 | Children and adolescents in the United States with<br>perinatal HIV infection, enrolled in the study between<br>2007 and 2009                                      | NRTI/PI/NNRTI/ EI/FI/ INSTI                                                                                                                                                   | Reference laboratory overall antiretroviral resistance rates                                                                                                    | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| S. N. Kurle, 2007   | Neonates infected with HIV-1 subtype C in India within 48 hours and 2 months of birth                                                                              | neonates exposed to sdNVP for PMTCT of HIV                                                                                                                                    | Neonates infected with HIV-1 subtype C<br>not exposed to SD-NVP (hypothetical<br>control group)                                                                 | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| S. N. Kurle, 2007   | Neonates infected with HIV-1 subtype C in India within 48 hours and 2 months of birth                                                                              | neonates exposed to sdNVP for PMTCT of HIV                                                                                                                                    | Neonates infected with HIV-1 subtype C<br>not exposed to SD-NVP (hypothetical<br>control group)                                                                 | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| M. Vignoles, 2009   | Vertically HIV-1-infected children in Argentina, aged 0 to 17 years, newly diagnosed and initiating their first HAART regimen between December 2004 and July 2006. | Administration of HAART, including various combinations<br>of antiretroviral drugs, with some children receiving<br>maternal/infant ARV prophylaxis: AZT, AZT+sdNVP           | Not explicitly mentioned in the study, but<br>the baseline characteristics of the patients<br>(prior to HAART initiation) can serve as a<br>form of comparison. | Specific mutation resistance prevalence                                                                                             |
| D. M. Gibb, 2003    | Untreated HIV-1 infected children                                                                                                                                  | Administration of different combinations of antiretroviral<br>drugs including ZDV, 3TC, ABC, and NFV. A minority of<br>participants had documented exposure to antiretroviral | Comparison among different antiretroviral regimens                                                                                                              | Different regimens resistance prevalence                                                                                            |

|                      |                                                           | therapy before birth                                       |                                          |                                             |
|----------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------|---------------------------------------------|
| J. A E. Nelson, 2015 | Neonates and infants up to 48 weeks of age living in      | 7days PMTCT drugs: Infant: sdNVP at delivery, a week of    | No additional intervention               | Overall HIV-1 pretreatment drug resistance, |
|                      | Lilongwe, Malawi                                          | AZT/3TC postpartum                                         |                                          | different regimens resistance prevalence    |
| J. A E. Nelson, 2015 | Neonates and infants up to 48 weeks of age living in      | Infant: sdNVP at delivery, a week of AZT/3TC               | No additional intervention               | Overall HIV-1 pretreatment drug resistance, |
|                      | Lilongwe, Malawi                                          | postpartum;                                                |                                          | different regimens resistance prevalence    |
|                      |                                                           | Mother: sdNVP at delivery, a week of AZT/3TC               |                                          |                                             |
|                      |                                                           | postpartum; ART (AZT/3TC/NVP, AZT/3TC/nelfinivir, or       |                                          |                                             |
|                      |                                                           | AZT/3TC/ritonavir-boosted lopinavir) for 28 weeks          |                                          |                                             |
| J. A E. Nelson, 2015 | Neonates and infants up to 48 weeks of age living in      | Infant: sdNVP at delivery, a week of AZT/3TC postpartum;   | No additional intervention               | Overall HIV-1 pretreatment drug resistance, |
|                      | Lilongwe, Malawi                                          | daily NVP prophylaxis for 28 weeks                         |                                          | different regimens resistance prevalence    |
| F. J. Louis, 2019    | Children <18 months old who acquired HIV infection        | Genotyping of HIV-1 to detect drug resistance mutations in | Comparisons could be made to historical  | specific mutation resistance prevalence     |
|                      | through mother-to-child transmission in Haiti during the  | children exposed to ART                                    | data or studies conducted in different   |                                             |
|                      | period of January 1, 2013 to December 31, 2014.           |                                                            | settings.                                |                                             |
| R. S. Boerma, 2016   | Children aged 1 to 12 years from Lagos, Nigeria, who      | Initiation of ART, typically an NNRTI (such as NVP) plus   | No specific control group, but compared  | Overall HIV-1 pretreatment drug resistance  |
|                      | were untreated for HIV and had no prior exposure to       | two NRTIs (such as AZT, and 3TC)                           | treatment outcomes between children with | prevalence                                  |
|                      | PMTCT drugs, recruited between 2012 and 2013 for a        |                                                            | and without pre-treatment HIV drug       |                                             |
|                      | 24-month follow-up study                                  |                                                            | resistance (PDR).                        |                                             |
| S. J. TOWNSEND,      | HIV-1 infected mothers and their infants aged 0 to 15     | Prophylaxis:                                               | the study compared resistance profiles   | Overall HIV-1 pretreatment drug resistance  |
| 2020                 | months in Lusaka, Zambia, from 2015 to 2018               | NVP/Other/None/Missing                                     | between mothers and infants who were on  | prevalence                                  |
|                      |                                                           |                                                            | different ART regimens                   |                                             |
| S. C. Inzaule, 2018  | HIV-infected infants aged up to 18 months from            | PMTCT drugs: Sd-NVP/                                       | HIV-infected infants who were not        | Overall HIV-1 pretreatment drug resistance  |
|                      | Nigeria, with samples collected between June 2014 and     | extended prophylaxis                                       | exposed to PMTCT medication              | prevalence                                  |
|                      | July 2015 across all six geopolitical regions.            |                                                            |                                          |                                             |
| C. S. Crowell, 2017  | HIV-1 infected children less than 10 years of age         | HIV exposure                                               | Baseline NNRTI resistance among          | Overall HIV-1 pretreatment drug resistance  |
|                      | initiating antiretroviral therapy (ART) in Mali.          |                                                            | children receiving NNRTI-based ART       | prevalence                                  |
|                      |                                                           |                                                            | versus those without baseline NNRTI      |                                             |
|                      |                                                           |                                                            | resistance receiving PI-based ART        |                                             |
| M. Salou, 2016       | Children diagnosed with HIV who are less than 18          | Different types of antiretroviral exposure                 | No maternal ART and no neonatal          | Different regimens resistance prevalence    |
|                      | months old in Togo                                        | Infant: no ARV exposure/exposed to both neonatal           | prophylaxis                              |                                             |
|                      |                                                           | prophylaxis and maternal ARV/neonatal prophylaxis.         |                                          |                                             |
|                      |                                                           | Neonatal exposure consisted of NVP,                        |                                          |                                             |
|                      |                                                           | AZT or NVP+AZT.                                            |                                          |                                             |
|                      |                                                           | Mother: short-time prophylaxis: AZT, NVP, AZT/3TC          |                                          |                                             |
|                      |                                                           | ( 3TC); AZT/NVP or AZT/efavirenz cART:                     |                                          |                                             |
|                      |                                                           | AZT/3TC/NVP, AZT/3TC/EFV stavdine/3TC/NVP,                 |                                          |                                             |
|                      |                                                           | TDF/3TC/EFV                                                |                                          |                                             |
| C. Kityo, 2016       | HIV-infected children less than 12 years old recruited at | PMTCT drugs:                                               | Children without prior ART exposure      | Overall HIV-1 pretreatment drug resistance, |

|                       | three clinics in Uganda between January 2010 and             | sdNVP, sdNVP+AZT                                              |                                            | different regimens resistance prevalence,     |
|-----------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|
|                       | August 2011.                                                 |                                                               |                                            | specific mutation resistance prevalence       |
| D. E. Dow, 2017       | HIV-exposed infants aged approximately 3 months in           | Maternal regimen: sdNVP Option A (daily zidovudine            | Infants not exposed to NVP or infants      | Overall HIV-1 pretreatment drug resistance,   |
|                       | Northern Tanzania.                                           | (AZT) as early as 14 weeks of gestation, sdNVP onset of       | whose mothers did not receive any form of  | different regimens resistance prevalence,     |
|                       |                                                              | labor, aAZT+3TC 7 days postpartum)                            | PMTCT intervention                         | specific mutation resistance prevalence       |
|                       |                                                              | Infant regimen: NVP given /NVP not given                      |                                            |                                               |
| G. M. Hunt, 2011      | HIV-positive infants aged 2 years or younger who were        | Mother and Infant: sdNVP                                      | The study did not include a formal control | Overall HIV-1 pretreatment drug resistance,   |
|                       | born in South Africa and had been exposed to single-         |                                                               | group. However, comparisons could be       | specific mutation resistance prevalence       |
|                       | dose nevirapine (sdNVP) before initiating antiretroviral     |                                                               | made indirectly between different age      |                                               |
|                       | therapy (ART). Infants were categorized into different       |                                                               | groups of infants to assess the impact of  |                                               |
|                       | age groups: 0-6 months, 6-12 months, 12-18 months,           |                                                               | sdNVP exposure over time                   |                                               |
|                       | and 18-24 months.                                            |                                                               |                                            |                                               |
| C. Zeh, 2011          | Neonates to 6 months old in Kisumu, Kenya, whose             | Mother: AZT/3TC/ NVP or NFV from 34 weeks gestation           | No direct control group, but a comparison  | Overall HIV-1 pretreatment drug resistance,   |
|                       | HIV-infected mothers received triple antiretroviral          | to 6 months postpartum                                        | between NVP-based and NFV-based            | different regimens resistance prevalence,     |
|                       | prophylaxis from the 34th week of gestation through 6        | Infant: sdNVP at birth, breastfeeding 6 months                | regimens within the intervention group     | specific mutation resistance prevalence       |
|                       | months of breastfeeding.                                     |                                                               |                                            |                                               |
| N. I. Nii-Trebi, 2013 | 101 HIV-1 infected patients (adults ${\geq}15$ years old and | Antiretroviral therapy (ART) with NRTIs (AZT, d4T,            | ART-naive individuals (newly diagnosed     | Overall HIV-1 pretreatment drug resistance,   |
|                       | children) in Koforidua, Eastern Region, Ghana, during        | 3TC), NNRTIs (NVP, EFV), and PIs (NFV)                        | cases without prior ART exposure)          | different regimens resistance prevalence,     |
|                       | February 2009 to January 2010                                |                                                               |                                            | specific mutation resistance prevalence       |
| J. Neubert, 2016      | HIV-1-infected children treated at the University            | Children who received or did not receive ART to prevent       | Comparison with data from other            | Overall HIV-1 pretreatment drug resistance,   |
|                       | Hospital Düsseldorf, Germany, between January 2005           | MTCT, and subsequently started on antiretroviral therapy      | countries, such as Spain and the United    | specific mutation resistance prevalence       |
|                       | and December 2015                                            | including NRTIs, NNRTIs, and PIs                              | States, regarding HIV-1-infected children  |                                               |
| B. S. Taylor, 2011    | HIV-infected children less than two years old in South       | Initiation of ART with RTV or LPV/r                           | Comparison of LPV/r treatment to RTV       | Overall HIV-1 pretreatment drug resistance,   |
|                       | Africa who were exposed to NVP for PMTCT                     |                                                               | treatment                                  | different regimens resistance prevalence,     |
|                       |                                                              |                                                               |                                            | specific mutation resistance prevalence       |
| D. B. Fofana, 2023    | HIV-positive children (ages not specified but typically      | Integrase strand transfer inhibitors (INSTIs) including       | HIV-positive children who have not been    | Different regimens resistance prevalence,     |
|                       | considered 0-18 years) in West Africa (Benin and Mali)       | RAL, EVG, DTG, BIC, and CAB                                   | treated with INSTIs (INSTI-naïve) or have  | specific mutation resistance prevalence       |
|                       |                                                              |                                                               | received other types of antiretroviral     |                                               |
|                       |                                                              |                                                               | therapy (ART).                             |                                               |
| G. M. Hunt, 2019      | Neonates (4-8 weeks old) in South Africa, studied in         | Maternal ART plus infant NVP +/- AZT,                         | Infants with no or unknown PMTCT           | HIV-1 pretreatment drug resistance, different |
|                       | 2010, 2011-2012, and 2012-2013                               | Infant NVP+/-AZT,                                             | exposure compared to infants with known    | regimens resistance prevalence, specific      |
|                       |                                                              | Any other ARV combination,                                    | PMTCT exposure                             | mutation resistance prevalence                |
|                       |                                                              | No/unknown exposure                                           |                                            |                                               |
| M. M. Parker, 2003    | Neonates (infants younger than 60 days of age) born in       | Infants exposed to antiretroviral drugs prenatally (including | Infants without documented prenatal        | Overall HIV-1 pretreatment drug resistance    |
|                       | New York State, USA, in 1998 and 1999                        | AZT, 3TC, NVP, and PIs)                                       | antiretroviral exposure                    |                                               |
| M. M. Parker, 2003    | Neonates (infants younger than 60 days of age) born in       | PMTCT exposure                                                | Infants without documented prenatal        | Overall HIV-1 pretreatment drug resistance    |
|                       | New York State, USA, in 1998 and 1999                        |                                                               | antiretroviral exposure                    |                                               |

| M. Karchava, 2006             | Infants born in New York State and diagnosed as HIV-<br>positive within 24 weeks of age between 2001 and 2002                                                                | Infants exposed to antiretroviral drugs (ARVs), including<br>prenatal, intrapartum, and neonatal (up to 6 weeks<br>postnatal) ARV exposure                                                                                                                                                                                  | Comparison with data from 1998-1999 to assess trends in drug resistance.                                                                            | Overall HIV-1 pretreatment drug resistance                                                                                                        |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| P. Frange, 2018               | Children newly diagnosed with HIV-1 infection in France between 2006 and 2017                                                                                                | Previous exposure to in utero or postnatal antiretroviral<br>prophylaxis,<br>including only NRTI,<br>including NRTI+PI,<br>including NRTI+NNRTI,<br>including NRTI+NNRTI+PI+NI                                                                                                                                              | No prior exposure to antiretroviral prophylaxis for PMTCT                                                                                           | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence                                                           |
| N. Ngo-Giang-Huong,<br>2016   | HIV-infected children under 18 years old who initiated<br>cART between 1998 and 2008 in international multi-<br>center settings, primarily Europe and Africa                 | Initial cART regimens including NNRTIs plus at least two<br>NRTIs or unboosted PIs plus at least two NRTIs, with<br>some children having pre-treatment drug resistance                                                                                                                                                      | Children without PDR or with "PDR and<br>fully active cART" as a control group                                                                      | Different regimens resistance prevalence                                                                                                          |
| B. T. Tadesse, 2019           | Children aged 0 to 18 years diagnosed with HIV infection in Ethiopia during the period of 2017 to 2019                                                                       | Children who have not previously received antiretroviral therapy (cART-naive)                                                                                                                                                                                                                                               | No direct comparator group is specified,<br>but the results can be compared with other<br>studies or data from different regions or<br>time periods | Overall HIV-1 pretreatment drug resistance                                                                                                        |
| M. R. Jordan, 2022            | Infants less than 18 months old, newly diagnosed with HIV and treatment-naive in Namibia in 2016                                                                             | Some infants may have received prophylactic treatment<br>with NVP+AZT for 6 weeks. Neonates (<1 month) were<br>prescribed RAL+AZT+3TC; infants 4 weeks to 2 months<br>of age were given zidovudine (AZT) + lamivudine (3TC)<br>and ritonavir-boosted lopinavir; for infants 3 to 35 months<br>old, ABC could substitute AZT | No direct control group, but comparison<br>can be made with infants who have<br>received ART or with data from other<br>countries                   | Overall HIV-1 pretreatment drug resistance                                                                                                        |
| S. S. Soeria-Atmadja,<br>2020 | ART-naïve children aged 3-12 years living in urban<br>Uganda during the period 2015-2016, some of whom<br>may have been exposed to antiretrovirals through<br>PMTCT programs | Initiation of efavirenz-based ART consisting of two NRTIs and efavirenz                                                                                                                                                                                                                                                     | Comparison of children with baseline PDR versus those without PDR                                                                                   | Overall HIV-1 pretreatment drug resistance                                                                                                        |
| P. C. Aulicino, 2019          | Newborns to 2.3-month-old infants born in Argentina between 2007 and 2014                                                                                                    | Infant prophylaxis: short-course ZDV, ZDV+NVP (+3TC)<br>at birth, zidovudine monotherapy<br>Maternal ART: NNRTI-based cART, PI-based cART 28,<br>Breastfeeding                                                                                                                                                              | Infants who were not exposed to ARVs<br>(ARV-unexposed group)                                                                                       | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence                                                           |
| S. H. Abidi, 2021             | Children aged 0-15 years diagnosed with HIV-1 during<br>the 2019 extensive pediatric HIV-1 outbreak in Larkana,<br>Pakistan                                                  | Antiretroviral therapy (ART) regimens containing NNRTIs<br>(e.g., efavirenz) and NRTIs (e.g., zidovudine)                                                                                                                                                                                                                   | ART-naive individuals (children who have<br>not yet started ART)                                                                                    | Overall HIV-1 pretreatment drug resistance<br>prevalence, specific mutation resistance<br>prevalence                                              |
| A. Kovacs, 2005               | Infants aged ≤120 days                                                                                                                                                       | Administration of didanosine (ddI) following at least 24 hours of zidovudine (ZDV) treatment                                                                                                                                                                                                                                | Comparison between infants receiving ddI<br>+ placebo and infants receiving ddI + ZDV                                                               | Overall HIV-1 pretreatment drug resistance<br>prevalence, different regimens resistance<br>prevalence, specific mutation resistance<br>prevalence |

| C. Delaugerre, 2009   | Neonates born in France between 1997 and 2004 whose      | Mother: AZT+3TC+DDI/NVP/LPV/IDV                         | Comparison of the effects of different    | Overall HIV-1 pretreatment drug resistance, |
|-----------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------------|
|                       | mothers received antiretroviral prophylaxis during       | Infant: AZT+3TC                                         | antiretroviral drug combinations, and     | different regimens resistance prevalence,   |
|                       | pregnancy                                                |                                                         | potentially neonates who did not receive  | specific mutation resistance prevalence     |
|                       |                                                          |                                                         | antiretroviral prophylaxis as an indirect |                                             |
|                       |                                                          |                                                         | comparison                                |                                             |
| G. M. Ikomey, 2017    | Untreated, immunocompetent HIV-1 positive children       | Mother:                                                 | No specific comparison group; baseline    | Overall HIV-1 pretreatment drug resistance, |
|                       | aged 9 months to 6 years in Yaoundé, Cameroon, during    | cART naïve,                                             | data for drug-naïve children              | specific mutation resistance prevalence     |
|                       | 2015-2016                                                | cART exposed during pregnancy                           |                                           |                                             |
|                       |                                                          | Infant: unknown                                         |                                           |                                             |
| S. D. d. Andrade,     | Children aged neonates to adolescents (median age 3.7    | Antiretrovirals received during pregnancy,              | Comparison between children exposed to    | Overall HIV-1 pretreatment drug resistance, |
| 2017                  | years) diagnosed with HIV-1 between 2010 and 2015 in     | Intra-partum prophylaxis with ZDV,                      | PMTCT and those not exposed               | different regimens resistance prevalence,   |
|                       | Manaus, Amazonas State, Brazil, who are antiretroviral-  | Postnatal infant prophylaxis with ZDV                   |                                           | specific mutation resistance prevalence     |
|                       | naive (28.2% exposed to PMTCT)                           |                                                         |                                           |                                             |
| L. Kuhn, 2015         | Newly diagnosed HIV-infected children under 2 years      | Maternal antiretroviral regimen: cART, Zidovudine/      | Without documented antiretroviral         | Overall HIV-1 pretreatment drug resistance, |
|                       | old, recruited in Johannesburg, South Africa             | nevirapine, Zidovudine alone, Nevirapine alone          | exposure                                  | different regimens resistance prevalence,   |
|                       |                                                          | Infant prophylaxis: Nevirapine alone, Zidovudine/       |                                           | specific mutation resistance prevalence     |
|                       |                                                          | nevirapine                                              |                                           |                                             |
| L. Kuhn, 2015         | Newly diagnosed HIV-infected children under 2 years      | Maternal antiretroviral regimen:                        | With documented antiretroviral exposure   | Overall HIV-1 pretreatment drug resistance, |
|                       | old, recruited in Johannesburg, South Africa             | Infant prophylaxis                                      |                                           | different regimens resistance prevalence,   |
|                       |                                                          |                                                         |                                           | specific mutation resistance prevalence     |
| J. Fokam, 2011        | This study involved 92 HIV-1-infected children aged      | The interventions included standard first-line ART      | The study compared drug-naive children    | Overall HIV-1 pretreatment drug resistance, |
|                       | between 3 months and 12 years in Yaoundé, Cameroon       | regimens such as AZT/3TC/NVP and a fixed-dose           | with those experiencing first-line ART    | specific mutation resistance prevalence     |
|                       | (from June 2009 to February 2011), including 41 drug-    | combination of d4T/3TC/NVP                              | failure                                   |                                             |
|                       | naive and 51 first-line antiretroviral treatment-failing |                                                         |                                           |                                             |
|                       | children                                                 |                                                         |                                           |                                             |
| J. Han, 2009          | HIV-1-infected pregnant women in China who are           | sdNVP                                                   | Comparison between sdNVP and ZDV-         | Overall HIV-1 pretreatment drug resistance, |
|                       | ART-naïve                                                | ZDV-sdNVP                                               | sdNVP regimens                            | different regimens resistance prevalence    |
| S. H. Eshleman, 2001  | HIV-1-positive pregnant women and their infants in       | Single-dose nevirapine (NVP) to prevent HIV-1 vertical  | Self-comparison within the same           | Overall HIV-1 pretreatment drug resistance, |
|                       | Uganda                                                   | transmission                                            | intervention group (women and infants     | specific mutation resistance prevalence     |
|                       |                                                          |                                                         | receiving NVP)                            |                                             |
| N. A. Martinson, 2007 | HIV-1 infected infants aged neonates to 12 weeks old in  | Single-dose nevirapine (sd-NVP) administered to mothers | Potentially infants not exposed to sd-NVP | Overall HIV-1 pretreatment drug resistance, |
|                       | South Africa (Soweto and Durban) before 2007             | at the onset of labor and to newborns                   | or infants without detectable resistance  | specific mutation resistance prevalence     |
| P. Vaz, 2012          | HIV-infected children aged 0-15 years initiating ART at  | Standard first-line ART regimens including ZDV+         | Baseline characteristics and ART          | Overall HIV-1 pretreatment drug resistance, |
|                       | the main pediatric ART referral center in Maputo,        | 3TC+NVP, d4T+3TC+NVP, and d4T+3TC+LPV/r                 | outcomes compared to outcomes at 12       | specific mutation resistance prevalence     |
|                       | Mozambique between 2007 and 2008                         |                                                         | months post-initiation                    |                                             |
| F. I. Olusola, 2021   | ART-naïve HIV-infected children less than 15 years old   | Sequencing of the HIV-1 pol gene to identify mutations  | The prevalence of PDR in ART-naïve        | Overall HIV-1 pretreatment drug resistance, |
|                       | residing in Ibadan, Nigeria, around the year 2021        | conferring resistance to NNRTIs and NRTIs in ART-naïve  | children compared to historical data or   | specific mutation resistance prevalence     |

|                                              |                                                                                                                                                                                                            | children                                                                                                                                                                                                                                           | other populations                                                                                                                                                    |                                                                                                                                     |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| P. M. de S.<br>Guimara <sup>~</sup> es, 2015 | Adults and children recently diagnosed with HIV in São<br>Paulo, Brazil, between 2012 and 2014                                                                                                             | Evaluation of transmitted drug resistance (TDR) among<br>antiretroviral therapy-naïve individuals                                                                                                                                                  | No specific comparison group mentioned,<br>but the study compared TDR prevalence<br>against historical data and other studies                                        | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| B. Masquelier, 2001                          | HIV-1 infected neonates born in France                                                                                                                                                                     | Mothers who received zidovudine as part of their antiretroviral therapy regimen during pregnancy                                                                                                                                                   | For comparison purposes, neonates born to<br>mothers who did not receive zidovudine or<br>those who received alternative<br>antiretroviral regimens during pregnancy | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| M. R. Jordan, 2017                           | Children under 18 months old in Sub-Saharan African<br>countries (Mozambique, Swaziland, South Africa,<br>Uganda, and Zimbabwe) diagnosed with HIV through<br>early infant diagnosis between 2011 and 2014 | Maternal and neonatal ARV drug exposure as part of<br>PMTCT programs. Non-nucleoside reverse transcriptase<br>inhibitors (NNRTIs): NVP, EFV, ETR, RPV<br>Nucleoside/nucleotide reverse transcriptase inhibitors<br>(NRTIs/TIs): AZT, d4T, FTC, TDF | Children without documented maternal or<br>neonatal ARV exposure and those with<br>unknown exposure histories                                                        | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| M. R. Jordan, 2017                           | Children under 18 months old in Mozambique<br>diagnosed with HIV through early infant diagnosis<br>between 2011 and 2014                                                                                   | Maternal and neonatal ARV drug exposure as part of<br>PMTCT programs. Non-nucleoside reverse transcriptase<br>inhibitors (NNRTIs): NVP, EFV, ETR, RPV<br>Nucleoside/nucleotide reverse transcriptase inhibitors<br>(NRTIs/TIs): AZT, d4T, FTC, TDF | Children without documented maternal or<br>neonatal ARV exposure and those with<br>unknown exposure histories                                                        | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| M. R. Jordan, 2017                           | Children under 18 months old in Sub-Saharan African<br>countries Swaziland diagnosed with HIV through early<br>infant diagnosis between 2011 and 2014                                                      | Maternal and neonatal ARV drug exposure as part of<br>PMTCT programs. Non-nucleoside reverse transcriptase<br>inhibitors (NNRTIs): NVP, EFV, ETR, RPV<br>Nucleoside/nucleotide reverse transcriptase inhibitors<br>(NRTIs/TIs): AZT, d4T, FTC, TDF | Children without documented maternal or<br>neonatal ARV exposure and those with<br>unknown exposure histories                                                        | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| M. R. Jordan, 2017                           | Children under 18 months old in Sub-Saharan African<br>countries Uganda diagnosed with HIV through early<br>infant diagnosis between 2011 and 2014                                                         | Maternal and neonatal ARV drug exposure as part of<br>PMTCT programs. Non-nucleoside reverse transcriptase<br>inhibitors (NNRTIs): NVP, EFV, ETR, RPV<br>Nucleoside/nucleotide reverse transcriptase inhibitors<br>(NRTIs/TIs): AZT, d4T, FTC, TDF | Children without documented maternal or<br>neonatal ARV exposure and those with<br>unknown exposure histories                                                        | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| M. R. Jordan, 2017                           | Children under 18 months old in Sub-Saharan African<br>countries Zimbabwe diagnosed with HIV through early<br>infant diagnosis between 2011 and 2014                                                       | Maternal and neonatal ARV drug exposure as part of<br>PMTCT programs. Non-nucleoside reverse transcriptase<br>inhibitors (NNRTIs): NVP, EFV, ETR, RPV<br>Nucleoside/nucleotide reverse transcriptase inhibitors<br>(NRTIs/TIs): AZT, d4T, FTC, TDF | Children without documented maternal or<br>neonatal ARV exposure and those with<br>unknown exposure histories                                                        | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| N. Yeganeh, 2018                             | Pregnant women and their newborns in South Africa,<br>Brazil, and Argentina between April 2004 and January<br>2011                                                                                         | group A: AZT 6 weeks<br>group B: AZT 6 weeks + NVP 1 week<br>group C: AZT 6 weeks+NFV+3TC 6 weeks                                                                                                                                                  | Untreated mother-infant pairs and those treated with different ART regimens                                                                                          | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |

|                                        |                                                                                                                                                                                            | Infant prophylaxis medications:<br>ZDV, ZDV+NVP, ZDV+NFV+3TC                                                                                                                                           |                                                                                                                                                               |                                                                                                                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| U. Neogi, 2012                         | Children and adolescents aged 2 to 16 years old,<br>perinatally infected with HIV-1 subtype C, and<br>antiretroviral therapy-naïve, from Bangalore, India,<br>between 2007 and 2011        | Participants were antiretroviral therapy-naïve, with some<br>potentially exposed to nevirapine as part of PMTCT<br>strategies                                                                          | There was no specific control group in this study                                                                                                             | Overall HIV-1 pretreatment drug resistance,<br>specific mutation resistance prevalence                                              |
| S. S. D. d. Azevedo,<br>2022           | Treatment-naïve children and adolescents (neonates to 19 years old) infected with HIV-1 through vertical transmission in the Rio de Janeiro State, Brazil, between 2001 and 2007.          | Maternal antiretroviral therapy for PMTCT, starting with<br>zidovudine monotherapy and later transitioning to<br>combination ART including NRTIs and NNRTIs                                            | Comparative analysis of TDRM prevalence between the time periods 2008 and 2012                                                                                | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| S. S. D. d. Azevedo,<br>2022           | Treatment-naïve children and adolescents (neonates to<br>19 years old) infected with HIV-1 through vertical<br>transmission in the Rio de Janeiro State, Brazil, between<br>2008 and 2012. | Maternal antiretroviral therapy for PMTCT, starting with<br>zidovudine monotherapy and later transitioning to<br>combination ART including NRTIs and NNRTIs                                            | Comparative analysis of TDRM prevalence between the time periods 2001 and 2007                                                                                | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| T. Rogo, 2015                          | HIV-infected children attending the only pediatric HIV<br>clinic in Rhode Island between 1991 and 2012, ranging<br>in age from neonates to adolescents                                     | Antiretroviral therapy (ART), including NNRTIs, NRTIs, and PIs                                                                                                                                         | ART-naïve children serving as a comparison group to ART-experienced children                                                                                  | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| A.<br>Chalermchockcharoen<br>kit, 2009 | HIV-positive pregnant women and their infants in Thailand                                                                                                                                  | Mother: AZT+NVP<br>Infant: sdNVP at birth                                                                                                                                                              | No specific control group mentioned, but<br>the study likely compares the outcomes to<br>historical data or theoretical scenarios<br>without the intervention | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| T. T. B. Phung,<br>2015                | HIV-1 infected children aged 1 month to 12 years (mean<br>age of 50 months) from 21 provinces in Northern<br>Vietnam, recruited between December 2009 and<br>December 2011                 | Genotyping of antiretroviral-naïve children to detect drug<br>resistance mutations without specifying any intervention or<br>drug regimen                                                              | Historical data on drug resistance rates in other populations in Vietnam                                                                                      | Overall HIV-1 pretreatment drug resistance,<br>specific mutation resistance prevalence                                              |
| F. Antunes, 2015                       | 6 to 48-week-old children in Maputo, Mozambique,<br>enrolled between July 2011 and March 2012                                                                                              | Infant:<br>ARV prophylaxis: AZT, sd-NVP + daily NVP<br>Mothers: antepartum daily AZT as early as 14 weeks of<br>gestation, sd-NVP at onset of labor and twice daily AZT +<br>3TC for 7 days postpartum | The study did not include an explicit<br>control group but analyzed various factors<br>related to the development of NVP<br>resistance                        | Overall HIV-1 pretreatment drug resistance,<br>specific mutation resistance prevalence                                              |
| F. J. Almeida, 2009                    | HIV-1-infected children in São Paulo, Brazil, who were<br>born to mothers who were not treated with antiretroviral<br>therapy during pregnancy                                             | Children receiving or not receiving HAART                                                                                                                                                              | Comparison: ARV-naive children versus<br>children failing HAART.<br>Control Group: ARV-naive children<br>(without prior antiretroviral exposure)              | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |

| J. M. Fogel, 2013  | Infants aged 0 to 6 months from South Africa, Tanzania,<br>Uganda, and Zimbabwe who were enrolled in the study<br>between 2010 and 2013.                                        | Mothers received sdNVP and infants received<br>sdNVP+ZDV/3TC for PMTCT<br>Infants received extended nevirapine prophylaxis (daily<br>NVP until 6 weeks of age) followed by NVP or placebo<br>until 6 months of age. | Infants received no additional extended NVP prophylaxis                                                                                                                             | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| M. Chaix, 2007     | Pregnant women aged 15-49 years old, residing in Abidjan, Côte d'Ivoire, who are HIV positive and participated in the ANRS 1201/1202 Ditrame Plus study between 2006 and 2007.  | mother: AZT+NVP at ≥36 weeks<br>infant: AZT+sdNVP 7days                                                                                                                                                             | Comparison between women who received<br>sdNVP alone and those who received<br>sdNVP + ZDV, as well as infants who<br>received sdNVP alone versus those who<br>received sdNVP + ZDV | Overall HIV-1 pretreatment drug resistance,<br>specific mutation resistance prevalence                                              |
| M. Jarchi, 2019    | Children under 12 years old in Iran, diagnosed between June 2014 and January 2019.                                                                                              | Genotypic testing for transmitted drug resistance (TDR) mutations in the pol gene of HIV-1 in treatment-naïve children                                                                                              | Not applicable, as there is no direct comparison group                                                                                                                              | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| H. H. K. Thu, 2024 | HIV-1 infected children under 18 months old from the<br>Central Highlands and Southern regions of Vietnam<br>during the period 2017–2021                                        | mother: two nucleoside reverse transcriptase inhibitors<br>(NRTIs) plus one non-nucleoside reverse transcriptase<br>infant: sdNVP                                                                                   | Infants born to mothers who did not<br>receive any PMTCT intervention or<br>different ART Regimen                                                                                   | Specific mutation resistance prevalence                                                                                             |
| D. A. Lehman, 2012 | Infants exposed to sdNVP                                                                                                                                                        | Infants subsequently treated with NVP-HAART                                                                                                                                                                         | Infants without detectable nevirapine resistance mutations serve as the reference group                                                                                             | Overall HIV-1 pretreatment drug resistance, specific mutation resistance prevalence                                                 |
| R. G. FISHER, 2015 | Infants less than 3 years old in South Africa                                                                                                                                   | Dual AZT and NVP prophylaxis regimen for prevention of HIV mother-to-child transmission (PMTCT)                                                                                                                     | Conventional bulk sequencing versus next-<br>generation sequencing (NGS) using Ion<br>PGM and MiSeq platforms                                                                       | different regimens resistance prevalence, specific mutation resistance prevalence                                                   |
| K. Ronen, 2017     | Neonates to 6-week-old infants in Ethiopia who<br>participated in the study aimed at preventing mother-to-<br>child transmission of HIV between February 2001 and<br>March 2007 | Infants received nevirapine prophylaxis (either sdNVP or ED-NVP) starting from Day 8 of life for up to 6 weeks                                                                                                      | Infants receiving single-dose nevirapine (SD-NVP) served as the comparator group                                                                                                    | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |
| J. Fokam, 2018     | Eighteen HIV-1 vertically infected children, seven of<br>whom were born to mothers who received PMTCT<br>interventions, and eleven born to mothers without<br>PMTCT exposure    | Next-generation sequencing (NGS) for determining HIV-1<br>drug resistance and viral tropism, AZT+3TC+NVP were<br>used in PMTCT-exposed infants                                                                      | Comparative analysis of drug resistance<br>mutations and viral tropism between<br>Sanger sequencing and NGS                                                                         | Overall HIV-1 pretreatment drug resistance,<br>different regimens resistance prevalence,<br>specific mutation resistance prevalence |

Abbreviations, DRMs = drug resistance mutations; ART antiretroviral therapy; cART = combination antiretroviral therapy; NRTIs = nucleoside reverse transcriptase inhibitors; NVP = nevirapine; PI = protease inhibitor; LPV/r = lopinavir/ritonavir; INSTIs = integrase strand transfer inhibitors; d4T = stavudine; 3TC = lamivudine ; DBS = dried blood spots; VF = virological failure; PDR = pretreatment HIV drug resistance; VL = viral load; PMTCT = mother-to-child transmission; RAMs = resistance-associated mutations; ZDV = Zidovudine; NFV = nelfinavir; RTIs = reverse transcriptase inhibitors; TAMs = thymidine analogue mutations; HAART = Highly Active Antiretroviral Therapy.

#### Table S3B: PICO Summary of included studies for treatment-experienced children prevalence analysis

| Study                         | Patient/Population                                                                                                                                                                                                                                                                                                   | Intervention                                                                                                                                                                                                                                                                                                                      | Comparison                                                                                                                                                                                        | Outcome                                                                                                                                                                                        |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hannah<br>Green, 2006         | HIV-1-infected children aged 3 months to 18 years from six countries (Italy, Brazil, UK, Spain, Germany, Portugal) enrolled between June 2000 and July 2003. The majority (97%) acquired HIV through PMTCT. All children had VF with HIV-1 RNA >2,000 copies/ml.                                                     | Children were randomized to receive genotypic resistance<br>testing at the time of switching ART due to VF. Resistance<br>testing was performed using the Virtual Phenotype TM,<br>and results were used to guide subsequent ART regimens.<br>NRTIs:15(17%); NRTIs+NNRTIs:10(11%);<br>NRTIs+Pis:17(20%); NRTIs+NNRTIs+Pis:17(20%) | The control group did not receive<br>resistance testing. Instead, their ART<br>regimens were switched based on clinical<br>judgment without the guidance of<br>genotypic resistance testing.      | Primary outcomes included the change in<br>HIV-1 RNA viral load at 48 and 96 weeks, the<br>proportion of patients with undetectable viral<br>loads, and changes in CD4+ T-cell<br>percentages. |
| T. Sonia<br>Boender,<br>2016  | HIV-1-positive adults and children in Uganda who were on<br>NNRTI-based first-line ART and experienced virological failure<br>between 2010 and 2011.                                                                                                                                                                 | Continuation of first-line NNRTI-based ART with the following regimens: Nevirapine-based ART: $d4T + 3TC +$ NVP or AZT + 3TC + NVP; Efavirenz-based ART: AZT + 3TC + EFV or TDF + FTC + EFV<br>Participants with VL $\geq$ 1000 copies/mL underwent genotypic resistance testing to monitor the accumulation of DRMs.             | Comparison of DRM accumulation rates<br>and predicted drug susceptibility between<br>adults and children, as well as between<br>those on nevirapine-based versus<br>efavirenz-based ART regimens. | Rate of DRM accumulation per year and the decline in susceptibility to NNRTIs and NRTIs following continued virological failure.                                                               |
| W. I. Towler,<br>2010         | HIV-1-infected children in Uganda who received ART as part of<br>a prospective observational study between 2004 and 2006. The<br>study included children with and without prior single-dose<br>nevirapine exposure.                                                                                                  | The children received a cART regimen consisting of d4T, 3TC, and NVP. Children weighing <9 kg received syrup formulations, while those >9 kg received a fixed-dose combination tablet (Triomune).                                                                                                                                 | Comparison between children with prior<br>sdNVP exposure and those without it in<br>terms of the presence and development of<br>DRMs before and after ART initiation.                             | DRM accumulation, virological suppression,<br>NRTI/NNRTI resistance emergence                                                                                                                  |
| Doreen<br>Kamori,<br>2023     | HIV-1-positive children (≤15 years old) and adults in Tanzania,<br>who were not part of PMTCT programs and were enrolled after<br>confirmed virological failure in 2020.                                                                                                                                             | Participants were on ART regimens, including:<br>- Dolutegravir-based regimen: TDF + 3TC + DTG<br>- PI-based regimen: Various combinations including<br>LPV/r, ATV/r with NRTIs like TDF and 3TC.                                                                                                                                 | Comparison of DRM accumulation and<br>resistance profiles between participants on<br>dolutegravir-based regimens and those on<br>PI-based regimens.                                               | Prevalence of HIV DRMs and the patterns of<br>resistance among participants, including the<br>emergence of resistance to dolutegravir and<br>PIs.                                              |
| Mia Coetzer,<br>2013          | HIV-infected Cambodian children under 15 years of age who<br>have been on first-line ART for at least 6 months, monitored at<br>the Angkor Hospital for Children in 2011.                                                                                                                                            | Continuation of first-line ART, primarily consisting of stavudine, lamivudine, and nevirapine, with routine monitoring of viral load and CD4 counts. DRMs were determined using the IAS-USA 2011 list.                                                                                                                            | Children with extensive drug resistance mutations ( $\geq$ 4 mutations) versus those with fewer mutations.                                                                                        | Prevalence and patterns of DRMs, resistance<br>levels, number of mutations, and predicted<br>susceptibility to second-line ART                                                                 |
| Theresa M<br>Rossouw,<br>2015 | HIV-1 infected children in South Africa, primarily under 3 years<br>of age, who initiated PI-based ART and subsequently experienced<br>virological failure between 2008 and 2012. The cohort included<br>children with advanced clinical disease, severe malnutrition, and a<br>high tuberculosis co-infection rate. | PI-based ART, primarily using regimens including LPV/r,<br>with a focus on children who received ritonavir as a single<br>protease inhibitor (RTV-sPI) during co-treatment for TB.<br>Genotypic drug resistance testing was performed after<br>virological failure.                                                               | Children with major PI mutations versus<br>those without, and comparisons of<br>different ART dosing strategies (RTV-sPI,<br>double-dose LPV/r, super-boosted LPV/r).                             | Prevalence of major PI mutations, associated<br>factors such as duration of ART and TB co-<br>treatment, and the projected susceptibility of<br>the virus to various ART drugs.                |

| Marie-Laure<br>Chaix, 2005                       | HIV-1-infected children in Côte d'Ivoire, enrolled in the ANRS 1278 cohort between October 2000 and September 2003. The study involved 115 children with a median age of 6.35 years (range: 1.2–15 years) who received HAART for at least 6 months.   | Administration of HAART, consisting of 2 NRTIs combined with either nelfinavir (70.5%) or efavirenz (29.5%). NRTIs used included ZDV, 3TC, d4T, and ddI. Genotypic resistance tests were performed in cases of virologic failure (defined as viral load $\geq$ 3 log10 copies/mL) after at least 6 months of HAART.                  | Nelfinavir-based versus efavirenz-based<br>regimens, and virologic success versus<br>failure.                                                                                                                       | Frequency of DRMs, resistance to 3TC,<br>NNRTIS, PIs, and overall prevalence of drug-<br>resistant viruses.                                                                                          |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elizabeth S<br>Machado,<br>2004                  | HIV-1-infected children in Brazil, receiving antiretroviral therapy<br>according to Brazilian Ministry of Health guidelines between<br>November 1999 and January 2002. The study included 75<br>children up to 14 years of age.                       | Two groups based on treatment history: 1) Dual therapy<br>group, receiving two NRTIs; 2) Triple therapy group,<br>receiving two NRTIs combined with a PI or a NNRTI.<br>Genotypic resistance tests were performed on plasma<br>samples, targeting reverse transcriptase and protease genes.                                          | ual therapy versus triple therapy, with<br>further subdivision by prior ARV<br>exposure, and B versus non-B subtypes in<br>terms of DRMs and treatment response.                                                    | Frequency of DRMs, impact on virologic/immunologic responses, cross-resistance, subtype influence on CD4+ recovery, and prior NRTI exposure effects.                                                 |
| Ana<br>Rodríguez-<br>Galet, 2023                 | HIV-infected children (≤12 years old) and adults in Equatorial Guinea, including 57 children/adolescents and 187 adults in 2019-2020.                                                                                                                 | ART regimens used in the study population, primarily focusing on NRTIs (AZT, 3TC, TDF, FTC, D4T, ABC), NNRTIs (EFV, NVP), PIs (LPV/r), and INSTIs (DTG). Monitoring included DRMs and virological failure.                                                                                                                           | ART-naïve versus ART-treated children,<br>and effectiveness of different ART<br>regimens, including resistance to various<br>drug classes.                                                                          | Prevalence of DRMs in both ART-naïve and ART-treated populations, virological failure rates (defined as viral load >1000 copies/mL), and the impact on predicted antiretroviral drug susceptibility. |
| M. Rubio-<br>Garrido,<br>2021                    | HIV-infected children and adolescents in Democratic Republic of<br>Congo, who were receiving ART in 2016. The study included 71<br>participants with a median age of 14 years.                                                                        | Continuation of ART with the following regimens:<br>NRTI-based ART: AZT + 3TC + NVP or TDF + FTC +<br>EFV<br>NNRTI-based ART: EFV + 3TC + AZT or ABC + 3TC +<br>LPV/r<br>Participants with viral load (VL) $\geq$ 1000 copies/mL<br>underwent genotypic resistance testing to monitor the<br>accumulation of DRMs.                   | Comparison of DRMs between different<br>drug classes and across different ART<br>regimens. The study also examined the<br>impact of ART exposure time on the<br>development of DRMs.                                | Prevalence of major DRMs to NRTIs,<br>NNRTIs, PIs, and INSTIs. The study found<br>high levels of resistance, particularly to<br>NNRTIs and NRTIS.                                                    |
| Birkneh<br>Tilahun<br>Tadesse,<br>2018           | HIV-infected children under 18 years of age in Southern Ethiopia,<br>enrolled in the Ethiopia Pediatric HIV Cohort (EPHIC) between<br>2015 and 2017, who were experiencing virologic treatment failure<br>after being on cART for more than 5 months. | Continuation of first-line NNRTI-based ART with the following regimens:<br>- Nevirapine-based ART: $d4T + 3TC + NVP$ or $AZT + 3TC + NVP$<br>- Efavirenz-based ART: $AZT + 3TC + EFV$ or $TDF + FTC + EFV$<br>Participants with VL $\geq 1000$ copies/mL underwent genotypic resistance testing to monitor the accumulation of DRMs. | Comparison of DRMs between different<br>drug classes (NRTIs, NNRTIs) among<br>children failing first-line ART. The study<br>also compared the prevalence and impact<br>of DRMs on second-line treatment<br>options. | Prevalence of DRMs, particularly dual-class<br>resistance (NRTIs and NNRTIs), and the<br>impact on the effectiveness of recommended<br>second-line ART regimens.                                     |
| Christian<br>Diamant<br>Mossoro-<br>Kpinde, 2017 | HIV-1-infected children in the Central African Republic, aged 4–<br>17 years, who had been on ART for at least 6 months in 2013.<br>The study included 220 children, with a median age of 12 years.                                                   | Continuation of WHO-recommended first-line and second-<br>line ART regimens:<br>- First-line ART: AZT + 3TC + NVP, AZT + 3TC + EFV,<br>d4T + 3TC + EFV, d4T + 3TC + LPV/r                                                                                                                                                            | Comparison of DRMs between children on<br>first-line ART versus second-line ART.<br>The study also compared the resistance<br>profiles of viruses to NRTIs, NNRTIs, and                                             | Prevalence of DRMs, particularly resistance to<br>NRTIs, NNRTIs, and PIs. The study observed<br>high levels of virological failure and drug<br>resistance among the children, leading to the         |

|               |                                                                  | - Second-line ART: AZT + 3TC + LPV/r, d4T + 3TC +        | PIs among the children.                     | need for potential third-line regimens.         |
|---------------|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------|
|               |                                                                  | LPV/r                                                    |                                             |                                                 |
|               |                                                                  | Participants with VL $\geq 1000$ copies/mL underwent     |                                             |                                                 |
|               |                                                                  | genotypic resistance testing to monitor DRMs.            |                                             |                                                 |
| Khady Kebe,   | HIV-1-infected children in Senegalese, aged less than 15 years,  | Continuation of WHO-recommended first-line ART           | No direct comparison group mentioned in     | Virological failure rates, prevalence of drug-  |
| 2013          | treated with NRTI and NNRTI based first-line ART for at least 6  | regimens, including:                                     | the provided text, but the study evaluates  | resistant mutations, resistance patterns to     |
|               | months according to WHO recommendations. 125 children were       | - AZT + 3TC + NVP                                        | VF based on the 2010 revised WHO            | NRTIs, NNRTIs, and PIs, multi-class             |
|               | included, with a median age of 7 years.                          | - AZT + 3TC + EFV                                        | criteria (HIV-1 RNA ≥ 3.7 log10             | resistance occurrences                          |
|               |                                                                  | - d4T + 3TC + NVP                                        | copies/ml).                                 |                                                 |
|               |                                                                  | - d4T + 3TC + EFV                                        |                                             |                                                 |
|               |                                                                  | Participants with a viral load ≥3.0 log10 copies/mL      |                                             |                                                 |
|               |                                                                  | underwent genotypic resistance testing to monitor DRMs.  |                                             |                                                 |
| Claudia S.    | HIV-infected children under 10 years of age in Mali in 2010. The | Initiation of ART, with regimens including:              | Comparison of virological failure rates and | Prevalence of baseline NNRTI resistance,        |
| Crowell,      | study included 120 children, with a median age of 2.6 years.     | - NNRTI-based ART: Mainly EFV or NVP combined            | DRMs among children initiated on            | virological failure rates at 6 months, and the  |
| 2017          |                                                                  | with NRTIs such as AZT, 3TC, and ABC.                    | NNRTI-based versus PI-based ART. The        | association between baseline resistance and     |
|               |                                                                  | - PI-based ART: Mainly LPV/r combined with NRTIs.        | study also analyzed the impact of baseline  | treatment outcomes.                             |
|               |                                                                  | Baseline resistance testing was performed, and           | NNRTI resistance on treatment outcomes.     |                                                 |
|               |                                                                  | participants with VL ≥1000 copies/mL at 6 months         |                                             |                                                 |
|               |                                                                  | underwent further genotypic resistance testing.          |                                             |                                                 |
| Cheryl A.     | South African children $< 15$ years old with known treatment     | Continuation of first-line ART regimens:                 | Comparison between children failing         | Cross-resistance to didanosine, effectiveness   |
| Stoddart,     | history, who were exposed to a $d4T+3TC$ (n = 279) or a          | - ABC + 3TC + EFV/NVP/LPV/r                              | ABC-based regimens and those failing        | of didanosine in second-line regimens,          |
| 2014          | ABC+3TC-based regimen $(n = 91)$ in 2012                         | - d4T + 3TC + EFV/NVP/LPV/r                              | d4T-based regimens.                         | recommendation for zidovudine-based second-     |
|               |                                                                  | Second-line ART: Didanosine-based regimen upon           |                                             | line regimens                                   |
|               |                                                                  | virological failure.                                     |                                             |                                                 |
| J-P           | HIV-1-positive children under 12 weeks were eligible if they had | Continuation of HAART with stavudine (d4T) +             | Not applicable (non-randomized, open-       | Safety, efficacy (CD4 count, viral load), drug  |
| Aboulker,     | evidence of definitive HIV-1 infection, they were a part of      | didanosine (ddl) + nelfinavir (NFV). Participants were   | label study).                               | resistance, virological failure, acquisition of |
| 2004          | PMTCT programs and initiated HAART (stavudine, didanosine,       | followed up for 72 weeks with monitoring for CD4 counts, |                                             | resistance mutations, regimen tolerability.     |
|               | nelfinavir) at a median age of 2.5 months in a multicenter study | viral load, and emergence of drug resistance mutations.  |                                             |                                                 |
|               | across France, Spain, Germany, Italy ,UK in 1999.                |                                                          |                                             |                                                 |
| T Puthanakit, | HIV-infected children in Thailand, enrolled in 2002, under 18    | Continuation of NNRTI-based ART with the following       | Different NNRTI-based regimens (NVP         | Prevalence of DRMs, resistance to NRTIs,        |
| 2010          | years old, who failed first-line NNRTI-based ART (nevirapine or  | regimens:                                                | vs. EFV), and their association with        | resistance to NNRTIs, effectiveness of second-  |
|               | efavirenz) and underwent genotypic resistance testing within 12  | - Nevirapine-based ART: d4T + 3TC + NVP or AZT +         | virological failure.                        | line regimens                                   |
|               | months before switching to second-line therapy.                  | 3TC + NVP                                                |                                             |                                                 |
|               |                                                                  | - Efavirenz-based ART: AZT + 3TC + EFV                   |                                             |                                                 |
|               |                                                                  | Participants with VL $\geq 1000$ copies/mL underwent     |                                             |                                                 |
|               |                                                                  | genotypic resistance testing to monitor DRMs.            |                                             |                                                 |

| Winstone     | HIV-1-infected children and adolescents in Western Kenya who       | Continuation of first-line NNRTI-based ART with the         | Different ART regimens and their           | Prevalence of DRMs, particularly resistance to |
|--------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
| Nyandiko,    | were perinatally infected, under 14 years of age or beginning      | following regimens:                                         | association with virological failure and   | NRTIs and NNRTIs, and the impact on            |
| 2022         | NNRTI-based 1st-line ART in 2010. The study included 480           | - ABC + 3TC + EFV/NVP                                       | clinical outcomes, including the impact of | second-line ART outcomes.                      |
|              | participants, with a median age of 8 years.                        | - AZT + 3TC + EFV/NVP                                       | DRMs on second-line ART effectiveness.     |                                                |
|              |                                                                    | - D4T + 3TC + EFV/NVP                                       |                                            |                                                |
|              |                                                                    | Participants with VL >1000 copies/mL underwent              |                                            |                                                |
|              |                                                                    | genotypic resistance testing to monitor DRMs.               |                                            |                                                |
| Barbara S.   | HIV-1-infected children (<24 months of age) and adolescents        | Initiation of PI-based ART, primarily with the following    | LPV/r-based ART versus RTV-based           | Prevalence of DRMs, particularly PI-related    |
| Taylor, 2011 | in Johannesburg and South Africa, either prior to ART start or     | regimens:                                                   | ART, including virological outcomes and    | mutations, and the impact on virological       |
|              | after ART start if they had recently initiated ART, were receiving | - LPV/r-based ART: Used for children over 6 months of       | resistance profiles.                       | suppression.                                   |
|              | a first-line PI-based regimen, and had not had any changes to this | age and those not receiving TB treatment.                   |                                            |                                                |
|              | first-line regimen.                                                | - RTV-based ART: Used for children under 6 months of        |                                            |                                                |
|              |                                                                    | age or those receiving TB treatment.                        |                                            |                                                |
|              |                                                                    | Genotypic resistance testing was conducted for children     |                                            |                                                |
|              |                                                                    | who did not achieve HIV-1 plasma RNA <400 copies/ml         |                                            |                                                |
|              |                                                                    | by 52 weeks.                                                |                                            |                                                |
| Djeneba B.   | HIV-1-infected children aged less than 15 years in West African,   | The ART regimens included:                                  | Comparison of integrase RAMs between       | Prevalence of natural polymorphisms and        |
| Fofana, 2023 | Mali and Benin. The study involved 107 children, with a median     | - NNRTI-based: 3TC + (ZDV or ABC) + NVP or EFV              | ART-naïve and ART-treated children. The    | RAMs associated with integrase inhibitors.     |
|              | age of 10 years for ART-treated children.                          | - NRTI+PI-based: TDF + (3TC or FTC or ABC) + LPV/r          | study also compared the prevalence of      |                                                |
|              |                                                                    | Genotypic sequencing was conducted on DBS collected         | integrase polymorphisms between these      |                                                |
|              |                                                                    | from ART-treated children with virological failure.         | groups.                                    |                                                |
| German A.    | Perinatally HIV-infected children and adolescents who received     | Analysis of the prevalence of resistance-associated         | Children with versus without RAM,          | Prevalence of etravirine among the cohort and  |
| Contreras,   | routine care at UTHealth Houston in the United States in 2009.     | mutations to etravirine (RAM) among children and            | association with previous NNRTI use        | the identification of risk factors associated  |
| 2013         | The study involved 66 patients with a history of ART and           | adolescents. The ART regimens included:                     | (especially nevirapine), and prevalence    | with RAM.                                      |
|              | resistance testing.                                                | - NRTI-based regimens: with history of exposure to          | across different birth cohorts and ethnic  |                                                |
|              |                                                                    | NRTIs.                                                      | groups.                                    |                                                |
|              |                                                                    | - Protease inhibitor-based regimens: with history of        |                                            |                                                |
|              |                                                                    | exposure to PIs.                                            |                                            |                                                |
|              |                                                                    | - NNRTI-based regimens: specifically including              |                                            |                                                |
|              |                                                                    | nevirapine or efavirenz, with some patients exposed to both |                                            |                                                |
|              |                                                                    | drugs.                                                      |                                            |                                                |
|              |                                                                    | The study also evaluated the factors associated with the    |                                            |                                                |
|              |                                                                    | presence of RAM, such as CD4% and history of NNRTI          |                                            |                                                |
|              |                                                                    | use.                                                        |                                            |                                                |

| Constance     | HIV-1-infected children treated with ART who experienced        | Analysis of genotypic resistance profiles following            | Children with versus without resistance to | Prevalence of drug resistance, resistance to   |
|---------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
| Delaugerre.   | virological failure (defined as HIV-1 RNA $> 500$ copies/mL) at | virological failure. This included the detection of resistance | ART drugs and resistance to different      | NRTIs, resistance to NNRTIs, resistance to     |
| 2007          | Necker Hospital. Paris. France in 2007. The population included | mutations to NRTIs. NNRTIs, and PIs. The study focused         | ART classes (NRTIs, NNRTIs, PIs).          | PIs association with viral load association    |
|               | children born between 1983 and 2003 with a median age of 12     | on identifying risk factors associated with resistance         | including factors like age gender and      | with the number of PIs gender differences      |
|               | vears.                                                          | including the number of prior ART drugs, viral load, and       | ART history.                               | triple-class resistance.                       |
|               |                                                                 | demographic factors like gender.                               |                                            | r r r r r r r r r r r r r r r r r r r          |
| Allison L     | HIV-1-infected children and youth enrolled in the LEGACY        | Recycling of NNRTI-based regimens despite documented           | Participants who recycled NNRTIs versus    | Virologic suppression (VL $< 400$ copies/mL)   |
| Agwu, 2014    | cohort across the United States and Puerto Rico in 2005, with   | NNRTI-R. This involved restarting NNRTI therapy after a        | those who did not, focusing on adherence.  | at 24 weeks post-recycling. CD4 count          |
| 5             | documented NNRTI resistance (NNRTI-R). The study included       | median of 402 days from the first detection of NNRTI-R,        | CD4 count, specific NNRTI mutations        | changes, and the development of additional     |
|               | 133 participants with a median age of 10.1 years, predominantly | with a median duration of 370 days on the recycled             | (e.g., K103N), and virologic suppression   | NNRTI-R mutations.                             |
|               | Black, non-Hispanic, and infected perinatally.                  | regimen.                                                       | outcomes.                                  |                                                |
| Seth C.       | HIV-1-infected infants in the Kisumu Breastfeeding Study        | Mother: NFV/ZDV/3TC from 34 weeks of gestation to 6            | Infants with versus without the K65R       | Development of K65R mutation, association      |
| Inzaule, 2016 | (KiBS) in Kenya in 2003, whose mothers were on a triple-        | months post-partum                                             | mutation, focusing on CD4 cell counts,     | with lower baseline CD4 counts, early          |
| ,             | antiretroviral regimen of zidovudine (AZT), lamivudine (3TC),   | children: sdNVP within 72h of birth, then breastfeeding        | timing of DRM emergence, and presence      | emergence of DRMs, multiclass drug             |
|               | and either nevirapine (NVP) or nelfinavir (NFV) during          |                                                                | of multiclass resistance.                  | resistance, disappearance of K65R by 6 to 9    |
|               | breastfeeding. The study involved 24 infants who acquired HIV-1 |                                                                |                                            | months, impact on future NRTI-based ART        |
|               | during the study period.                                        |                                                                |                                            | responses.                                     |
| Cissy Kityo,  | HIV-1-infected children aged ≤12 years in Uganda in 2010,       | The study evaluated the impact of PDR on virological           | Children with and without PDR were         | Association between PDR and increased          |
| 2017          | initiating first-line ART between January 2010 and August 2011. | outcomes. Children initiated on first-line ART, primarily      | compared in terms of VF and the            | likelihood of VF and ADR, prevalence of VF     |
|               | The study enrolled 317 children from three Joint Clinical       | NNRTI-based regimens, with follow-up for 24 months,            | accumulation of additional resistance      | within 24 months, PDR as a strong predictor    |
|               | Research Center (JCRC) Regional Centers of Excellence (RCEs)    | including viral load (VL) monitoring and genotypic             | mutations (ADR).                           | of VF and ADR.                                 |
|               | in Kampala, Mbale, and Fort Portal, Uganda.                     | resistance testing.                                            |                                            |                                                |
| Sandra        | ART-naïve Ugandan children aged 3-12 years, initiating          | The study assessed the prevalence of PDR and its               | Children with and without PDR were         | Baseline PDR prevalence, association with      |
| Soeria-       | efavirenz-based ART between February 2015 and February 2016.    | association with virological outcomes after 24 weeks of        | compared regarding virological             | odds of viremia, accumulation of new DRMs,     |
| Atmadja,      | The study included 99 children from an urban cohort, primarily  | efavirenz-based ART. Baseline and 24-week assessments          | suppression, the development of acquired   | viral suppression rates by week 24.            |
| 2020          | from families living within a 50 km radius of Kampala, Uganda.  | included VL and genotypic drug resistance testing for          | drug resistance, and accumulation of new   |                                                |
|               |                                                                 | NRTI and NNRTI.                                                | drug resistance mutations (DRMs) after 24  |                                                |
|               |                                                                 |                                                                | weeks of treatment.                        |                                                |
| Podjanee      | HIV-1-infected children aged less than 18 years who were        | NNRTI-based antiretroviral therapy, primarily using            | NVP-based regimens (d4T+3TC+NVP)           | Virologic failure rates, comparison of failure |
| Jittamala,    | antiretroviral drug-naive before initiation of NNRTI-based ART  | nevirapine (NVP)-based regimens, with some children            | versus EFV-based regimens                  | risk between NVP-based and EFV-based           |
| 2009          | in 2017, except for exposure to antiretroviral prophylaxis for  | receiving efavirenz (EFV)-based regimens. Clinical,            | (3TC+d4T+AZT).                             | regimens, common resistance mutations          |
|               | mother-to-child transmission. The study involved 202 children   | immunologic, and virologic outcomes were assessed, with        |                                            | identified.                                    |
|               | from Thailand, enrolled from four hospitals between August 2002 | HIV RNA and CD4 monitored every 6 months.                      |                                            |                                                |
|               | and October 2006.                                               |                                                                |                                            |                                                |

| Syed Hani<br>Abidi, 2021<br>Bhavna H.<br>Chohan,<br>2015 | Children aged 0-15 years who were part of an extensive HIV-1<br>outbreak in Pakistan, between April and June 2019. A total of 401<br>blood samples were collected, with 344 samples successfully<br>sequenced for HIV-1 subtype and drug resistance mutation<br>analysis.<br>HIV-1-infected Kenyan infants less than 5 months old who were<br>not previously exposed to NVP for PMTCT in 2007. A total of 22<br>infants initiated on NVP-based ART were followed for 12 | Phylogenetic and drug-resistance analysis of HIV-1<br>sequences, specifically focusing on subtype distribution,<br>transmission clusters, and DRM. Bayesian and maximum-<br>likelihood phylogenetic methods were used to determine<br>subtype distribution, identify clusters, and estimate the time<br>to the most recent common ancestor (tMRCA).<br>Nevirapine-based antiretroviral therapy (NVP-ART) was<br>administered to the infants in a dose-escalation strategy,<br>combined with two NRTIs, either lamivudine and | HIV-1 sequences from the outbreak versus<br>sequences from high-risk groups in<br>Pakistan (PWID and MSM), focusing on<br>phylogenetic relationships and DRMs.<br>Development of NVP resistance in NVP-<br>unexposed infants over 12 months,<br>focusing on resistance association with | Clusters of HIV-1 transmission, presence of<br>drug resistance mutations, common HIV-1<br>strains (CRF02_AG, subtype A1), resistance<br>in RT genes, potential challenges for treatment<br>due to resistant strains<br>NVP resistance development, detection<br>timeline (3 to 6 months), association with<br>higher viral loads, virologic failure, |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | months.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zidovudine (NVP/3TC/AZT) or lamivudine and abacavir (NVP/3TC/ABC).                                                                                                                                                                                                                                                                                                                                                                                                                                                           | virologic failure, viral load, HIV-1 subtype, and adherence.                                                                                                                                                                                                                            | comparison of viral loads in infants with and without NVP resistance.                                                                                                                                                                                                                                                                                |
| Anita Shet,<br>2013                                      | HIV-1-infected children in India less than 16 years old on first-<br>line ART in 2007. A total of 80 children were included, with 68<br>achieving virologic suppression and 12 experiencing virologic<br>failure.                                                                                                                                                                                                                                                       | First-line ART including pediatric fixed-dose combination<br>pills. The ART regimens were based on NRTIs and<br>NNRTIS. 2 NRTI (zidovudine/stavudine + lamivudine) + 1<br>NNRTI (nevirapine or efavirenz)                                                                                                                                                                                                                                                                                                                    | Children on first-line ART with virologic<br>suppression versus those with virologic<br>failure, focusing on associated drug<br>resistance mutations.                                                                                                                                   | Virologic suppression rate, presence of<br>resistance-associated mutations, M184V<br>mutation, thymidine analogue mutations<br>(M41L, T215Y/F/I), NNRTI mutations<br>(K103N/R, Y181C, G190A).                                                                                                                                                        |
| Theodore D,<br>2011                                      | HIV-1-infected Ugandan children (n=120) starting ART in 2010.                                                                                                                                                                                                                                                                                                                                                                                                           | First-line ART, including regimens based on NVP or EFV combined with 3TC and either ZDV) or D4T.NVP/3TC/ZDV 19 (16%), NVP/3TC/D4T 17 (14%), EFV/3TC/ZDV 73 (61%), EFV/3TC/ZDV 7(6%), 4 (3%) children ABC/ZDV/3TC for concurrent anti-tuberculosis therapy, then changed to NVP/ZDV/3TC after 154-237 days of ARV therapy                                                                                                                                                                                                     | Comparison of virologic outcomes in<br>children with early virological failure<br>(EVF) versus those without EVF, and the<br>evolution of ARV resistance mutations<br>over time.                                                                                                        | Extended virologic failure (EVF), persistent<br>viremia, reverse transcriptase mutations<br>(M184V, NNRTI-associated mutations),<br>thymidine analog mutations (TAMs) after 12<br>months of virologic failure.                                                                                                                                       |
| Liting Yan,<br>2022                                      | HIV-1-infected children and adolescents less than 15 years old in<br>China in 2019, receiving long-term antiretroviral therapy (ART)<br>from five different centers, with a median ART duration of 10<br>years.                                                                                                                                                                                                                                                         | Genotypic resistance testing for those identified with<br>virological failure (VF) (viral load (VL) $\geq$ 400 copies/mL)<br>after long-term ART.ZDV + 3TC + NVP/EFV 17 (18.3)<br>TDF + 3TC + EFV 13 (14.0)<br>ZDV + 3TC + LPV/r 21 (22.6)<br>ABC + 3TC + LPV/r 26 (27.9)<br>TDF + 3TC + LPV/r 13 (14.0)<br>ABC + ZDV + 3TC + LPV/r 3 (3.2)                                                                                                                                                                                  | Comparison between participants with<br>DRMs and those without, based on various<br>factors such as age at ART initiation, ART<br>regimen, and HIV subtype.                                                                                                                             | Major DRM presence, NNRTI resistance,<br>NRTI resistance, PI resistance, younger age at<br>ART initiation, subtype B association,<br>NNRTI-based regimen association, continued<br>virologic failure, accumulation of major<br>mutations.                                                                                                            |
| Yan Zhao,<br>2011                                        | HIV-1-infected children from rural China experiencing virologic<br>failure to first-line antiretroviral therapy regimens and who were<br>part of a national pediatric antiretroviral therapy program in 2005.                                                                                                                                                                                                                                                           | Switching to a second-line antiretroviral therapy regimen<br>after experiencing virologic failure on the first-line<br>regimen.Regimen at enrollment of resistance test,<br>AZT/D4T + 3TC + NVP, AZT/D4T + 3TC + EFV,<br>AZT/D4T + ddI + NVP. Second-line regimen, ABC + 3TC<br>+ LPV/r, AZT + 3TC + LPV/r, ABC + 3TC + AZT +                                                                                                                                                                                                | Comparison between the effectiveness of<br>second-line regimens (including boosted<br>protease inhibitors) after switching from<br>failing first-line regimens, focusing on<br>drug resistance profiles before and after<br>the switch.                                                 | Resistance to nevirapine, resistance to<br>efavirenz, undetectable viral loads after<br>switching to second-line therapy, increases in<br>CD4 counts.                                                                                                                                                                                                |

|              |                                                                  | LPV/r                                                       |                                         |                                               |
|--------------|------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
|              |                                                                  |                                                             |                                         |                                               |
|              |                                                                  |                                                             |                                         |                                               |
|              |                                                                  |                                                             |                                         |                                               |
| Clara        | HIV-1-infected children under 15 years who received long-term    | First-line NNRTI-based ART regimen with regular             | Comparison between virologically        | Virological suppression drug resistance       |
| Bratholm,    | antiretroviral treatment at Havdom Lutheran Hospital in rural    | monitoring of virological response and genotypic resistance | suppressed children and those with      | mutations, resistance to NRTIs and NNRTIs     |
| 2010         | Tanzania in 2009.                                                | testing for those with viral load $>200$ copies/mL.         | clinically relevant drug resistance     | ,                                             |
|              |                                                                  | zidovudine/lamivudine/nevirapine 7(36%),                    | mutations after long-term ART.          |                                               |
|              |                                                                  | stavudine/lamivudine/nevirapine 7(36%),                     | -                                       |                                               |
|              |                                                                  | zidovudine/lamivudine/efavirenz 4 (21%),                    |                                         |                                               |
|              |                                                                  | stavudine/lamivudine/efavirenz 1(5%).                       |                                         |                                               |
| Ravindra K.  | HIV-1-infected Zambian children on adult fixed-dose              | Administration of adult fixed-dose combination              | Children with previous ART exposure     | Viral suppression, virologic failure, NNRTI   |
| Gupta, 2010  | combination cART (stavudine, lamivudine, nevirapine) in 2003     | antiretroviral therapy (cART) consisting of                 | versus those without, and children with | resistance, M184V mutations, thymidine        |
|              | with a median age of 8 years.                                    | D4T+3TC+NVP (Triomune30), dosed according to WHO            | different levels of drug resistance.    | analogue mutations (TAM), resistance to       |
|              |                                                                  | guidelines.                                                 |                                         | NNRTI and lamivudine.                         |
| Jean-        | HIV-1-infected South African children under 2 years old in 2014  | Treatment with NRTI + 1 PI regimen                          | NRTI + 1 PL regimens at initiation of   | Virologic suppression rates CD4% increases    |
| Christophe   | This group includes infants and toddlers who were diagnosed      | - Initial cART Regimens: Loninavir/ritonavir + Stavudine    | cART versus subsequent treatments       | and development of drug resistance mutations  |
| Beghin, 2020 | with HIV and initiated on combination antiretroviral therapy     | + Lamivudine Lopinavir/ritonavir + Zidovudine +             | including the impact of switching from  | focusing on the effectiveness and resistance  |
|              | (cART) shortly after diagnosis.                                  | Lamivudine.                                                 | Stavudine or Zidovudine to Abacavir or  | profiles associated with NRTI + 1 PI          |
|              |                                                                  | - Updated Regimens in 2014: Lopinavir/ritonavir +           | Tenofovir on virologic suppression,     | regimens.                                     |
|              |                                                                  | Abacavir + Lamivudine, Lopinavir/ritonavir + Zidovudine     | CD4% recovery, and drug resistance      | -                                             |
|              |                                                                  | + Lamivudine, Lopinavir/ritonavir + Tenofovir +             | development.                            |                                               |
|              |                                                                  | Lamivudine, Efavirenz + Abacavir + Zidovudine, Efavirenz    |                                         |                                               |
|              |                                                                  | + Abacavir + Lamivudine, Efavirenz + Lopinavir/ritonavir    |                                         |                                               |
|              |                                                                  | + Abacavir + Zidovudine.                                    |                                         |                                               |
| Jean-        | HIV-1-infected South African children under 2 years old in 2014. | Treatment with NRTI + NNRTI regimen.                        | Different NRTI + NNRTI regimens at      | Virologic suppression rates, CD4% increases,  |
| Christophe   | This population consists of very young children, including those | - Initial cART Regimens: Lopinavir/ritonavir + Stavudine    | cART initiation, including switches     | and development of drug resistance mutations, |
| Beghin, 2020 | diagnosed at birth or within the first few months of life. The   | + Lamivudine, Efavirenz + Stavudine + Lamivudine,           | between Stavudine and Tenofovir or      | focusing on the effectiveness and resistance  |
|              | children are from diverse backgrounds, receiving treatment in    | Efavirenz + Abacavir + Lamivudine.                          | Zidovudine and Abacavir, focusing on    | profiles associated with NRTI + NNRTI         |
|              | various healthcare facilities across South Africa.               | - Updated Regimens in 2014: Lopinavir/ritonavir +           | virologic response and immune recovery. | regimens.                                     |
|              |                                                                  | Abacavir + Lamivudine, Lopinavir/ritonavir + Zidovudine     | It also compares NNRTI-based regimens   |                                               |
|              |                                                                  | + Lamivudine, Lopinavir/ritonavir + Tenofovir +             | (especially Efavirenz) versus PI-based  |                                               |
|              |                                                                  | Lamivudine, Lopinavir/ritonavir + Abacavir + Zidovudine,    | regimens for maintaining viral          |                                               |
|              |                                                                  | Etavirenz + Abacavir + Lamivudine, Efavirenz + Tenofovir    | suppression, improving CD4 counts, and  |                                               |
|              |                                                                  | + Lamivudine, Efavirenz + Stavudine + Lamivudine.           | minimizing resistance development.      |                                               |

| Judit       | HIV-1-infected children aged less than 18 years in Panama, who    | The ART regimens included: - NNRTI-based: 3TC + (ZDV          | Integrase RAMs and polymorphisms                | Prevalence of natural polymorphisms and       |
|-------------|-------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| Ventosa-    | were part of a the mother-to-child transmission of HIVprogram.    | or ABC) + NVP or EFV - NRTI+PI-based: TDF + (3TC or           | between ART-naïve and ART-treated               | RAMs associated with integrase inhibitors.    |
| Cubillo,    | The study involved 107 children, with a median age of 10 years    | FTC or ABC) + LPV/r. Genotypic sequencing was                 | children.                                       |                                               |
| 2023        | for ART-treated children.                                         | conducted on DBS collected from ART-treated children          |                                                 |                                               |
|             |                                                                   | with virological failure.                                     |                                                 |                                               |
| Lukas Muri, | HIV-1-infected children and adolescents aged 18 years or less,    | The ART regimens included NNRTI-based and PI-based            | Comparison of virologic failure and             | Virologic failure, prevalence of HIV-DRM,     |
| 2017        | from rural Tanzania, attending the paediatric HIV Clinic of       | treatments. Initial regimens consisted mostly of ZDV/3TC      | acquisition of DRMs between children on         | multiclass resistances.                       |
|             | Ifakara in 2016. The study involved 213 children on ART for at    | with NNRTI (54.9%) or d4T/3TC with NVP (39%). 15%             | NNRTI-based and PI-based ART                    |                                               |
|             | least 12 months. The median age was 11 years, and the median      | of the children were on a PI-based regimen at the time of     | regimens.                                       |                                               |
|             | time on ART was 4.45 years. Some children had prior ART           | investigation.                                                |                                                 |                                               |
|             | exposure, excluding PMTCT.                                        |                                                               |                                                 |                                               |
| Paula Vaz,  | HIV-1-infected children aged 1 to 14 years on ART for ${\geq}12$  | Children were treated with first-line ART regimens,           | Children with virologic failure (VL $\geq 1000$ | Virologic failure, drug resistance mutations, |
| 2018        | months from Mozambique in 2013. The study involved 715            | primarily using fixed-dose combinations containing d4T,       | copies/mL) versus those with suppressed         | compromised efficacy of second-line ART,      |
|             | children, with a mean age of 103 months and a mean time on        | 3TC, and NVP. Viral load testing was performed, and for       | viral loads, including prevalence of drug       | effectiveness of drugs in the regimen.        |
|             | ART of 60 months. Approximately 20.1% had a history of            | those with $\geq 1000$ copies/mL, genotyping was conducted to | resistance mutations and effectiveness of       |                                               |
|             | exposure to the PMTCT of HIV. Children were included if they      | assess drug resistance mutations.                             | standard second-line ART regimens.              |                                               |
|             | had been on ART for at least 12 months.                           |                                                               |                                                 |                                               |
| A.T.        | HIV-1-infected children and adolescents aged 0-19 years in        | The intervention primarily involved first-line ART            | Different age groups (children vs.              | Virologic failure, drug resistance mutations, |
| Makadzange, | Zimbabwe in 2012, enrolled between 2004 and 2011. The             | regimens, with a significant proportion of the participants   | adolescents) in terms of virologic and          | compromised efficacy of second-line ART,      |
| 2015        | participants were part of a public ART program at Parirenyatwa    | on a Nevirapine-based regimen (82.6%). Zidovudine and         | immunologic outcomes, impact of age at          | effectiveness of drugs in the regimen.        |
|             | Hospital Family Care Center (PHFCC), Harare. The median age       | Stavudine were also commonly used in the NRTI                 | ART initiation and duration of ART on           |                                               |
|             | at ART initiation was 8 years. The study included children with a | backbone. Protease inhibitors were used for infants and in    | virologic failure, and outcomes based on        |                                               |
|             | history of advanced clinical disease (WHO stages 3 and 4), with   | cases of treatment failure, with all children and adolescents | Nevirapine versus other ART regimens.           |                                               |
|             | many participants having experienced severe immunosuppression.    | on a PI-based regimen receiving Lopinavir/ritonavir. The      |                                                 |                                               |
|             |                                                                   | median time on ART was 2.9 years.                             |                                                 |                                               |
| George A.   | HIV-1-infected children, adolescents, and pregnant women in       | ART regimens included: NRTI + NNRTI-based (TDF +              | Drug resistance mutations across different      | Prevalence of drug resistance mutations to    |
| Yendewa,    | Sierra Leone in 2019. This study involved 96 children (age 2-9    | 3TC + EFV, AZT+ 3TC+ EFV, AZT+ 3TC+ NVP, AZT+                 | age groups and ART regimens, and                | NRTIs, NNRTIs, and PIs.                       |
| 2021        | years, median age 5), 47 adolescents (age 10-18 years, median     | 3TC+ LPV/r ) and NRTI + PI-based (ABC+ $3TC+$ EFV,            | prevalence of RAMs between ART-naïve            |                                               |
|             | age 13), and 54 pregnant women (age >18 years, median age 26).    | ABC+ 3TC+ NVP, ABC+ 3TC+ LPV/r). Genotypic                    | and ART-experienced patients.                   |                                               |
|             | All children and adolescents acquired HIV through mother-to-      | sequencing was conducted on plasma samples collected          |                                                 |                                               |
|             | child transmission, and 72.2% of the pregnant women were ART-     | from ART-experienced patients.                                |                                                 |                                               |
|             | experienced.                                                      |                                                               |                                                 |                                               |
| Josephine   | HIV-1-infected children in Mali, with ages ranging from infancy   | The ART regimens included: 2 NRTIs + 1 NNRTI (most            | Presence of RAMs and defective viral            | HIV-1 resistance in DNA, resistance to NRTIs  |
| Brice, 2020 | to under 20 years old, involved in a cross-sectional study        | commonly, combinations such as Zidovudine +                   | populations between children with               | and NNRTIs.                                   |
|             | conducted from August 2013 to April 2014. The children were       | Lamivudine + Nevirapine, or Abacavir + Lamivudine +           | different ART regimens, including the           |                                               |
|             | part of the Prevention of Mother-to-Child Transmission (PMTCT)    | Efavirenz) and 2 NRTIs + 1 PI (commonly Abacavir +            | genotypic susceptibility score (GSS) for        |                                               |
|             | program and had been on ART for more than 6 months with           | Lamivudine + Lopinavir). Genotypic resistance testing was     | each regimen.                                   |                                               |

|                                   | virological suppression (HIV-1 RNA $\leq$ 50 copies/mL). The median age at the time of inclusion was 9.9 years, and the median duration of ART was 5.5 years.                                                                                                                                                                                                                                                                                                                                        | performed on DNA from dried blood spots (DBS).                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vaz, Paula,<br>2009               | HIV-1-infected children under 15 years old in Mozambique,<br>treated between December 2003 and September 2007. The study<br>involved 512 children who received first-line ART for at least 6<br>months, with a median age of 49 months at treatment initiation.<br>Among them, some had a history of perinatal prophylaxis<br>(PMTCT) and 135 children experienced virological failure (VF)                                                                                                          | The ART regimen included NNRTI-based therapy:<br>Nevirapine combined with 2 NRTIs (Stavudine or<br>Zidovudine and Lamivudine). Genotypic resistance testing<br>was performed on available samples from children with<br>virological failure.                                                                                                                                                      | Presence and pattern of resistance<br>mutations between children with virologic<br>failure (VF) treated for different durations,<br>including extended resistance to drugs not<br>previously administered, and resistance<br>patterns in children with shorter versus | Resistance to Lamivudine and Nevirapine,<br>extended spectrum of resistance, resistance to<br>Abacavir, Tenofovir, and Etravirine.                                                     |
| M. Sylla,<br>2019                 | defined as HIV-1 RNA >50 copies/mL.<br>The study involved HIV-1-infected children less than 18 years of age who were infected with HIV-1 and receiving second-line ART for at least 6 months in Mali, receiving second-line ART. These children were enrolled from November 2013 to August 2014 at Gabriel Touré Hospital in Bamako. All children included in the study were experiencing virological failure (VF), defined as a viral load $\geq$ 1000 copies/mL after 6 months on second-line ART. | The intervention involved sequencing the protease and<br>reverse transcriptase genes from children experiencing VF<br>on second-line ART. The first-line regimens:<br>d4T + 3TC + NVP, AZT + 3TC + NVP. second-line<br>regimens: ABC + 3TC + LPV/r, ddI + ABC + LPV/r                                                                                                                             | longer treatment durations.<br>The study compared the prevalence and<br>patterns of drug resistance mutations in the<br>children, focusing on mutations associated<br>with NRTIs, NNRTIs, and PIs.                                                                    | Resistance to NRTIs, NNRTIs, and PIs,<br>common presence of the M184V mutation,<br>continued activity of LPV/r despite second-<br>line ART failure.                                    |
| P. Vaz, 2012                      | HIV-1-infected children aged ≤13 years in Mozambique, enrolled<br>between 2007 and 2008 at the Pediatric Day Hospital (HDP) in<br>Maputo. This study involved 119 children, with a median age of<br>25.2 months. 50% were aged <18 months, and 13 children had<br>maternal or child PMTCT exposure. All children were in WHO<br>clinical stages III or IV at the time of ART initiation, and 48%<br>were severely immunocompromised.                                                                 | First-line ART regimens included: ZDV or d4T in combination with 3TC and either NVP or EFV. A small number of children (2 of 119) received a boosted PI regimen (Lopinavir/ritonavir + ZDV + 3TC).                                                                                                                                                                                                | Virological outcomes at 12 months after<br>ART initiation, comparing children with<br>HIV drug resistance mutations and viral<br>load suppression (<1000 copies/mL)<br>versus those with virologic failure (VF).                                                      | Viral suppression at 12 months, presence of<br>HIVDR mutations, dual class resistance<br>(NRTI and NNRTI), predictors including<br>maternal ARV exposure for PMTCT, baseline<br>HIVDR. |
| Patricia A.<br>Brindeiro,<br>2002 | HIV-1-infected children aged 2 to 14 years in Brazil (specifically<br>in Rio de Janeiro and São Paulo), from April 1999. All children<br>were vertically infected with HIV. Most children were<br>undergoing highly active antiretroviral treatment with some on<br>dual-nucleoside reverse transcriptase inhibitor therapy. A<br>significant number of children had virological failure. No specific<br>information is provided on whether the children were exposed to<br>PMTCT.                   | The study involved testing genotypic and phenotypic<br>resistance to ARV therapy in children who were failing<br>their treatment. Plasma samples were collected for HIV-1<br>pol gene sequencing and phenotyping. The children were<br>receiving various ARV regimens, including dual-NRTI<br>therapy and HAART, with specific drugs like AZT, 3TC,<br>and various PIs such as ritonavir and NFV. | Genotypic resistance patterns and<br>phenotypic resistance profiles in children<br>infected with different HIV-1 clades (B<br>versus non-B), focusing on resistance<br>mutations and their impact on treatment<br>outcomes.                                           | Primary mutations conferring resistance to<br>ARV drugs, differences in secondary<br>resistance mutations between B and non-B<br>subtypes.                                             |

| Christiane<br>Adjé-Touré,<br>2008           | HIV-1-infected children aged 0–15 years in Côte d'Ivoire,<br>between 1998 and 2003. A total of 134 children were included in<br>the study who had initiated ART and remained on treatment for<br>approximately 1 year. The median age was 7 years, and 25% were<br>less than 4 years old at treatment initiation. PMTCT was not<br>explicitly mentioned.                                                                                             | The study involved ART regimens primarily consisting of<br>two reverse transcriptase inhibitors (ZDV, ddI, d4T, 3TC)<br>combined with either one protease inhibitor (nelfinavir) or<br>one NNRTI (efavirenz).                                                                                                                                                                                                | The study compared the virologic and<br>immunologic responses to ART, as well as<br>the development of drug resistance among<br>children receiving these regimens.                                                                                                  | Changes in viral load, CD4 T cell percentage, incidence of drug resistance.                                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paul Alain<br>Tagnouokam<br>-Ngoup,<br>2021 | HIV-1-infected children under 15 years old in Cameroon,<br>enrolled in the ANRS 12225-PEDIACAM cohort study between<br>November 2007 and October 2011. The cohort included 210<br>children born to HIV-infected mothers, with 155 included in the<br>final analysis. The median age at cART initiation was 4.2 months.<br>Approximately 61.3% received PMTCT prophylaxis at birth, and<br>47.1% were born to mothers who received PMTCT prophylaxis. | The study primarily focused on the administration of cART<br>with regimens including AZT/3TC/LVP/r,<br>3TC/D4T/LVP/r, AZT/3TC/NVP, and 3TC/D4T/NVP.<br>Follow-up included regular viral load measurements and<br>drug resistance testing for five years.                                                                                                                                                     | Comparison was made between different<br>ART regimens (e.g., LPV/r-containing<br>regimens vs. NVP-containing regimens)<br>and their effectiveness in preventing VF<br>and drug resistance.                                                                          | Occurrence of virological failure, presence of<br>drug resistance mutations, duration between<br>cART initiation and VF.                                           |
| Clarisse<br>Amani-<br>Bosse, 2017           | HIV-1-infected children under the age of 2 years, residing in Côte<br>d'Ivoire and Burkina Faso in 2010. These children were ART-<br>naive except for PMTCT exposure. The study cohort consisted of<br>156 children, with a median age of 13.9 months at ART initiation,<br>and included children who had experienced virological failure.                                                                                                           | History of antiretroviral drug exposure, n (%) : Prenatal<br>maternal ART 19 (12.2)<br>PMTCT and postnatal maternal ART 11 (7.1) .<br>PMTCT only 50 (32.1)<br>Postnatal maternal ART only 18 (11.5)<br>No previous exposure to any PMTCT or maternal ART 58<br>(37.2).<br>First-line NRTI backbone, n (%)<br>ZDV-3TC 142 (91.0)<br>ABC-3TC 14 (9.0).                                                         | Outcomes based on variables such as<br>access to tap water, main caregiver<br>(mother vs. father), and socio-economic<br>factors, and the difference in virological<br>suppression rates between children with<br>versus without prior PMTCT exposure.              | Development of antiretroviral resistance<br>mutations among those with virological<br>failure, identification of risk factors for<br>virological failure.          |
| Laurence<br>Ahoua, 2011                     | The study involved HIV-1-infected children aged less than 15 years from rural Uganda. The children were part of a cohort initiated on ART between 2005 and 2006. The majority of the children were 5 years old at the start of the therapy, and most had advanced stages of the disease (clinical stage 3 or 4). Some children had previously been exposed to PMTCT interventions, including single-dose nevirapine.                                 | The intervention included initiating cART regimens. The majority of children were on a regimen that included NNRTI-based therapy, primarily using NVP with a combination of 3TC and either AZT or d4T. Adjustments were made based on clinical responses, and some children switched to PI-based regimens due to drug resistance or toxicity. ART regimen (%): AZT 3TC NVP 54 (77.1), d4T 3TC NVP 16 (22.9). | Virological and immunological responses<br>between children who maintained viral<br>suppression versus those with virological<br>failure, including a comparison of drug<br>resistance patterns and mutations<br>associated with resistance to NNRTIs and<br>NRTIs. | Virological suppression (HIV RNA < 400<br>copies/mL), immunological response (CD4<br>count and percentage), prevalence of drug<br>resistance mutations.            |
| Laurence<br>Ahoua, 2011                     | The study involved HIV-1-infected children aged less than 15 years from rural Uganda. The children were part of a cohort initiated on ART between 2005 and 2006. Most of the children were 5 years old at the start of the therapy, and most had advanced stages of the disease (clinical stage 3 or 4). Some children had previously been exposed to PMTCT interventions,                                                                           | The intervention included initiating cART regimens. The majority of children were on a regimen that included NNRTI-based therapy, primarily using NVP with a combination of 3TC and either AZT or d4T. Adjustments were made based on clinical responses, and some children switched to PI-based regimens due to drug resistance or                                                                          | Differences in virological and<br>immunological responses between<br>children who maintained viral suppression<br>versus those with virological failure, and<br>drug resistance patterns, including<br>mutations associated with NNRTI and                          | Virological suppression (HIV RNA < 400 copies/mL), immunological response (CD4 count and percentage), prevalence of drug resistance mutations at 12 and 24 months. |

|               | including single-dose nevirapine.                                                 | toxicity. ART regimen (%): AZT 3TC NVP 25 (78.1), d4T 3TC NVP 7 (21.9). | NRTI resistance.                             |                                                |
|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|
|               |                                                                                   |                                                                         |                                              |                                                |
| Philippe R.   | HIV-1-infected children and adolescents aged 1 to 18 years in                     | cART which included either NNRTI-based regimens                         | No direct comparison group. However, the     | Long-term effectiveness of cART, virologic     |
| Mutwa, 2014   | Rwanda in 2009. The study was conducted between September                         | (AZT/3TC/NVP, d4t/3TC/NVP) or PI-based regimens                         | study evaluated outcomes based on            | failure, genotypic drug resistance mutations,  |
|               | 2009 and October 2010. Participants were perinatally infected and                 | (AZT/3TC/EFV, d4T/3TC/EFV) based on Rwandan                             | different cART regimens and factors such     | clinical condition, immunologic criteria.      |
|               | were on combination antiretroviral therapy (cART) for a median                    | national guidelines.                                                    | as CD4 count at cART initiation, regimen     |                                                |
|               | of 3.4 years. Some had prior exposure to PMTCT, including single-dose nevirabine. |                                                                         | changes, and exposure to PMTCT.              |                                                |
| Tanya Rogo,   | The study involved HIV-1-infected children attending the only                     | The study focused on ART regimens given to these                        | The study compared virologic outcomes        | Drug resistance, virologic failure, missed     |
| 2015          | pediatric HIV clinic in USA between 1991 and 2012. The cohort                     | children, which included various combinations of NRTIs,                 | and the development of drug resistance       | appointments and doses.                        |
|               | consisted of 56 children, including ART-naive and ART-                            | NNRTIs, and PIs. ART regimens were individualized, and                  | between different ART regimens, as well      |                                                |
|               | experienced individuals. 64% of the children were perinatally                     | the study investigated the development of DRMs over time.               | as between children with different           |                                                |
|               | infected, with ages at diagnosis ranging from less than 1 year to                 |                                                                         | adherence levels, caregiver support, and     |                                                |
|               | over 5 years. A significant proportion (20%) were refugees, and                   |                                                                         | disclosure of HIV status. It also compared   |                                                |
|               | 73% were Black or Hispanic. The study also included children                      |                                                                         | ART-naive children to ART-experienced        |                                                |
|               | who experienced virologic failure (57% of ART-experienced                         |                                                                         | children regarding the prevalence of         |                                                |
|               | children).                                                                        |                                                                         | DRMs.                                        |                                                |
| Miguel de     | HIV-1-infected children under 18 months, primarily from Spain,                    | The study involved the administration of ART, including                 | Comparison of drug resistance mutations      | Drug resistance mutations, transmitted DRMs    |
| Mulder, 2011  | with data collected between 1993 and 2009. The majority were                      | regimens based on NNRTIs, NRTIs, and PIs. The                           | between ART-naive and ART-experienced        | in ART-naive children, resistance mutations in |
|               | perinatally infected, with a high percentage presenting moderate                  | resistance analysis was conducted on specimens collected                | children, as well as between children        | ART-experienced children                       |
|               | to severe AIDS symptoms. Of these, 85% were receiving ART at                      | from plasma, PBMCs, and DNA, with sequences analyzed                    | infected with different HIV-1 subtypes (B    |                                                |
|               | the time of sample collection. A subset was infected through                      | for drug resistance mutations. Treatment regimens varied,               | and non-B variants). The study also          |                                                |
|               | PMTC1, with about 96% being perinatally infected. Among the                       | and some children were treated with multiple regimens                   | compared the prevalence of drug              |                                                |
|               | The schort included both APT paive and APT experienced                            | over time.                                                              | resistance in children on various ART        |                                                |
|               | children with 61.6% having received four or more different ART                    |                                                                         | regimens.                                    |                                                |
|               | regimens during their follow-up                                                   |                                                                         |                                              |                                                |
| Joseph        | HIV-1-infected children, primarily from the Pediatric AIDS                        | Nelfinavir-containing regimens combined with various                    | No direct comparison group was indicated     | Virological response, emergence of drug        |
| E.Fitzgibbon, | Program at Robert Wood Johnson Medical School, New                                | RTIs, including AZT, 3TC, d4T,ddI, and NNRTIs like                      | in this study; however, the study did assess | resistance mutations in protease and reverse   |
| 2001          | Brunswick, NJ, USA. The study included 17 children with a mean                    | NVP and DLV. The specific drugs used in combination                     | the emergence of drug resistance             | transcriptase genes, resistance mutations      |
|               | age of 7.9 years (ranging from 1 to 17 years). All children were                  | with nelfinavir varied among the participants. Current                  | mutations following the initiation of        | including D30N, L90M, and M184V.               |
|               | experienced with reverse transcriptase inhibitors (RTIs) prior to                 | therapy: Nelfinavir.                                                    | nelfinavir therapy.                          |                                                |
|               | the study, and two had previous exposure to PIs. There is no                      |                                                                         |                                              |                                                |
|               | mention of whether the children were involved in a PMTCT                          |                                                                         |                                              |                                                |

|                                | program or had experienced VF prior to the study.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compagno<br>Francesca,<br>2019 | HIV-1-infected children aged under 15 years in Switzerland, part<br>of the Swiss Mother and Child HIV Cohort Study (MoCHIV),<br>born between 1989 and 2009. The study included 22 mother-child<br>pairs, where 95% of mothers were treatment-naïve before<br>pregnancy. The study also accounted for whether ART was<br>administered during pregnancy, with a focus on the rate of VF<br>and DRMs.                                                                              | cART, including various ART regimens provided to the mothers during pregnancy or at delivery, with a focus on assessing the impact of maternal ART on the emergence of drug-resistant mutations in the children. The intervention also included the monitoring and analysis of HIV-1 genotypes and drug resistance profiles in both mothers and children. | The study compared the rate of transmitted<br>drug resistance mutations (HIV-DRM)<br>versus selected drug resistance mutations<br>(HIV-DRM) in the children. It also looked<br>at the effects of ART administration versus<br>no ART during pregnancy on these<br>outcomes. | Prevalence of HIV-DRM and HIV-DRM in<br>the children, with an emphasis on<br>understanding the timing of these mutations'<br>emergence and their impact on virological<br>failure and treatment efficacy.                                                                                         |
| Lisa L. Ross,<br>2015          | HIV-infected children from North America, Europe, and South<br>Africa, enrolled in 2004, aged 2 to 18 years. Majority of children<br>were ART-experienced before the study, with some having prior<br>exposure to PIs.                                                                                                                                                                                                                                                          | ART experience: 3 NRTIs. Children received either<br>unboosted fosamprenavir (FPV) or FPV/ritonavir<br>(FPV/RTV) regimens, with 13 children on FPV and 65 on<br>FPV/RTV.                                                                                                                                                                                  | Not specifically defined; indirect comparison with standard ART regimens in similar populations.                                                                                                                                                                            | The incidence of virologic failure (VF) and treatment-emergent mutations in HIV-1 were observed over 48 weeks.                                                                                                                                                                                    |
| Lisa L. Ross,<br>2015          | HIV-infected children from South Africa, Mexico, Argentina, and<br>Portugal, enrolled in 2003, aged 4 weeks to <2 years. 30% were<br>ART-naïve at study start, and the rest were ART-experienced, but<br>most were PI-naïve.                                                                                                                                                                                                                                                    | All children received FPV/RTV with 2 NRTIs.                                                                                                                                                                                                                                                                                                               | Not specifically defined; indirect comparison with standard ART regimens in similar populations.                                                                                                                                                                            | Treatment-emergent mutations.                                                                                                                                                                                                                                                                     |
| R. Lwembe,<br>2007             | HIV-1-infected children in Kenya and Nairobi, aged 1-7 years,<br>born to HIV-1-infected mothers unable to care for them, studied<br>between 2001 and 2004. All were vertically infected with non-<br>subtype B HIV-1 (subtypes A1, C, D, CRF02_AG) and had no<br>prior ART or blood transfusion exposure. PMTCT history is<br>unclear, but nevirapine for PMTCT was not yet in use in Kenya<br>by 2002. These children experienced virological failure after<br>initiating ART. | VariousARTregimensincludingzidovudine/lamivudine/nevirapine,zidovudine/didanosine/efavirenz,anddidanosine/lamivudine/abacavir.Somechildrenalsoreceived multipleARTregimensover the study period.                                                                                                                                                          | Comparison of ART-naïve children with<br>those who received different ART<br>regimens in terms of the emergence and<br>patterns of RAMs, particularly RTI and<br>NNRTI resistance.                                                                                          | Persistence of vertically transmitted NNRTI-<br>resistance mutations in the absence of drug<br>pressure, the emergence of RTI-resistance<br>mutations during treatment, and differences in<br>the patterns of drug resistance between non-<br>subtype B and subtype B HIV-1-infected<br>children. |
| S. H. Al<br>Hajjar, 2012       | HIV-infected children aged under 15 years, living in Saudi Arabia<br>and Riyadh, enrolled between July 2006 and January 2009. The<br>study focused on those experiencing VF following first-line<br>highly active antiretroviral therapy. The study included children<br>with a median age of 7 years. There was no specific mention of<br>PMTCT. Among the children, 48% experienced persistent viral<br>load >1000 copies/mL.                                                 | The study population received first-line HAART as per the<br>recommended guidelines. The therapy involved various<br>antiretroviral drugs including PIs and RTIs. Genotypic<br>resistance tests were performed on children with virologic<br>failure to optimize subsequent treatment regimens.                                                           | Not explicitly provided in the study, as it<br>was a retrospective analysis focusing on<br>the prevalence and patterns of<br>antiretroviral resistance in the study<br>population.                                                                                          | Drug resistance prevalence, adherence issues,<br>common mutations in protease and reverse<br>transcriptase regions, cross-resistance to<br>NRTIs.                                                                                                                                                 |

| Z. Makatini,<br>2019 | Children perinatally infected with HIV in South Africa, attending<br>Dr George Mukhari Academic Hospital (DGMAH) from 2011 to<br>2017. The schert included 22 shildren with a median are of 3 | Children were managed with a PI-based cART regimen.<br>The most common PI regimen was LPV/r with various NRTI healthones including APC + $2TC$ A $ZT$ + $2TC$ A $ZT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Emergence of drug resistance mutations in<br>children exposed to PI-based regimens | Major PI resistance mutations observed,<br>frequent mutations included V82A, M46I/L,<br>and I54V, loss of PI activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | vears at cART initiation (IOR 1.25-8.6 years) and all were below                                                                                                                              | + ABC and $dAT$ + 3TC. All children had evidence of major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | antiretroviral options (e.g. atazanavir                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 16 years of age at the time of study. Most children were on a                                                                                                                                 | PI resistance mutations after virological failure on first- or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | darunavir) with a focus on resistance                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | folling regimen for a median of 22 months (IOP 6.66 months)                                                                                                                                   | second line regimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | natterns and their impact on treatment                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | and had VE. The study included children exposed to PMTCT                                                                                                                                      | second-nine regimens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | options                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | regimens, specifically single dose PTV and 2TC monotherapy                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | options.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M. Comoro            | HIV 1 infacted abildram in Câte d'Ivaire studied between 2012                                                                                                                                 | The study focused on evaluating registence to PTIs in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Provalance of registence mutations in the                                          | Pasistance to PTIs among HIV 1 infected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cisso 2021           | 2012 The study included 61 abildren all under 18 years of age                                                                                                                                 | abildran undergoing APT. Construit resistance to KTIS in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | reverse transcriptese gene among children                                          | abildron including NPTIs and NNPTIs with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C1556, 2021          | with a madian age of 11 years at virological failure. The shildren                                                                                                                            | performed using the ANPS algorithm to assess resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on APT focusing on NPTIs and NNPTIs                                                | common mutations M184V for NPTIs and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | were from a national schort at the Abidian Integrated Disalinian                                                                                                                              | performed using the ANKS algorithm to assess resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | resistance profiles and specific mutations                                         | V102N/S for NNPTIa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | Passagrah Captra. The majority of children had been on APT for a                                                                                                                              | approximate and the reverse transcription gene. The most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with additional phylogenetic analysis of                                           | K10510/5 101 ININK115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | modian duration of 6 years, with the treatment angoing for at least                                                                                                                           | focus on NPTIs and NNPTIs. Children were treated with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HIV 1 viral subtypes                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 6 months No specific information was provided regarding                                                                                                                                       | some process of NPTIs and NNPTIs such as $ZDV + 2TC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | III v-1 vital subtypes.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | avposure to PMTCT interventions. However, the study achert                                                                                                                                    | $\pm$ EEV ADC $\pm$ 2TC $\pm$ EEV and TDE $\pm$ 2TC $\pm$ EEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | included abildram from the first MTCT provention program. All                                                                                                                                 | + EFV, ABC $+$ STC $+$ EFV, and TDF $+$ STC $+$ EFV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | abildran had experienced VE with viral loads greater than 1000                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | conies/mI                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| А Т                  | HIV 1 infacted abildram and adults in Provil with complex                                                                                                                                     | DI treatment affectiveness in two different HIV 1 subtunes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pate of acquisition of major and minor PL                                          | Differences in the acquisition of resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. I.                | collected between 1008 and 2005. The study involved 24 shildren                                                                                                                               | (P and E1). The treatment regimens included various Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rate of acquisition of major and minor Pi-                                         | principal participal participad p |
| 2000                 | inforted with subtures E1, 00 shildren with subtures P, 141 adults                                                                                                                            | (B and F1). The treatment regimens included various F1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | associated resistance initiations and                                              | mutations between subtypes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2009                 | with subtras D, and 00 adults with subtras E1. Definite wars on                                                                                                                               | such as KTV, IDV, SQV, and LPV, with differences in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | polymorphisms in $Hiv$ -1 subtypes B and E1 analyzing the americanae of specific   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | APT and superiorsed VE after at least 2 months of DI treatment                                                                                                                                | exposure times and resistance mutation acquisition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F1, analyzing the emergence of specific                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | AKT and experienced VF after at least 5 months of PT freatment.                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nutations in freated versus unfreated                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | exposure times                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | patients.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I Fokam              | The study focused on 164 infants (mean age was 72 months in                                                                                                                                   | Diagnostic evaluation of congenital toxonlasmosis using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not explicitly stated as a comparison                                              | Prevalence of drug resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2011                 | both groups (drug paive and those failing first line treatment                                                                                                                                | serological tests (IgM IgA IgG) PCP and attempts to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | group but findings were compared to                                                | revalence of drug resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2011                 | with a range difference (min max: 3 144 months and 12 144                                                                                                                                     | isolate the parasite from various samples (CSE blood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Africa cohorts where systematic prepatal                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | months, respectively) from the Cameroon between 1001 and                                                                                                                                      | urino) 2TC A ZT NVR 51 (26) 2TC DAT NVR 20 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Affica conorts where systematic prenatal                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 2005 These infants were confirmed or suspected of having                                                                                                                                      | $\begin{array}{c} \text{arme}_{J,S} = C  AZI  \text{ivel SI}  (20),  \text{SIC}  D4I  \text{ivel 29}  (13), \\ \text{SIC}  AZT  EEV \\ \text{S}  (A)  \text{SIC}  DAT  EEV \\ \text{A}  (2)  \text{SIC}  AZT  ABC \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | were implemented Differences in clinical                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | congenital toxonlasmosis. None of the mothers received treatment                                                                                                                              | 2 (1) 3TC DAT NVP 2 (1) NVP $ATT$ (3TC or DAT) 2 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | severity were analyzed                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | for Toxonlasma gondii during programacy (PMTCT not applied)                                                                                                                                   | 2(1), 51C D41 IVVI 2(1), IVVF AZI (51C 0I D41) 2(1),<br>2TC (D4T NVD) or (ABC A7T) 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | severity were analyzed.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Most infants did not receive postnatal treatment when their sorum                                                                                                                             | $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | was obtained                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | was obtained.                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| T. N. Green,<br>2012  | HIV-1-infected children aged less than 15 years in South Africa, recruited from King Edward VIII hospital in Durban, KwaZulu-Natal. The study was conducted between August 2008 and January 2010. The study included both HAART-failing children (n=51) and HAART-naive children (n=43). Some HAART-naive children had been exposed to antiretroviral therapy for the PMTCT. The median age of HAART-failing children was 7.9 years, while HAART-naive children had a median age of 0.9 years.                                                                                               | The intervention primarily involved HAART regimens,<br>including two NRTIs plus one NNRTI for most children<br>(80.5% of HAART-failing children). Some children<br>(19.5%) were receiving two NRTIs plus one PI. The<br>median duration of HAART prior to study recruitment was<br>28.6 months.                   | The study compared drug resistance<br>mutations and coreceptor usage between<br>HAART-failing and HAART-naive<br>children. It assessed the prevalence of drug<br>resistance mutations and the usage of<br>CXCR4 (X4) or dual (R5X4)/mixed (R5,<br>X4) (D/M)-tropic viruses in both groups. | Prevalence of drug resistance mutations,<br>presence of TAMs.                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S. Pillay,<br>2014    | The study was conducted on 101 children aged $\leq$ 15 years in rural KwaZulu-Natal, South Africa, who were experiencing VF after being on first-line ART. The study period was between August 2011 and December 2012. The children had been on ART for a median of 3.3 years (IQR 2.5-4.4), and the majority were on an NNRTI-based regimen (73 out of 89 successfully genotyped children). The median age at ART initiation was 7 years (IQR 3.7-9.6), and the median age at genotyping was 10.2 years (IQR 7.7-12.9). There was no specific mention of PMTCT drug exposure in the cohort. | The children were on either an NNRTI-based regimen $(3TC + d4T/ABC + EFV/NVP)$ or a PI-based regimen $(3TC + d4T/ABC + LPV/r)$ at the time of genotyping. The study focused on identifying DRMs associated with these regimens.                                                                                   | The study compared the prevalence and<br>patterns of DRMs in children failing<br>NNRTI-based regimens versus those<br>failing PI-based regimens. Additionally, it<br>looked at the presence of TAMs and other<br>DRMs, including the Q151M complex and<br>major PI mutations.              | Prevalence of NRTI and NNRTI resistance<br>mutations, and presence of major PI resistance<br>mutations.                                                                   |
| G. M. Hunt,<br>2023   | HIV-positive children aged $\leq 19$ years in South Africa, receiving<br>ART from public health facilities, between March 2017 and<br>March 2019. The study included 899 participants from 40<br>facilities across eight provinces. The median age was 12.9 years,<br>and participants had been on ART for a median of 1.0 years.<br>About 37.6% had documented exposure to PMTCT, and all<br>participants had VF with at least one viral load $\geq 1000$ copies/mL.                                                                                                                        | Participants were treated with PI-based regimens (ritonavir-<br>boosted lopinavir or atazanavir), NNRTI-based regimens<br>(primarily efavirenz), or NRTI-based regimens. The<br>intervention included genotypic resistance testing using<br>next-generation sequencing technologies.                              | The study compared the prevalence of<br>drug resistance among children on<br>different ART regimens (PI-based,<br>NNRTI-based, NRTI-based) with<br>virological failure.                                                                                                                    | Prevalence of HIV drug resistance, resistance<br>to NNRTIS, NRTIS, and PIS, dual-class<br>resistance, efficacy of PI-based regimens in<br>NNRTI-failing patients.         |
| D. B. Fofana,<br>2018 | HIV-infected children in Benin, Cotonou, during 2015-2016, with a median age of 10 years (IQR 6–13). 53% were male. These children were on ART for a median of 5 years (IQR 3–7). All participants were experiencing VF defined as two consecutive VL of >1000 copies/mL. No specific mention of PMTCT exposure.                                                                                                                                                                                                                                                                             | Participants were on NNRTI-based or boosted PI-based<br>ART regimens. Resistance testing was conducted on dried<br>blood spots using genotypic methods. NNRTI-based<br>regimens, first-line: 3TC ZDV NVP, 3TC ZDV EFV, 3TC<br>ABC NVP, 3TC ABC EFV, 3TC TDF EFV.<br>PI-based regimens, first-line: 3TC ZDV LPV/r. | Not applicable (the study focused on<br>identifying resistance profiles and<br>treatment outcomes in the population<br>without a direct comparative intervention).                                                                                                                         | Prevalence of DRMs for NRTIs, NNRTIs, and<br>dual-class resistance, resistance to PIs and<br>integrase inhibitors, undetectable ARV<br>concentrations associated with VF. |
| J. Servais,<br>2002   | HIV-1-infected children aged 3 to 16 years in Belgium, enrolled<br>in a multicenter observational study from 1997 to 2000. All<br>children had acquired HIV through PMTCT, with a majority<br>having advanced disease. The study included 21 children, 18 of<br>whom were of African origin. Virological failure was defined as a                                                                                                                                                                                                                                                            | Switching children from a failing PI-based HAART regimen to a second-line regimen. First-line treatments predominantly involved ritonavir (RTV) with two NRTIs. The second-line regimen involved single or dual PI-based therapy, mainly with NFV or ritonavir-saquinavir (RTV-                                   | The study compared the effectiveness of<br>the second-line PI-based therapy after<br>virological failure of the first PI-based<br>regimen. Genotypic and phenotypic<br>resistance testing was used to predict the                                                                          | Virologic response, change in viral load after<br>switching to second-line therapy, presence of<br>resistance mutations, cross-resistance between<br>protease inhibitors. |

|                                 | <1 log10 decrease in viral load compared with pretreatment<br>values. Most children had prior exposure to NRTIs before starting<br>their first PI-based therapy.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SQV), and in some cases, the addition of NVP.                                                                                                                                                                                                                                                                                                                                                                                                                                               | response to the second-line therapy.                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. P.<br>Ramkissoon,<br>2015    | HIV-1-infected pediatric patients in Jamaica, with a median age<br>of 10 years, attending the Kingston Pediatric and Perinatal<br>HIV/AIDS Programme. The study includes 55 children, with 75%<br>on first-line ART (NRTI/NNRTI-based regimen) and 25% on<br>second-line ART (PI-based regimen). All participants have been<br>on ART for at least 24 months, and nearly all (98%) experienced<br>virological failure. PMTCT programs were implemented, with<br>98% of HIV-exposed infants receiving ART.                                                                                                                   | First-line ART: NRTI/NNRTI-based regimen<br>(AZT+3TC+NVP, LPV/r+NRTI). Second-line ART: PI-<br>based regimen (ritonavir-boosted lopinavir). The study<br>investigates drug resistance mutations in these pediatric<br>patients.                                                                                                                                                                                                                                                             | Between the frequency and type of<br>resistance mutations in pediatric patients<br>on first-line vs. second-line ART. The<br>study also compares the mutation patterns<br>in Jamaican pediatric patients with those in<br>the adult population.                                             | Frequency of drug resistance mutations,<br>virological failure, common mutations<br>affecting NRTIs and NNRTIs (M184V,<br>T215Y, K103N, Y181C, G190A), resistance<br>to protease inhibitors in patients on second-<br>line therapy. |
| Shanmugam<br>Saravanan,<br>2017 | HIV-1-infected children aged less than 15 years in India, who<br>have been exposed to ART for at least 24 months. The study<br>involved 55 children, with a median age of 10 years. Most<br>children (75%) were on first-line ART with an NRTI/NNRTI-<br>based regimen (Zidovudine + Lamivudine + Nevirapine). The<br>remaining 25% were on second-line ART with a PI-based<br>regimen (Lopinavir/ritonavir + NRTI backbone). The cohort<br>likely included children who had undergone PMTCT, as indicated<br>by the high prevalence of ART exposure. All but one of the<br>children experienced virological failure (98%). | The primary intervention was ART with either first-line<br>NNRTI-based regimens or second-line PI-based regimens.<br>For the first-line regimen, the most common combination<br>was Zidovudine + Lamivudine + Nevirapine. The second-<br>line regimen typically included Lopinavir/ritonavir with an<br>NRTI backbone. Treatment history: d4T + 3TC + NVP, d4T<br>+ 3TC + EFV, AZT +3TC + NVP, AZT +3TC + EFV, IDV<br>+3TC + NVP, ABC +3TC + NVP, TDF +3TC +<br>EFV/NVP, TDF/3TC/RTV + ATV. | RAMs in reverse transcriptase and<br>protease genes among children on first-<br>line NNRTI-based regimens versus<br>second-line PI-based regimens, focusing<br>on the prevalence and specific mutations<br>conferring drug resistance.                                                      | Prevalence of DRMs associated with ART<br>regimens, frequency of RAMs in reverse<br>transcriptase and protease genes, significant<br>resistance to NRTIs and NNRTIs,<br>compromised efficacy of ART regimens.                       |
| Bismara BA,<br>2012             | The study involved 61 vertically HIV-1-infected children from<br>Brazil, specifically followed at the Immunodeficiency Clinic at<br>the State University of Campinas, São Paulo, Brazil. The children<br>had a median age of 7.5 years, with 60.6% being male. The study<br>was conducted in 2012, and all children had been on HAART for<br>at least 6 months. Most had already experienced VF, with a viral<br>load higher than 10,000 copies/ml.                                                                                                                                                                         | The intervention included ART regimens using a combination of drugs such as zidovudine, lamivudine, and nelfinavir. The study specifically focused on identifying drug-resistance mutations in the HIV-1 polymerase gene, particularly in the protease and reverse transcriptase regions. ZDV, 3TC, DDC, NEF.                                                                                                                                                                               | Prevalence of drug-resistance mutations in<br>the studied HIV-1-infected children and<br>established resistance profiles from other<br>studies. The study also compared the<br>mutation frequencies between different<br>subtypes (B, F, and recombinant forms).                            | Resistance to at least one antiretroviral drug,<br>common mutations in reverse transcriptase<br>gene (M184V, M41L, D67N, T215Y,<br>L210W), common mutations in protease gene<br>(L63P, M36I, L90M).                                 |
| Abuogi L,<br>2023               | HIV-1-infected children aged 1–14 years in Kisumu County,<br>Kenya, enrolled from March 2019 to December 2020. The study<br>included a total of 704 children, with a median age of 9 years<br>(IQR 7, 12). Among the participants, 344 (49%) were female.<br>Some children had exposure to antiretrovirals as part of PMTCT.                                                                                                                                                                                                                                                                                                | Point-of-care viral load testing every three months combined with targeted genotypic drug resistance testing for children with VF (HIV RNA $\geq$ 1000 copies/mL). The intervention included a multidisciplinary committee review of DRT results to offer tailored treatment recommendations.                                                                                                                                                                                               | Standard-of-care management following<br>national guidelines for children with VF.<br>This typically included enhanced<br>adherence counseling and repeat VL<br>testing after three months of confirmed<br>adherence. DRT was less commonly used<br>and required approval by a regional HIV | Detection of major HIV drug resistance<br>mutations, viral suppression, loss to follow-up,<br>mortality, association with history of VF, and<br>duration on ART.                                                                    |

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                 | Technical Working Group, primarily for<br>those failing a PI-containing regimen or<br>with persistent VF.                                                                                                                                                                                                                       |                                                                                                                                                                                     |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Djiyou ABD,<br>2023            | HIV-1-infected adolescents aged 10-19 years in Cameroon, 2021, receiving ART for at least 6 months. The majority of participants (89.7%) were infected perinatally, and they were followed up in an urban hospital setting. Participants were categorized based on their viral load: those with low-level viraemia (VL 200-999 copies/mL) and those with virological failure (VL $\geq$ 1000 copies/mL).                                                                                                                     | ART regimens included TDF-3TC-EFV, ABC-3TC-EFV, TDF-3TC-DTG, TDF-3TC-LPV/r, ABC-3TC-LPV/r, and TDF-3TC-ATV/r.                                                                                                                                                                                                   | Comparison of HIV drug resistance<br>between adolescents with low-level<br>viraemia and those with confirmed VF.                                                                                                                                                                                                                | Presence of HIV drug resistance mutations,<br>resistance to specific drug classes, risk<br>associated with functional monotherapy.                                                  |
| Khamadi SA,<br>2023            | HIV-infected children and adolescents aged 1-19 years, living in<br>the Southern Highland zone of Tanzania. The study includes<br>participants on ART for more than 6 months between 2019 and<br>2021. The median age is 12 years, with 54% female. The study<br>also notes participants receiving ART through PMTCT programs<br>and those experiencing VF.                                                                                                                                                                  | The intervention includes 290 (41.0%) participants were on<br>an ART regimen with an abacavir ABC/3TC backbone, 54<br>(7.6%) were on an AZT/3TC backbone, and 363 (51.3%)<br>were on a TDF/3TC backbone regimen, including 339<br>(93.4%) who were on TDF/3TC/DTG.                                              | Different ART regimens (NNRTI-based,<br>PI-based, and INSTI-based) to evaluate<br>their effectiveness in achieving viral<br>suppression and in managing drug<br>resistance mutations.                                                                                                                                           | Prevalence of viral suppression (VS) (<1000 copies/mL) and the occurrence of HIV drug resistance mutations (HIVDRMs).                                                               |
| C.<br>Charpentier,<br>2012     | HIV-1-infected children from the Central African Republic,<br>studied between April and June 2009. The study involved 242<br>children, with a median age of 8 years (range: 4 months to 18<br>years). Among these children, 165 were receiving ART, including<br>first-line, second-line, and third-line regimens. Most children<br>were infected through PMTCT. The study assessed virological<br>failure and resistance profiles after a median of 18 months on<br>first-line ART and 30 months on second-/third-line ART. | Children were receiving ART regimens based on WHO<br>recommendations. The majority of children were on a first-<br>line regimen, primarily consisting of a combination of d4T,<br>3TC, and NVP. A smaller group of children was on second-<br>line or third-line regimens, including PIs such as LPV or<br>IDV. | Virological failure and the prevalence of<br>drug resistance mutations between<br>children on first-line ART regimens and<br>those on second-/third-line regimens. The<br>study also assessed the difference in<br>resistance patterns to NRTIs and NNRTIs<br>between these groups.                                             | Detection of HIV-1 RNA, virological failure,<br>presence of drug-resistance mutations, major<br>resistance mutations (excluding M184V),<br>resistance mutations to NRTIs or NNRTIS. |
| Mboumba<br>Bouassa RS,<br>2019 | HIV-1-infected children aged 5-19 years (median age 11 years),<br>in Central African Republic (Bangui). Most were born to HIV-<br>infected mothers who failed PMTCT. All participants were in<br>virological failure, defined as viral load > 1000 copies/mL, and<br>were cART-experienced but INSTI-naive (no prior exposure to<br>integrase strand transfer inhibitors).                                                                                                                                                   | Fourteen of them received a combination of ZDV + d4T + NVP, two children received ZDV + 3TC + EFV and one child received a PI-based combination composed of d4T + 3TC + lopinavir boosted by LPV/r.                                                                                                             | The study compared the prevalence of DRMs in the integrase gene among children failing first- and second-line WHO-recommended ART regimens, evaluating the susceptibility of their HIV-1 strains to INSTIs. This was contrasted against the effectiveness of other antiretrovirals in use, particularly NRTIs, NNRTIs, and PIs. | Susceptibility to INSTIs, presence of major<br>resistance mutations (E138K and E138T),<br>potential effectiveness of INSTIs (particularly<br>dolutegravir) in optimized regimens.   |

| Pang X, 2024         | The study involved 491 HIV-1-infected children and adolescents<br>from Guangxi, China, under the age of 18. These individuals were<br>undergoing prolonged ART and experiencing virologic failure.<br>The median treatment duration was 7.4 years, and the study<br>population predominantly contracted HIV through mother-to-<br>child transmission (86.62%). Most participants were on ART<br>regimens containing NNRTIs and NRTIs, with some having                                                                                                                                                                                    | The intervention examined was the continued<br>administration of various ART regimens, primarily<br>involving NNRTIs (Nevirapine) and NRTIs (Lamivudine,<br>Zidovudine). The study focused on understanding the<br>prevalence and patterns of DRMs among this population.                                           | The study compared the emergence of<br>drug resistance mutations between<br>different ART regimens and their<br>effectiveness. It also examined the<br>differences in DRMs based on various<br>factors like gender, HIV subtype<br>(CRF01_AE, CRF08_BC), pretreatment                                            | Prevalence of HIV drug resistance mutations<br>(DRMs), resistance to NNRTIs and NRTIs,<br>key mutations (M184V/I, K103N), associated<br>risk factors (male sex, CRF01_AE subtype,<br>low pretreatment CD4+ T cells, high viral<br>load).                                                                                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sivay MV,            | viral loads (>1000 copies/mL).<br>This study was conducted in four Siberian regions of Russia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The intervention involved ART regimens. For children,                                                                                                                                                                                                                                                               | The study compared DRMs between                                                                                                                                                                                                                                                                                  | Prevalence of HIV drug resistance mutations                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2024                 | (Altai, Krasnoyarsk, Novosibirsk, Omsk) from 2019 to 2021. It<br>involved 815 HIV-infected individuals, including 96 children (0-<br>14 years old) and 719 adults ( $\geq$ 15 years old). The median age of                                                                                                                                                                                                                                                                                                                                                                                                                               | INSTI-based therapy was the most common (51.1%),<br>followed by PI-based (24.9%) and NNRTI-based (20.5%).<br>For adults, NNRTI-based ART was the most common                                                                                                                                                        | different ART regimens and among<br>patients with varying epidemiological<br>characteristics. Factors such as viral load                                                                                                                                                                                         | (DRMs), resistance to NNRTIs and NRTIs,<br>key mutations (M184V/I, K103N), associated<br>factors (male sex, CRF01_AE subtype, low                                                                                                                                                                                                                                                                                                                                          |
|                      | the patients was 37 years. The study population included<br>individuals who had been diagnosed with HIV for a median of 5<br>years. Some of the participants were infected through perinatal<br>transmission (11.9%) while others were through heterosexual<br>contact or persons who inject drugs. All children in the study<br>received ART to PMTCT.                                                                                                                                                                                                                                                                                   | (51.4%), followed by INSTI-based (18.1%) and PI-based (17.5%). ART adherence was assessed using self-reported data. The most common ART regimens included ABC + 3TC + RAL for children and TDF + 3TC + NVP/EFV/ETR for adults.                                                                                      | levels, CD4 cell counts, and region of<br>residence were analyzed to determine their<br>association with the presence of DRMs.                                                                                                                                                                                   | pretreatment CD4+ T cells, high viral load).                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tambuyzer<br>L, 2016 | The study involved HIV-1-infected children and adolescents aged 6 to <18 years who were treatment-experienced. The participants were from multiple countries, including Thailand, Argentina, the USA, and South Africa in 2008. A total of 101 patients (41 children and 60 adolescents) were enrolled, with a median baseline viral load of 3.6 log10 copies/ml for children and 4.0 log10 copies/ml for adolescents. Patients had previously used at least two ARVs, including NRTIs, NNRTIs, and PIs. The study assessed those currently failing virologically (confirmed plasma viral load >500 copies/ml) at the start of the study. | The intervention included the administration of etravirine (5.2 mg/kg twice daily) along with an optimized background regimen consisting of a boosted PI, NRTIs, and optional enfuvirtide and/or raltegravir. Etravirine was chosen based on its resistance profile and previous usage of NNRTIs in the population. | The study compared the presence and<br>emergence of resistance-associated<br>mutations between VFs and responders,<br>focusing on mutations related to etravirine<br>and other NNRTIS. Both population<br>sequencing and deep sequencing were<br>utilized to detect minority variants and<br>emerging mutations. | The study found that 40.6% of the patients<br>experienced virological failure by week 48.<br>The emergence of resistance to etravirine was<br>observed, with specific RAMs, such as<br>Y181C, L100I, and E138A, being detected.<br>The study concluded that etravirine resistance<br>patterns in children and adolescents were<br>similar to those observed in adults, and the<br>presence of minority variants was not<br>consistently associated with treatment failure. |
| Lange CM,<br>2015    | HIV-1-infected children in South Africa, involved in the CHER trial. The study includes children who were infected despite receiving nevirapine prophylaxis for the PMTCT. The children were aged less than 12 weeks at ART initiation. Baseline drug resistance was analyzed, and the children had virological failure while on PI-based ART.                                                                                                                                                                                                                                                                                            | Early ART with a regimen including AZT, 3TC, and LPV/r. ART was initiated within the first 12 weeks of life, and the treatment continued for various periods. Some children also received ritonavir to achieve VL with LPV due to tuberculosis treatment.                                                           | Presence of DRMs detected by single<br>genome sequencing and bulk sequencing.<br>The focus was on identifying multiclass<br>drug resistance, particularly in children<br>with early virological failure after PI-<br>based ART.                                                                                  | Virological failure rate by week 48, emergence<br>of resistance to etravirine, specific resistance-<br>associated mutations (RAMs) (Y181C, L100I,<br>E138A), comparison of etravirine resistance<br>patterns in children/adolescents and adults,<br>association of minority variants with treatment<br>failure.                                                                                                                                                            |

| B. P.          | The study involved HIV-1-infected children aged ≤16 years in         | The intervention involved initiating NNRTI-based ART        | Virological nonresponders and responders. | Prevalence of treatment-relevant DRMs.          |
|----------------|----------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Gopalan,       | Bangalore, India, between January 2012 and March 2016. All           | regimens. Specifically, the children received either        | The study compared the presence and       |                                                 |
| 2019           | children were vertically infected and initiated on NNRTI-based       | Nevirapine or Efavirenz combined with NRTIs such as         | frequency of DRMs in cell-associated      |                                                 |
|                | ART. The study focused on those who had been on continuous           | AZT+3TC, d4T+3TC, or TDF+3TC. The study also                | DNA and cell-free RNA between these       |                                                 |
|                | ART for $\geq 2$ years and had available pre and post ART samples.   | examined the presence of DRMs in cell-associated DNA        | groups. It also compared the predictive   |                                                 |
|                | The population included both virological nonresponders (children     | and cell-free RNA at different time points (baseline, month | value of NGS analysis of cell-associated  |                                                 |
|                | with VL $\geq$ 200 copies/mL at two consecutive time points within 2 | six of ART, and at virological failure) using next-         | DNA at six months of ART with Sanger      |                                                 |
|                | years of ART initiation) and responders (children who maintained     | generation sequencing and Sanger sequencing.                |                                           |                                                 |
|                | VL < 200 copies/mL for two or more years after six months of         | virological failure.                                        |                                           |                                                 |
|                | ART initiation). The analysis also looked at the presence of         |                                                             |                                           |                                                 |
|                | PMTCT exposure, but specific details about PMTCT were not            |                                                             |                                           |                                                 |
|                | highlighted.                                                         |                                                             |                                           |                                                 |
| A. J. Szubert, | HIV-infected children from Uganda and Zimbabwe, aged 3               | The intervention included ART regimens initiated based on   | Comparison was between children           | Long-term virological response, accumulation    |
| 2017           | months to 17 years, recruited between March 2007 and November        | WHO 2006 guidelines. Children were randomized to            | monitored with CD4 counts versus those    | of resistance mutations, effectiveness of ART   |
|                | 2008. The study involved 1,206 children with a median age of 6       | receive either 2NRTIs plus an NNRTI (mainly lamivudine      | without CD4 counts, and between the       | regimens without real-time viral load           |
|                | years at ART initiation. The majority had advanced HIV disease       | and abacavir plus nevirapine or efavirenz) or a 3NRTI       | different ART regimens. The study also    | monitoring, viral load suppression below        |
|                | with a median CD4% of 12%. The study also included children          | regimen as long-term ART. Viral load was not monitored      | compared the virological suppression      | 1,000 copies/mL after 4 years, resistance to    |
|                | born to mothers who may have received PMTCT interventions,           | in real-time, and CD4 counts were monitored in some         | rates, drug resistance patterns, and the  | second-line drugs, importance of confirming     |
|                | though specific details about PMTCT exposure were not                | children. The study focused on evaluating virological       | development of resistance mutations over  | virological failure before switching therapies. |
|                | extensively discussed. Children were followed for a median of 4      | outcomes, drug resistance, and long-term virological        | time among the different monitoring       |                                                 |
|                | years.                                                               | suppression without regular viral load monitoring.          | strategies.                               |                                                 |

Abbreviations, DRMs = drug resistance mutations; ART antiretroviral therapy; cART = combination antiretroviral therapy; NRTIs = nucleoside reverse transcriptase inhibitors; NVP = nevirapine; PI = protease inhibitor; LPV/r = lopinavir/ritonavir; INSTIs = integrase strand transfer inhibitors; d4T = stavudine; 3TC = lamivudine ; DBS = dried blood spots; VF = virological failure; PDR = pretreatment HIV drug resistance; VL = viral load; PMTCT = mother-to-child transmission; RAMs = resistance-associated mutations; ZDV = Zidovudine; NFV = nelfinavir; RTIs = reverse transcriptase inhibitors; TAMs = thymidine analogue mutations; HAART = Highly Active Antiretroviral Therapy.

#### Table S4A: Quality assessment of included DR studies for treatment-naive children prevalence analysis

Q1. Was the study's target population a close representation of the national population in relation to relevant variables?

- Q2. Was some form of random selection used to select the sample, OR was a census undertaken?
- Q3. Was the likelihood of nonresponse bias minimal?
- Q4. Were data collected directly from the subjects (as opposed to a proxy)?
- Q5. Was an acceptable case definition used in the study?
- Q6. Was the study instrument that measured the parameter of interest shown to have validity and reliability?
- Q7. Was the same mode of data collection used for all subjects?
- Q8. Was the length of the shortest prevalence period for the parameter of interest appropriate?
- Q9. Were the numerator(s) and denominator(s) for the parameter of interest appropriate

TOTAL SCORE: Poor (0-3), Fair (4-6), Good (7-9).

Quality assessment of naive children studies

| Study                         | Overall Quality Rating | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
|-------------------------------|------------------------|----|----|----|----|----|----|----|----|----|
| J. Lidstrom, 2010             | Fair                   | N  | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| W. I. Towler, 2010            | Good                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Jessica D. Church, 2008       | Good                   | NR | Y  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Jessica Fogel, 2011           | Fair                   | NR | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Russell B. Van Dyke, 2016     | Good                   | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| SwaraliN Kurle, 2007          | Fair                   | N  | N  | Y  | Y  | Y  | Y  | N  | Y  | N  |
| Moira Vignoles, 2009          | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Diana M Gibb, 2003            | Fair                   | NR | N  | N  | Y  | Y  | NR | Y  | Y  | Y  |
| Julie A E Nelson, 2015        | Fair                   | NR | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Frantz Jean Louis, 2019       | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Ragna S Boerma, 2016          | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Sydney J. TOWNSEND, 2020      | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Seth C. Inzaule, 2018         | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Claudia S. Crowell, 2017      | Fair                   | N  | Y  | N  | Y  | Y  | Y  | N  | Y  | Y  |
| Mounerou Salou, 2016          | Good                   | Y  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Cissy Kityo, 2016             | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Dorothy E. Dow, 2017          | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Gillian M. Hunt, 2011         | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Clement Zeh, 2011             | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Nicholas I. Nii-Trebi, 2013   | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Jennifer Neubert, 2016        | Good                   | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Barbara S. Taylor, 2011       | Fair                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | N  |
| Djeneba B. Fofana, 2023       | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Gillian M. Hunt, 2019         | Good                   | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Monica M Parker, 2003         | Fair                   | N  | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Marine Karchava, 2006         | Fair                   | N  | N  | Y  | Y  | Y  | N  | Y  | Y  | N  |
| Pierre Frange, 2018           | Good                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Nicole Ngo-Giang-Huong, 2016  | Fair                   | NR | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Birkneh Tilahun Tadesse, 2019 | Good                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |

| Michael R Jordan, 2022                         | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Ν  | Y  | Y  |
|------------------------------------------------|------------------------|----|----|----|----|----|----|----|----|----|
| Sandra Soeria-Atmadja, 2020                    | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Paula C. Aulicino, 2019                        | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Syed Hani Abidi, 2021                          | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Andrea Kovacs, 2005                            | Fair                   | N  | N  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| Study                                          | Overall Quality Rating | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
| Constance Delaugerre, 2009                     | Fair                   | Y  | N  | Y  | Y  | Y  | Y  | N  | Y  | N  |
| George Mondinde Ikomey, 2017                   | Good                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Solange Dourado de Andrade, 2017               | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | NR |
| Louise Kuhn, 2015                              | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Joseph Fokam, 2011                             | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| J Han, 2009                                    | Good                   | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Susan H. Eshleman, 2001                        | Fair                   | NR | N  | Y  | Y  | Y  | Y  | N  | Y  | N  |
| Neil A. Martinson, 2007                        | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| P. Vaz, 2012                                   | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Fiyinfoluwa I. Olusola, 2021                   | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Paula Morena de Souza Guimara <sup>~</sup> es, | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| 2015                                           |                        |    |    |    |    |    |    |    |    |    |
| Bernard Masquelier, 2001                       | Fair                   | N  | N  | Y  | Y  | Y  | N  | Y  | Y  | N  |
| Michael R Jordan, 2017                         | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Nava Yeganeh, 2018                             | Fair                   | N  | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Ujjwal Neogi, 2012                             | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Suwellen Sardinha Dias de Azevedo,             | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| 2022                                           |                        |    |    |    |    |    |    |    |    |    |
| Tanya Rogo, 2015                               | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Amphan Chalermchockcharoenkit,                 | Fair                   | N  | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| 2009                                           |                        |    |    |    |    |    |    |    |    |    |
| Thuy Thi Bich Phung, 2015                      | Fair                   | N  | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Francisco Antunes, 2015                        | Fair                   | N  | Y  | N  | Y  | Y  | Y  | N  | Y  | Y  |
| Flávia J. Almeida, 2009                        | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Jessica M. Fogel, 2013                         | Good                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Marie-Laure Chaix, 2007                        | Fair                   | N  | Y  | N  | Y  | Y  | N  | N  | Y  | Y  |
| Maryam Jarchi, 2019                            | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| L. Tambuyzer, 2016                             | Fair                   | N  | N  | N  | Y  | Y  | Y  | N  | Y  | N  |
| D. A. Lehman, 2012                             | Fair                   | N  | NR | N  | Y  | Y  | N  | Y  | Y  | Y  |
| R. G. Fisher, 2015                             | Fair                   | N  | NR | Y  | Y  | Y  | N  | Y  | N  | Y  |
| J. Fokam, 2018                                 | Fair                   | N  | N  | Y  | Y  | N  | N  | N  | Y  | Y  |
| C. M. Lange, 2015                              | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| D. Persaud, 2011                               | Fair                   | Y  | Y  | N  | Y  | Y  | N  | Y  | Y  | N  |

# Table S4B: Quality assessment of included DR studies for treatment-experienced children prevalence analysis

| Study                         | Overall Quality Rating | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
|-------------------------------|------------------------|----|----|----|----|----|----|----|----|----|
| Hannah Green, 2006            | Good                   | Y  | Y  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| T. Sonia Boender, 2016        | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| W. I. Towler, 2010            | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | Ν  |
| Doreen Kamori, 2023           | Good                   | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Mia Coetzer, 2013             | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | N  | Y  | N  |
| Theresa M Rossouw, 2015       | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Marie-Laure Chaix, 2005       | Fair                   | N  | N  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  |
| Elizabeth S Machado, 2004     | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Ana Rodríguez-Galet, 2023     | Good                   | N  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| M. Rubio-Garrido, 2021        | Fair                   | N  | Y  | N  | Y  | Y  | Y  | N  | Y  | Y  |
| Birkneh Tilahun Tadesse, 2018 | Good                   | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Christian Diamant Mossoro-    | Fair                   | N  | Y  | Ν  | Y  | Y  | Y  | Y  | Y  | N  |
| Kpinde, 2017                  |                        |    |    |    |    |    |    |    |    |    |
| Khady Kebe, 2013              | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Claudia S. Crowell, 2017      | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Cheryl A. Stoddart, 2014      | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| J-P Aboulker, 2004            | Fair                   | Y  | N  | Y  | Y  | Y  | N  | Y  | Y  | N  |
| T Puthanakit, 2010            | Good                   | Y  | Y  | N  | Y  | Y  | N  | Y  | Y  | Y  |
| Winstone Nyandiko, 2022       | Fair                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | N  |
| Barbara S. Taylor, 2011       | Fair                   | N  | Ν  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  |
| Djeneba B. Fofana, 2023       | Good                   | NR | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| German A. Contreras, 2013     | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Constance Delaugerre, 2007    | Fair                   | N  | Y  | Y  | Y  | Y  | N  | N  | Y  | N  |
| Allison L. Agwu, 2014         | Good                   | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Seth C. Inzaule, 2016         | Fair                   | NR | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Cissy Kityo, 2017             | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Sandra Soeria-Atmadja, 2020   | Good                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Podjanee Jittamala, 2009      | Fair                   | N  | Y  | N  | Y  | Y  | N  | Y  | Y  | N  |
| Syed Hani Abidi, 2021         | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Bhavna H. Chohan, 2015        | Fair                   | N  | N  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| Anita Shet, 2013              | Good                   | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| Theodore D, 2011              | Fair                   | N  | Ν  | Ν  | Y  | Y  | Y  | N  | Y  | Y  |
| Liting Yan, 2022              | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Yan Zhao, 2011                | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Clara Bratholm, 2010          | Fair                   | N  | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Ravindra K. Gupta, 2010       | Fair                   | N  | Y  | N  | Y  | Y  | Y  | N  | Y  | Y  |
| Jean-Christophe Beghin, 2020  | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Judit Ventosa-Cubillo, 2023   | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Lukas Muri, 2017              | Good                   | N  | Y  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  |
| Paula Vaz, 2018               | Good                   | Y  | Y  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  |
| A.T. Makadzange, 2015         | Fair                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | N  |
| George A. Yendewa, 2021       | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Josephine Brice, 2020         | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| Vaz, Paula, 2009              | Fair                   | N  | Ν  | N  | Y  | Y  | N  | Y  | Y  | Y  |
| M. Sylla, 2019                | Fair                   | N  | Y  | N  | Y  | Y  | Y  | N  | Y  | Y  |
| P. Vaz, 2012                  | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |

| Patricia A. Brindeiro, 2002  | Fair                   | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  | N  |
|------------------------------|------------------------|----|----|----|----|----|----|----|----|----|
| Study                        | Overall Quality Rating | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
| Christiane Adjé-Touré, 2008  | Fair                   | NR | Ν  | N  | Y  | Y  | NR | Y  | Y  | Y  |
| Paul Alain Tagnouokam-Ngoup, | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| 2021                         |                        |    |    |    |    |    |    |    |    |    |
| Clarisse Amani-Bosse, 2017   | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Laurence Ahoua, 2011         | Fair                   | N  | Y  | N  | Y  | Y  | N  | Y  | Y  | Y  |
| Philippe R. Mutwa, 2014      | Fair                   | N  | Ν  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Tanya Rogo, 2015             | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Miguel de Mulder, 2011       | Fair                   | Y  | Y  | N  | Y  | Y  | Y  | N  | Y  | N  |
| Joseph E.Fitzgibbon, 2004    | Fair                   | N  | Ν  | Y  | Y  | Y  | N  | Y  | Y  | N  |
| Compagno Francesca, 2019     | Fair                   | NR | Ν  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| Lisa L. Ross, 2015           | Good                   | Y  | Y  | N  | Y  | Y  | N  | Y  | Y  | Y  |
| R. Lwembe, 2007              | Fair                   | NR | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| S. H. Al Hajjar, 2012        | Good                   | N  | Y  | Y  | Y  | Y  | NR | Y  | Y  | Y  |
| Z. Makatini, 2019            | Fair                   | N  | Y  | Y  | Y  | Y  | Y  | NR | Y  | N  |
| M. Camara-Cisse, 2021        | Good                   | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| A. T. Dumans, 2009           | Fair                   | NR | N  | Y  | Y  | Y  | N  | Y  | Y  | N  |
| J. Fokam, 2011               | Good                   | N  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| T. N. Green, 2012            | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| S. Pillay, 2014              | Fair                   | N  | Ν  | Y  | Y  | Y  | Y  | N  | Y  | Y  |
| G. M. Hunt, 2023             | Good                   | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Y  |
| D. B. Fofana, 2018           | Good                   | N  | Y  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| J. Servais, 2002             | Fair                   | N  | Ν  | Y  | Y  | Y  | NR | Y  | Y  | N  |
| A. P. Ramkissoon, 2015       | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Shanmugam Saravanan, 2017    | Fair                   | NR | Ν  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| Bismara BA, 2012             | Fair                   | N  | Ν  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| B. P. Gopalan, 2019          | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | Y  | N  |
| A. J. Szubert, 2017          | Good                   | Y  | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| C. Charpentier, 2012         | Fair                   | N  | Y  | N  | Y  | Y  | N  | Y  | Y  | N  |
| Abuogi L, 2023               | Good                   | N  | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Djiyou ABD, 2023             | Fair                   | N  | Y  | N  | Y  | Y  | Y  | Y  | N  | Y  |
| Khamadi SA, 2023             | Good                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Y  |
| Pang X, 2024                 | Fair                   | N  | Ν  | Y  | Y  | Y  | N  | Y  | Y  | Y  |
| Sivay MV, 2024               | Good                   | Y  | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Thu HHK, 2024                | Good                   | Y  | N  | N  | Y  | Y  | Y  | Y  | Y  | N  |
| Mboumba Bouassa RS, 2019     | Fair                   | N  | Y  | N  | Y  | Y  | Y  | Y  | Y  | Ν  |

| Table S5A: Pooled | prevalence of d | drug resistance | among treatment- | naive c | hildren a | lfter í | 2015 |
|-------------------|-----------------|-----------------|------------------|---------|-----------|---------|------|
|                   |                 |                 | ······           |         |           |         |      |

|                               | Number of | Number of<br>HIV-infected | Number of<br>Individuals with | Prevalence of DR (95% Confidence | Hetero                    | geneity    | p value for<br>subgroup |
|-------------------------------|-----------|---------------------------|-------------------------------|----------------------------------|---------------------------|------------|-------------------------|
|                               | datasets  | individuals               | DR                            | Interval)                        | <i>I</i> <sup>2</sup> (%) | p<br>value | difference              |
| Overall                       | 11        | 904                       | 361                           | 25.40 (11.80-41.79)              | 94                        | < 0.01     |                         |
| Region*                       |           |                           |                               |                                  |                           |            | < 0.01                  |
| Asia                          | 3         | 170                       | 83                            | 36.20 (11.08-65.93)              | 92                        | < 0.01     |                         |
| Eastern Africa                | 2         | 147                       | 26                            | 17.58 (11.75-24.25)              | 0                         | 0.37       |                         |
| Southern Africa               | 1         | 49                        | 33                            | 67.35 (51.46-80.05)              | -                         | -          |                         |
| Western and Central<br>Africa | 5         | 538                       | 219                           | 15.67 (0.79-40.82)               | 96                        | < 0.01     |                         |
| World Bank Income<br>Level    |           |                           |                               |                                  |                           |            | 0.07                    |
| Low income                    | 2         | 147                       | 26                            | 17.58 (11.75-24.25)              | 0                         | 0.37       |                         |
| Lower middle income           | 8         | 713                       | 335                           | 33.86 (17.20-52.70)              | 89                        | < 0.01     |                         |
| Age group (years)             |           |                           |                               |                                  |                           |            | < 0.01                  |
| < 2                           | 3         | 584                       | 304                           | 58.18 (45.81-70.00)              | 84                        | < 0.01     |                         |
| ≥2                            | 11        | 320                       | 57                            | 13.85 (5.17-25.29)               | 81                        | < 0.01     |                         |
| PMTCT experience              |           |                           |                               |                                  |                           |            | < 0.01                  |
| Yes                           | 6         | 686                       | 330                           | 38.10 (17.37-61.27)              | 91                        | < 0.01     |                         |
| no                            | 5         | 218                       | 31                            | 11.37 (2.47-24.44)               | 81                        | < 0.01     |                         |

PMTCT= the prevention of mother-to-child transmission \*median (range). Several datasets are generated from the same study.

| Table S5B: Pooled | prevalence of drug | g resistance amon | g treatment-ex | perienced o | children a | fter 20 | 015 |
|-------------------|--------------------|-------------------|----------------|-------------|------------|---------|-----|
|                   |                    |                   |                |             |            |         |     |

|                               | Number of | Number of                   | Number of           | Prevalence of DR (95% | Heter | ogeneity | p value for            |
|-------------------------------|-----------|-----------------------------|---------------------|-----------------------|-------|----------|------------------------|
|                               | datasets  | HIV-infected<br>individuals | Individuals with DR | Confidence Interval)  | P     | p value  | subgroup<br>difference |
| Overall                       | 20        | 2644                        | 1808                | 67.93 (55.59-79.15)   | 97%   | < 0.01   |                        |
| Region                        |           |                             |                     |                       |       |          | < 0.01                 |
| South America                 | 1         | 62                          | 36                  | 58.06 (44.85-70.49)   | -     | -        |                        |
| North America                 | 1         | 41                          | 39                  | 95.12 (83.47-99.40)   | -     | -        |                        |
| Europe                        | 1         | 96                          | 71                  | 73.96 (64.00-82.38)   | -     | -        |                        |
| Asia                          | 3         | 760                         | 390                 | 55.72 (37.88-72.83)   | 93    | < 0.01   |                        |
| Eastern Africa                | 6         | 599                         | 368                 | 68.32 (46.63-86.56)   | 96    | < 0.01   |                        |
| Southern Africa               | 2         | 819                         | 716                 | 84.21 (64.78-97.34)   | 58    | 0.12     |                        |
| Western and Central Africa    | 6         | 267                         | 206                 | 63.65 (30.02-91.35)   | 96    | < 0.01   |                        |
| Income level                  |           |                             |                     |                       |       |          | 0.17                   |
| Low income                    | 4         | 273                         | 165                 | 63.68 (36.06-87.27)   | 96    | < 0.01   |                        |
| Lower middle income           | 7         | 795                         | 478                 | 74.10 (57.96-87.50)   | 96    | < 0.01   |                        |
| Upper middle income           | 7         | 1483                        | 1129                | 76.25 (63.92-86.76)   | 97    | < 0.01   |                        |
| High income                   | 1         | 62                          | 36                  | 58.06 (36.06-87.27)   | -     | -        |                        |
| Age group (Years)             |           |                             |                     |                       |       |          | < 0.01                 |
| < 7                           | 7         | 733                         | 353                 | 55.06 (40.16-69.53)   | 91    | < 0.01   |                        |
| ≥ 7                           | 12        | 1515                        | 1247                | 75.49 (58.55-89.21)   | 94    | < 0.01   |                        |
| Antiretroviral treatment time |           |                             |                     |                       |       |          | 0.77                   |
| < 3 years                     | 8         | 1067                        | 583                 | 62.03 (46.63-76.32)   | 94    | < 0.01   |                        |
| $\geq$ 3 years                | 8         | 519                         | 325                 | 66.61 (38.68-89.54)   | 96    | < 0.01   |                        |
| Proportion of viral failure   |           |                             |                     |                       |       |          | 0.36                   |
| 100%                          | 8         | 861                         | 548                 | 64.41 (39.19-86.13)   | 96    | < 0.01   |                        |
| 50%-99%                       | 6         | 1031                        | 872                 | 78.24 (65.61-88.73)   | 89    | < 0.01   |                        |
| < 50%                         | 3         | 218                         | 130                 | 67.38 (24.93-97.53)   | 98    | < 0.01   |                        |
| Unknown                       | 3         | 534                         | 258                 | 56.20 (32.67-78.35)   | 94    | < 0.01   |                        |
| ART regimen#                  |           |                             |                     |                       |       |          | < 0.01                 |
| NRTI+NNRTI                    | 4         | 527                         | 270                 | 58.00 (29.29-84.08)   | 97    | < 0.01   |                        |
| NRTI+NNRTI/PI                 | 10        | 1681                        | 1304                | 80.59 (71.86-88.08)   | 95    | < 0.01   |                        |
| NNRTI+PI                      | 1         | 199                         | 93                  | 46.73 (39.65-53.92)   | -     | -        |                        |
| NRTI+PI                       | 1         | 10                          | 7                   | 70.00 (34.75-93.33)   | -     | -        |                        |
| NRTI+NNRTI+PI                 | 3         | 131                         | 63                  | 36.51 (0.15-88.10)    | 97    | < 0.01   |                        |
| NRTI+NNRTI/PI/INSTI           | 1         | 96                          | 71                  | 73.96 (64.00-82.38)   | -     | -        |                        |

DR= drug resistance; WHO= World Health Organization; CDC= National Centers for Disease Control; PMTCT= the prevention of mother-to-child transmission \*median (range). #ART regimes are defined as the maximum proportion of all treatment among each dataset. Several datasets are generated from the same study.

# Table S6A: Meta regression analysis for the variation of the prevalence of treatment-naive HIV infected children

|                            |                 |         | Univariate analysis                   |       | Multivariate analysis |                                                |  |  |  |
|----------------------------|-----------------|---------|---------------------------------------|-------|-----------------------|------------------------------------------------|--|--|--|
| Variables(reference)       | No. of datasets | P value | Coefficient (95% confidence interval) | R2, % | P value               | Adjusted coefficient (95% confidence interval) |  |  |  |
| Region                     | 69              | 0.0319  |                                       | 11.58 |                       |                                                |  |  |  |
| Asia                       | 10              | Ref     |                                       |       | Ref                   |                                                |  |  |  |
| Eastern Africa             | 11              | 0.1374  | 0.1659 (-0.0530-0.3849)               |       | 0.4092                | 0.0988 (-0.1358-0.3333)                        |  |  |  |
| Europe                     | 5               | 0.8644  | -0.0238 (-0.2968-0.2493)              |       | 0.6303                | -0.0795 (-0.4030-0.2441)                       |  |  |  |
| North America              | 7               | 0.2586  | 0.1421 (-0.1044-0.3886)               |       | 0.0252                | 0.3250 (0.0405-0.6096)                         |  |  |  |
| South America              | 8               | 0.4367  | -0.1003 (-0.3373-0.1366)              |       | 0.3854                | -0.1089 (-0.3547-0.1370)                       |  |  |  |
| Southern Africa            | 18              | 0.0282  | 0.2269 (0.0282-0.4256)                |       | 0.4261                | 0.0927 (-0.1356-0.3209)                        |  |  |  |
| Western and Central Africa | 10              | 0.7423  | 0.0381 (-0.1888-0.2649)               |       | 0.7651                | 0.0526 (-0.1051-0.2104)                        |  |  |  |
| Sample Year                | 69              | 0.1352  | 0.0088 (-0.0028-0.0204)               | 2.41  |                       |                                                |  |  |  |
| Age                        | 69              | 0.0001  | -0.0031 (-0.0047-0.0015)              | 18.58 | 0.0005                | -0.0038 (-0.0060-0.0017)                       |  |  |  |
| Income Level               | 63              | 0.4238  |                                       | 0.00  |                       |                                                |  |  |  |
| High income                | 11              | Ref     |                                       |       | Ref                   |                                                |  |  |  |
| Low income                 | 15              | 0.1765  | 0.1419 (-0.0638-0.3476)               |       |                       |                                                |  |  |  |
| Lower middle income        | 20              | 0.2954  | 0.1044 (-0.0912-0.3001)               |       |                       |                                                |  |  |  |
| Upper middle income        | 17              | 0.8412  | 0.0205 (-0.1802-0.2213)               |       |                       |                                                |  |  |  |
| CD4 count                  | 22              | 0.6686  |                                       | 0.00  |                       |                                                |  |  |  |
| <500                       | 8               | Ref     |                                       |       | Ref                   |                                                |  |  |  |
| ≥500                       | 14              | 0.6686  | -0.0497 (-0.2774-0.1779)              |       |                       |                                                |  |  |  |
| HIV-RNA                    | 27              | 0.1464  |                                       | 5.02  |                       |                                                |  |  |  |
| < 5                        | 9               | Ref     |                                       |       | Ref                   |                                                |  |  |  |
| ≥5                         | 18              | 0.1464  | -0.1527 (-0.3589-0.0534)              |       |                       |                                                |  |  |  |
| PMTCT                      | 69              | 0.0045  |                                       | 10.71 |                       |                                                |  |  |  |
| No                         | 23              | Ref     |                                       |       | Ref                   |                                                |  |  |  |
| Yes                        | 46              | 0.0045  | 0.1844 (0.0571-0.3116)                |       | 0.5133                | 0.0526 (-0.1051-0.2104)                        |  |  |  |
| WHO Stage                  | 10              | 0.6442  |                                       | 0.00  |                       |                                                |  |  |  |
| ≥50%                       | 4               | Ref     |                                       |       | Ref                   |                                                |  |  |  |
| >50%                       | 6               | 0.6442  | -0.0385 (-0.2021-0.1250)              |       |                       |                                                |  |  |  |
| Male                       | 36              | 0.1961  |                                       | 2.57  |                       |                                                |  |  |  |
| ≤50%                       | 23              | 0.1961  | 0.1106 (-0.0571-0.2782)               |       | Ref                   |                                                |  |  |  |
| >50%                       | 14              | Ref     |                                       |       |                       |                                                |  |  |  |

# Table S6B: Meta regression analysis for the variation of the prevalence of treatment-experienced HIV-infected children

|                            | Univaria | te analysis |                             |       | Multivariate analysis |                           |  |  |
|----------------------------|----------|-------------|-----------------------------|-------|-----------------------|---------------------------|--|--|
| Variables(reference)       | No. of   | P value     | Coefficient (95% confidence | R2, % | P value               | Adjusted coefficient (95% |  |  |
|                            | datasets |             | interval)                   |       |                       | confidence interval)      |  |  |
| Region                     | 79       | 0.5774      |                             | 0.00  |                       |                           |  |  |
| Asia                       | 12       | Ref         |                             |       | Ref                   |                           |  |  |
| Eastern Africa             | 17       | 0.1818      | -0.1634 (-0.4032-0.0764)    |       | 0.2411                | -0.1488 (-0.3975-0.1000)  |  |  |
| Europe                     | 6        | 0.2520      | -0.1861 (-0.5045-0.1323)    |       | 0.1124                | -0.2540 (-0.5677-0.0596)  |  |  |
| North America              | 7        | 0.0816      | -0.2693 (-0.5724-0.0337)    |       | 0.0966                | -0.2890 (-0.6299-0.0519)  |  |  |
| South America              | 5        | 0.8959      | -0.0225 (-0.3591-0.3142)    |       | 0.3672                | -0.1702 (-0.5401-0.1997)  |  |  |
| Southern Africa            | 15       | 0.6532      | -0.0562 (-0.3015-0.1890)    |       | 0.9033                | 0.0155 (-0.2340-0.2650)   |  |  |
| Western and Central Africa | 17       | 0.2535      | -0.1392 (-0.3780-0.0997)    |       | 0.1886                | -0.1716 (-0.4274-0.0842)  |  |  |
| Sample Year                | 81       | 0.9517      | -0.0004 (-0.0118-0.0111)    | 0.00  |                       |                           |  |  |
| Age                        | 78       | 0.0198      | 0.0018 (0.0003-0.0033)      | 6.40  | < 0.0001              | 0.9477 (0.6830-1.2123)    |  |  |
| Male                       | 72       | 0.0866      |                             | 3.03  |                       |                           |  |  |
| ≤50%                       | 20       | 0.0866      | -0.1380 (-0.2958-0.0198)    |       | 0.5781                | -0.0535 (-0.2422-0.1351)  |  |  |
| >50%                       | 52       | Ref         |                             |       | Ref                   |                           |  |  |
| Income Level               | 75       | 0.2395      |                             | 1.81  |                       |                           |  |  |
| High income                | 11       | Ref         |                             |       |                       |                           |  |  |
| Low income                 | 18       | 0.5939      | 0.0598 (-0.1600-0.2796)     |       |                       |                           |  |  |
| Lower middle income        | 24       | 0.8263      | 0.0234 (-0.1855-0.2323)     |       |                       |                           |  |  |
| Upper middle income        | 22       | 0.1025      | 0.1763 (-0.0353-0.3880)     |       |                       |                           |  |  |
| CD4 count                  | 36       | 0.6618      |                             | 0.00  |                       |                           |  |  |
| <500                       | 18       | Ref         |                             |       |                       |                           |  |  |
| ≥500                       | 18       | 0.6618      | 0.0525 (-0.1826-0.2785)     |       |                       |                           |  |  |
| HIV-RNA                    | 41       | 0.3510      | <b>`</b>                    | 0.00  |                       |                           |  |  |
| <5                         | 24       | Ref         |                             |       |                       |                           |  |  |
| ≥5                         | 17       | 0.3510      | -0.1032 (-0.3201-0.1137)    |       |                       |                           |  |  |
| WHO Stage                  | 35       | 0.5425      |                             | 0.00  |                       |                           |  |  |
| ≤50%                       | 18       | Ref         |                             |       |                       |                           |  |  |
| >50%                       | 17       | 0.5425      | -0.0664 (-0.2799-0.1472)    | 7.40  |                       |                           |  |  |
| Viral failure              | 81       | 0.0307      |                             |       |                       |                           |  |  |
| < 50%                      | 28       | Ref         |                             |       | Ref                   |                           |  |  |
| 50-99%                     | 15       | 0.2246      | 0.1209 (-0.0742-0.3159)     |       | 0.1873                | 0.1513 (-0.0736-0.3761)   |  |  |
| 100%                       | 28       | 0.0094      | 0.2152 (0.0528-0.3776)      |       | 0.1070                | 0.1505 (-0.0325-0.3336)   |  |  |
| Unkown                     | 10       | 0.0213      | 0.2615 (0.0390-0.4841)      |       | 0.0607                | 0.2433 (-0.0109-0.4976)   |  |  |
| ART duration               | 72       | 0.6533      | 0.0006 (-0.0020-0.0032)     | 0.00  |                       |                           |  |  |

#### Figure S1: Demonstration of countries and regions included in the study



# Figure S2A: Forest plot of the drug resistance prevalence among treatment-naive groups

| Study E                                                                           | vents | Total |                  | Proportion | 95%-CI           | Weight |
|-----------------------------------------------------------------------------------|-------|-------|------------------|------------|------------------|--------|
| Lindström et al(2010)                                                             | 28    | 43    |                  | 0.6512     | [0.4907: 0.7899] | 1.4%   |
| Lindström et al(2010)                                                             | 37    | 45    |                  | 0.8222     | [0.6795; 0.9200] | 1.4%   |
| Towler et al(2010)                                                                | 2     | 74    |                  | 0.0270     | [0.0033; 0.0942] | 1.5%   |
| Church et al(2008)                                                                | 33    | 49    |                  | 0.6735     | [0.5246; 0.8005] | 1.5%   |
| Fogel et al(2011)                                                                 | 78    | 108   |                  | 0.7222     | [0.6278; 0.8041] | 1.5%   |
| Van Dyke et al(2016)                                                              | 175   | 234   |                  | 0.7479     | [0.6872; 0.8022] | 1.5%   |
| Kurle et al(2007)                                                                 | 2     | 19    |                  | 0.1053     | [0.0130; 0.3314] | 1.3%   |
| Vignoles et al(2007)                                                              | 0     | 35    | -                | 0.4615     | [0.1922; 0.7487] | 1.2%   |
| Gibb et al(2003)                                                                  | 4     | 105   |                  | 0.0381     | [0.0105: 0.0947] | 1.5%   |
| Nelson et al(2015)                                                                | 3     | 28    |                  | 0.1071     | [0.0227: 0.2823] | 1.4%   |
| Nelson et al(2015)                                                                | 1     | 16    |                  | 0.0625     | [0.0016; 0.3023] | 1.3%   |
| Nelson et al(2015)                                                                | 4     | 13    |                  | 0.3077     | [0.0909; 0.6143] | 1.2%   |
| Louis et al(2019)                                                                 | 217   | 304   |                  | 0.7138     | [0.6594; 0.7640] | 1.5%   |
| Boerma et al(2016)                                                                | 13    | 82    |                  | 0.1585     | [0.0872; 0.2558] | 1.5%   |
| Bennett et al(2020)                                                               | 33    | 49    |                  | 0.6735     | [0.5246; 0.8005] | 1.5%   |
| Inzaule et al(2018)                                                               | 205   | 430   |                  | 0.4767     | [0.4287; 0.5251] | 1.6%   |
| Salou et al $(2016)$                                                              | 121   | 201   | -                | 0.6020     | [0.5507, 0.6702] | 1.5%   |
| Dow et al $(2017)$                                                                | 34    | 65    |                  | 0.1004     | [0.3954: 0.6485] | 1.5%   |
| Hunt et al(2011)                                                                  | 80    | 255   | *                | 0.3137     | [0.2573: 0.3746] | 1.5%   |
| Zeh et al(2011)                                                                   | 16    | 32    |                  | 0.5000     | [0.3189; 0.6811] | 1.4%   |
| Nii-Trebi et al(2013)                                                             | 5     | 10    |                  | 0.5000     | [0.1871; 0.8129] | 1.2%   |
| Neubert et al(2016)                                                               | 7     | 24    |                  | 0.2917     | [0.1262; 0.5109] | 1.4%   |
| Taylor et al(2011)                                                                | 39    | 155   |                  | 0.2516     | [0.1854; 0.3275] | 1.5%   |
| Fofana et al(2023)                                                                | 0     | 44    |                  | 0.0000     | [0.0000; 0.0804] | 1.4%   |
| Hunt et al(2019)                                                                  | 112   | 220   |                  | 0.5091     | [0.4410; 0.5769] | 1.5%   |
| Parker et al(2003)                                                                | 5     | 49    |                  | 0.1020     | [0.0340; 0.2223] | 1.5%   |
| Parker et al(2003)                                                                | 6     | 38    |                  | 0.1579     | [0.0602; 0.3125] | 1.4%   |
| France et al(2006)                                                                | 16    | 42    |                  | 0.1905     | [0.0660; 0.3412] | 1.4%   |
| Ngo-Giang-Huong et al(2016)                                                       | 37    | 476   |                  | 0.1903     | [0.1130, 0.2900] | 1.5%   |
| Tadesse et al(2019)                                                               | 8     | 57    |                  | 0.1404     | [0.0626: 0.2579] | 1.5%   |
| Soeria-Atmadia et al(2020)                                                        | 18    | 90    |                  | 0.2000     | [0.1231; 0.2975] | 1.5%   |
| Aulicino et al(2019)                                                              | 34    | 115   |                  | 0.2957     | [0.2142; 0.3879] | 1.5%   |
| Abidi et al(2021)                                                                 | 15    | 50    | — <del>— •</del> | 0.3000     | [0.1786; 0.4461] | 1.5%   |
| Kovacs et al(2005)                                                                | 11    | 44    |                  | 0.2500     | [0.1319; 0.4034] | 1.4%   |
| Delaugerre et al(2009)                                                            | 12    | 60    |                  | 0.2000     | [0.1078; 0.3233] | 1.5%   |
| Ikomey et al(2017)                                                                | 11    | 37    |                  | 0.2973     | [0.1587; 0.4698] | 1.4%   |
| Kubp et al(2017)                                                                  | 19    | 155   |                  | 0.1624     | [0.1007; 0.2419] | 1.5%   |
| Kuhn et al $(2015)$                                                               | 18    | 75    |                  | 0.2400     | [0 1489: 0 3525] | 1.5%   |
| Fokam et al(2011)                                                                 | 2     | 41    |                  | 0.0488     | [0.0060; 0.1653] | 1.4%   |
| Han et al(2009)                                                                   | 2     | 14    |                  | 0.1429     | [0.0178; 0.4281] | 1.2%   |
| Eshleman et al(2001)                                                              | 11    | 24    | · · · · ·        | 0.4583     | [0.2555; 0.6718] | 1.4%   |
| Martinson et al(2007)                                                             | 24    | 53    |                  | 0.4528     | [0.3156; 0.5955] | 1.5%   |
| Vaz et al(2012)                                                                   | 6     | 112   | -                | 0.0536     | [0.0199; 0.1130] | 1.5%   |
| Olusola et al(2021)                                                               | 3     | 12    |                  | 0.2500     | [0.0549; 0.5719] | 1.2%   |
| Guimaraes et al(2015)<br>Masquelier et al(2001)                                   | 07    | 31    |                  | 0.1935     | [0.0745; 0.3747] | 1.4%   |
| lordan et al(2017)                                                                | 529   | 1048  |                  | 0.2039     | [0.0870, 0.3790] | 1.4%   |
| Jordan et al(2017)                                                                | 86    | 224   |                  | 0.3839     | [0.3199: 0.4510] | 1.5%   |
| Yeganeh et al(2018)                                                               | 13    | 123   |                  | 0.1057     | [0.0575; 0.1740] | 1.5%   |
| Neogi et al(2012)                                                                 | 6     | 105   |                  | 0.0571     | [0.0213; 0.1202] | 1.5%   |
| de Azevedo et al(2022)                                                            | 9     | 38    |                  | 0.2368     | [0.1144; 0.4024] | 1.4%   |
| de Azevedo et al(2022)                                                            | 10    | 97    |                  | 0.1031     | [0.0506; 0.1814] | 1.5%   |
| Rogo et al(2015)                                                                  | 1     | 16    |                  | 0.0625     | [0.0016; 0.3023] | 1.3%   |
| Chalermchockcharoenkit et al(2009)                                                | 2     | 10    |                  | 0.2000     | [0.0252; 0.5561] | 1.2%   |
| Phung et al(2015)<br>Phung et al(2015)                                            | 2     | 65    |                  | 0.0233     | [0.0026; 0.0615] | 1.5%   |
| Antunes et al(2015)                                                               | 43    | 79    |                  | 0.0308     | [0.0037, 0.1000] | 1.5%   |
| Almeida et al(2009)                                                               | -0    | 24    |                  | 0.0000     | [0.0000; 0.1425] | 1.4%   |
| Fogel et al(2013)                                                                 | 1     | 18    |                  | 0.0556     | [0.0014; 0.2729] | 1.3%   |
| Chaix et al(2007)                                                                 | 6     | 26    |                  | 0.2308     | [0.0897; 0.4365] | 1.4%   |
| Jarchi et al(2019)                                                                | 2     | 15    |                  | 0.1333     | [0.0166; 0.4046] | 1.3%   |
| Khanh Thu et al(2024)                                                             | 66    | 105   |                  | 0.6286     | [0.5288; 0.7209] | 1.5%   |
| Lehman et al(2015)                                                                | 12    | 20    |                  | 0.6000     | [0.3605; 0.8088] | 1.3%   |
| Fisher et al(2015)                                                                | 7     | 15    |                  | 0.4667     | [0.2127; 0.7341] | 1.3%   |
| Konen et al(2017)<br>Eckam et al(2018)                                            | 19    | 43    |                  | 0.4419     | [0.2908; 0.6012] | 1.4%   |
|                                                                                   | 0     | 15    |                  | 0.0000     | [0.0000, 0.2180] | 1.3%   |
| Random effects model<br>Heterogeneity: $I^2 = 96\%$ , $\tau^2 = 0.0666$ , $p = 0$ | )     | 6914  |                  | 0.2631     | [0.2076; 0.3225] | 100.0% |

0

0.2 0.4 0.6 0.8

#### Figure S2B: Forest plot of the drug resistance prevalence among treatment-experienced groups

| Study                                                                                    | Events    | lotal      | Pro                                     | port |
|------------------------------------------------------------------------------------------|-----------|------------|-----------------------------------------|------|
| Boender et al(2016)                                                                      | 50        | 56         |                                         | 0.89 |
| Towler et al(2010)                                                                       | 12        | 12         |                                         | 1.00 |
| Kamori et al(2023)                                                                       | 72        | 92         |                                         | 0.78 |
| Coetzer et al(2013)                                                                      | 50        | 51         |                                         | 0.9  |
| Rossouw et al(2015)                                                                      | 65        | 65         |                                         | 1.0  |
|                                                                                          | 03        | 20         |                                         | 0.7  |
| Chaix et al(2005)                                                                        | 21        | 38         |                                         | 0.7  |
| Machado et al(2004)                                                                      | 28        | 37         |                                         | 0.7  |
| Rodríguez-Galet et al(2023)                                                              | 27        | 38         |                                         | 0.7  |
| Rubio-Garrido et al(2021)                                                                | 18        | 27         | · · · · · ·                             | 0.6  |
| Tadesse et al(2018)                                                                      | 73        | 90         |                                         | 0.8  |
| Mossoro-Kninde et al(2017)                                                               | 54        | 58         |                                         | 0.9  |
| Kebe et al $(2013)$                                                                      | 18        | 52         |                                         | 0.0  |
|                                                                                          | 40        | 07         |                                         | 0.5  |
| Crowell et al(2017)                                                                      | 29        | 37         |                                         | 0.70 |
| Stoddart et al(2014)                                                                     | 354       | 370        |                                         | 0.9  |
| Aboulker et al(2004)                                                                     | 6         | 20         |                                         | 0.30 |
| Puthanakit et al(2010)                                                                   | 118       | 120        | -+                                      | 0.9  |
| Nyandiko et al(2022)                                                                     | 119       | 128        |                                         | 0.9  |
| Taylor et al(2011)                                                                       | 32        | 41         | ·                                       | 0.7  |
| Fofana et al(2023)                                                                       | 0         | 31         | -                                       | 0.0  |
| Controrpo et al(2012)                                                                    | 22        | 66         |                                         | 0.0  |
| Contreras et al(2013)                                                                    | 23        | 00         |                                         | 0.3  |
| Delaugerre et al(2007)                                                                   | 82        | 119        | - · · · · · · · · · · · · · · · · · · · | 0.6  |
| Agwu et al(2014)                                                                         | 117       | 117        |                                         | 1.0  |
| Inzaule et al(2016)                                                                      | 16        | 24         |                                         | 0.6  |
| Kitvo et al(2017)                                                                        | 67        | 84         |                                         | 0.7  |
| Soeria-Atmadia et al(2020)                                                               | 22        | 02         |                                         | 0.2  |
| littamala at al(2000)                                                                    | 20        | 20         |                                         | 0.0  |
|                                                                                          | 38        | 39         | -                                       | 0.9  |
| Abidi et al(2021)                                                                        | 114       | 2/1        |                                         | 0.4  |
| Chohan et al(2015)                                                                       | 7         | 19         |                                         | 0.3  |
| Shet et al(2013)                                                                         | 12        | 70         |                                         | 0.1  |
| Theodore et al(2011)                                                                     | 16        | 120        | - <b>H</b> -                            | 0.1  |
| Yan et al(2022)                                                                          | 68        | 93         |                                         | 07   |
| $Z_{\text{bac}} \text{ of } al(2011)$                                                    | 76        | 76         |                                         | 1.0  |
|                                                                                          | 10        | 10         |                                         | 0.5  |
| Bratholm et al(2010)                                                                     | 11        | 19         |                                         | 0.5  |
| Gupta et al(2010)                                                                        | 22        | 26         |                                         | 0.8  |
| Beghin et al(2020)                                                                       | 16        | 29         | · · · ·                                 | 0.5  |
| Beghin et al(2020)                                                                       | 19        | 64         |                                         | 0.2  |
| Ventosa-Cubillo et al(2023)                                                              | 36        | 62         |                                         | 0.5  |
| Muri ot al(2017)                                                                         | 47        | 52         |                                         | 0.0  |
| 1/2                                                                                      | -+/       | 040        |                                         | 0.9  |
| vaz et al(2018)                                                                          | 238       | 248        |                                         | 0.9  |
| Makadzange et al(2015)                                                                   | 69        | 102        |                                         | 0.6  |
| Yendewa et al(2021)                                                                      | 51        | 64         | ·                                       | 0.7  |
| Vaz et al(2009)                                                                          | 77        | 84         |                                         | 0.9  |
| Vaz et al(2012)                                                                          | 10        | 113        |                                         | 0.0  |
| Brindeiro et al(2002)                                                                    | 50        | 52         |                                         | 0.9  |
| Adie-Toure et al(2008)                                                                   | 47        | 68         |                                         | 0.6  |
| Tagnouokam Ngouno et al(2021)                                                            | 40        | 57         |                                         | 0.7  |
| Amani Basaá at al(2017)                                                                  | 40        | 20         |                                         | 0.7  |
| Amani-Bosse et al(2017)                                                                  | 21        | 20         |                                         | 0.7  |
| Anoua et al(2011)                                                                        | 13        | 17         |                                         | 0.7  |
| Ahoua et al(2011)                                                                        | 16        | 17         |                                         | 0.9  |
| Mutwa et al(2014)                                                                        | 50        | 52         |                                         | 0.9  |
| Rogo et al(2015)                                                                         | 19        | 26         |                                         | 0.7  |
| Mulder et al(2011)                                                                       | 66        | 157        |                                         | 0.4  |
| Fitzgibbon et al(2004)                                                                   | 8         | 17         |                                         | 0.4  |
| Fitzgibboli et al(2004)                                                                  | 10        | 22         |                                         | 0.4  |
| Francesca et al(2019)                                                                    | 10        | 22         |                                         | 0.7  |
| Ross et al(2015)                                                                         | 9         | 25         |                                         | 0.3  |
| Ross et al(2015)                                                                         | 2         | 54         | <del>.</del>                            | 0.0  |
| Lwembe et al(2007)                                                                       | 4         | 12         |                                         | 0.3  |
| Hajjar et al(2012)                                                                       | 21        | 22         |                                         | 0.9  |
| Makatini et al(2019)                                                                     | 21        | 22         |                                         | 0.9  |
| Camara-Cissé et al(2021)                                                                 | 18        | 61         |                                         | 0.7  |
| Dumana at $a/(2000)$                                                                     | 40        | 01         |                                         | 0.7  |
| Dumans et al(2009)                                                                       | 59        | 90         |                                         | 0.6  |
| нокат et al(2011)                                                                        | 45        | 50         | — •                                     | 0.9  |
| Green et al(2012)                                                                        | 35        | 41         |                                         | 0.8  |
| Pillay et al(2014)                                                                       | 81        | 89         |                                         | 0.9  |
| Hunt et al(2023)                                                                         | 709       | 809        |                                         | 0.8  |
| Fofana et al(2018)                                                                       | 40        | 53         |                                         | 0.0  |
| Servais et al/2002)                                                                      | 24        | 21         |                                         | 1.0  |
|                                                                                          | 21        | 21         |                                         | 1.0  |
| Ramkissoon et al(2015)                                                                   | 39        | 41         |                                         | 0.9  |
| Saravanan et al(2017)                                                                    | 91        | 97         |                                         | 0.9  |
| Bismara et al(2012)                                                                      | 60        | 61         | -+                                      | 0.9  |
| Abuogi et al(2023)                                                                       | 93        | 199        |                                         | 0.4  |
| Diivou et al(2023)                                                                       | 43        | 54         |                                         | 07   |
| Khamadi at al(2022)                                                                      | 40        | 74         |                                         | 0.0  |
|                                                                                          | 60        | 74         |                                         | 0.8  |
| Unarpentier et al(2012)                                                                  | 59        | 69         |                                         | 0.8  |
| Bouassa et al(2019)                                                                      | 12        | 18         |                                         | 0.6  |
| Pang et al(2024)                                                                         | 208       | 396        |                                         | 0.5  |
| Sivay et al(2024)                                                                        | 71        | 96         |                                         | 0.7  |
|                                                                                          | 41        | 101        | i                                       | 04   |
| Tambuyzer et al(2016)                                                                    | 7         | 10         |                                         | 0.7  |
| Tambuyzer et al(2016)                                                                    |           | 10         |                                         | 0.7  |
| Tambuyzer et al(2016)<br>Lange et al(2015)                                               | -         |            |                                         |      |
| Tambuyzer et al(2016)<br>Lange et al(2015)<br>Gopalan et al(2019)                        | 26        | 30         |                                         | 0.0  |
| Tambuyzer et al(2016)<br>Lange et al(2015)<br>Gopalan et al(2019)<br>Szubert et al(2017) | 26<br>559 | 30<br>1132 |                                         | 0.4  |

| Proportion | 95%-CI                               | Weight |
|------------|--------------------------------------|--------|
| 0.8929     | [0.7812; 0.9597]                     | 1.3%   |
| 1.0000     | [0.7354; 1.0000]                     | 1.1%   |
| 0.7826     | [0.6844; 0.8619]                     | 1.3%   |
| 1 0000     | [0.8955; 0.9995]                     | 1.2%   |
| 0.7105     | [0.5410: 0.8458]                     | 1.2%   |
| 0.7568     | [0.5880; 0.8823]                     | 1.2%   |
| 0.7105     | [0.5410; 0.8458]                     | 1.2%   |
| 0.6667     | [0.4604; 0.8348]                     | 1.2%   |
| 0.8111     | [0.7149; 0.8859]                     | 1.3%   |
| 0.9310     | [0.8327; 0.9809]                     | 1.3%   |
| 0.9231     | [0.8146; 0.9786]                     | 1.2%   |
| 0.9568     | [0.0173, 0.9017]<br>[0.9307, 0.9751] | 1.2%   |
| 0.3000     | [0.1189; 0.5428]                     | 1.2%   |
| 0.9833     | [0.9411; 0.9980]                     | 1.3%   |
| 0.9297     | [0.8707; 0.9673]                     | 1.3%   |
| 0.7805     | [0.6239; 0.8944]                     | 1.2%   |
| 0.0000     | [0.0000; 0.1122]                     | 1.2%   |
| 0.5465     | [0.2353, 0.4756]                     | 1.3%   |
| 1.0000     | [0.9690: 1.0000]                     | 1.3%   |
| 0.6667     | [0.4468; 0.8437]                     | 1.2%   |
| 0.7976     | [0.6959; 0.8775]                     | 1.3%   |
| 0.2500     | [0.1655; 0.3511]                     | 1.3%   |
| 0.9744     | [0.8652; 0.9994]                     | 1.2%   |
| 0.4207     | [0.3612; 0.4819]                     | 1.3%   |
| 0.3004     | [0.1629, 0.6164]                     | 1.2%   |
| 0 1333     | [0.0310, 0.2000]<br>[0.0782 0.2075]  | 1.3%   |
| 0.7312     | [0.6292; 0.8179]                     | 1.3%   |
| 1.0000     | [0.9526; 1.0000]                     | 1.3%   |
| 0.5789     | [0.3350; 0.7975]                     | 1.2%   |
| 0.8462     | [0.6513; 0.9564]                     | 1.2%   |
| 0.0017     | [0.3569; 0.7355]                     | 1.2%   |
| 0.5806     | [0.4485: 0.7049]                     | 1.3%   |
| 0.9038     | [0.7897; 0.9680]                     | 1.2%   |
| 0.9597     | [0.9271; 0.9805]                     | 1.3%   |
| 0.6765     | [0.5766; 0.7658]                     | 1.3%   |
| 0.7969     | [0.6777; 0.8872]                     | 1.3%   |
| 0.0885     | [0.0433; 0.1567]                     | 1.3%   |
| 0.9615     | [0.8679; 0.9953]                     | 1.2%   |
| 0.6912     | [0.5674; 0.7976]                     | 1.3%   |
| 0.7018     | [0.5660; 0.8157]                     | 1.3%   |
| 0.7500     | [0.5513; 0.8931]                     | 1.2%   |
| 0.7047     | [0.3010, 0.9319]<br>[0.7131, 0.9985] | 1.1%   |
| 0.9615     | [0.8679; 0.9953]                     | 1.2%   |
| 0.7308     | [0.5221; 0.8843]                     | 1.2%   |
| 0.4204     | [0.3422; 0.5017]                     | 1.3%   |
| 0.4706     | [0.2298; 0.7219]                     | 1.1%   |
| 0.7273     | [0.4978; 0.8927]                     | 1.2%   |
| 0.3000     | [0.1797, 0.3748]<br>[0.0045; 0.1275] | 1.2%   |
| 0.3333     | [0.0992: 0.6511]                     | 1.1%   |
| 0.9545     | [0.7716; 0.9988]                     | 1.2%   |
| 0.9545     | [0.7716; 0.9988]                     | 1.2%   |
| 0.7869     | [0.6632; 0.8814]                     | 1.3%   |
| 0.6556     | [0.5480; 0.7526]                     | 1.3%   |
| 0.9000     | [0.7819, 0.9007]<br>[0.7083, 0.9443] | 1.2%   |
| 0.9101     | [0.8305: 0.9604]                     | 1.3%   |
| 0.8764     | [0.8517; 0.8983]                     | 1.3%   |
| 0.9245     | [0.8179; 0.9791]                     | 1.2%   |
| 1.0000     | [0.8389; 1.0000]                     | 1.2%   |
| 0.9512     | [0.8347; 0.9940]                     | 1.2%   |
| 0.9836     | [0.9120; 0.9996]                     | 1.3%   |
| 0.4673     | [0.3965; 0.5392]                     | 1.3%   |
| 0.7963     | [0.6647; 0.8937]                     | 1.2%   |
| 0.8108     | [0.7030; 0.8925]                     | 1.3%   |
| 0.8551     | [0.7496; 0.9283]<br>[0.4099: 0.86661 | 1.3%   |
| 0.5253     | [0.4748; 0.5753]                     | 1.3%   |
| 0.7396     | [0.6400; 0.8238]                     | 1.3%   |
| 0.4059     | [0.3093; 0.5082]                     | 1.3%   |
| 0.7000     | [0.3475; 0.9333]                     | 1.0%   |
| 0.800/     | [0.0928; 0.9624]                     | 1.2%   |
| 0.4300     | [0.4040, 0.0204]                     | 1.5 /0 |

0.7416 [0.6774; 0.8013] 100.0%

#### Figure S3A: Sensitivity analysis for the variation of the prevalence of treatment-naive groups

| Study                                                            |                           | Proportion | 95%-CI                       | P-value | Tau2   | Tau    | 12  |
|------------------------------------------------------------------|---------------------------|------------|------------------------------|---------|--------|--------|-----|
| Omitting Lindström et al(2010) -                                 | <u>.</u>                  | 0.26       | [0.20; 0.32]                 |         | 0.0654 | 0.2558 | 96% |
| Omitting Lindström et al(2010) -                                 | +                         | 0.26       | [0.20; 0.31]                 |         | 0.0627 | 0.2504 | 96% |
| Omitting Towler et al(2010) -                                    |                           | 0.27       | [0.21; 0.33]                 |         | 0.0656 | 0.2561 | 96% |
| Omitting Church et al(2008) –                                    | -                         | 0.26       | [0.20; 0.32]                 |         | 0.0651 | 0.2552 | 96% |
| Omitting Fogel et al(2011) –<br>Omitting Van Dyke, et al(2016) – |                           | 0.26       | [0.20; 0.32]                 |         | 0.0636 | 0.2533 | 90% |
| Omitting Kurle et al(2007)                                       | - 10 - 1                  | 0.20       | [0.20, 0.31]<br>[0.21, 0.33] |         | 0.0671 | 0.2590 | 97% |
| Omitting Kurle et al(2007) –                                     |                           | 0.26       | [0.21; 0.32]                 | · .     | 0.0670 | 0.2589 | 97% |
| Omitting Vignoles et al(2009) -                                  |                           | 0.27       | [0.21; 0.33]                 |         | 0.0646 | 0.2541 | 96% |
| Omitting Gibb et al(2003) -                                      |                           | 0.27       | [0.21; 0.33]                 | · .     | 0.0658 | 0.2565 | 96% |
| Omitting Nelson et al(2015) -                                    |                           | 0.27       | [0.21; 0.33]                 |         | 0.0671 | 0.2590 | 96% |
| Omitting Nelson et al(2015) –                                    | -                         | 0.27       | [0.21; 0.33]                 |         | 0.0668 | 0.2584 | 96% |
| Omitting Nelson et al (2015) –                                   | -                         | 0.26       | [0.21; 0.32]                 |         | 0.0674 | 0.2597 | 97% |
| Omitting Louis et al(2019) –                                     |                           | 0.20       | [0.20; 0.32]                 |         | 0.0674 | 0.2533 | 90% |
| Omitting Beennett et al(2010)                                    | -                         | 0.20       | [0.21, 0.33]                 | •       | 0.0651 | 0.2552 | 96% |
| Omitting Inzaule et al(2018) –                                   | <u>.</u>                  | 0.26       | [0.20; 0.32]                 |         | 0.0669 | 0.2587 | 96% |
| Omitting Salou et al(2016) -                                     | <u>i</u>                  | 0.26       | [0.20; 0.32]                 |         | 0.0658 | 0.2565 | 96% |
| Omitting Kityo et al(2016) -                                     | -                         | 0.27       | [0.21; 0.33]                 |         | 0.0669 | 0.2586 | 96% |
| Omitting Dow et al(2017) -                                       | -                         | 0.26       | [0.20; 0.32]                 |         | 0.0666 | 0.2581 | 96% |
| Omitting Hunt et al(2011) –                                      | -                         | 0.26       | [0.21; 0.32]                 | i i     | 0.0677 | 0.2601 | 97% |
| Omitting Zeh et al(2011) –                                       | -                         | 0.26       | [0.20; 0.32]                 | ÷.      | 0.0668 | 0.2585 | 97% |
| Omitting Nul- Irebi et al(2013) -                                |                           | 0.26       | [0.21; 0.32]                 | •       | 0.0659 | 0.2580 | 97% |
| Omitting Taylor et al(2010)                                      |                           | 0.20       | [0.21, 0.32]                 |         | 0.0677 | 0.2599 | 97% |
| Omitting Fofana et al(2023)                                      | 1                         | 0.27       | [0.21; 0.33]                 |         | 0.0643 | 0.2537 | 96% |
| Omitting Hunt et al(2019) –                                      | -                         | 0.26       | [0.20; 0.32]                 |         | 0.0667 | 0.2582 | 96% |
| Omitting Parker et al(2003) -                                    |                           | 0.27       | [0.21; 0.33]                 |         | 0.0670 | 0.2588 | 96% |
| Omitting Parker et al(2003) -                                    |                           | 0.26       | [0.21; 0.33]                 | ×       | 0.0674 | 0.2596 | 96% |
| Omitting Karchava et al(2006) –                                  |                           | 0.26       | [0.21; 0.32]                 |         | 0.0675 | 0.2598 | 97% |
| Omitting Frange et al(2018) –                                    |                           | 0.26       | [0.21; 0.32]                 |         | 0.0675 | 0.2599 | 96% |
| Omitting Ngo-Glang-Huong et al(2016)                             |                           | 0.27       | [0.21; 0.33]                 |         | 0.0605 | 0.2579 | 96% |
| Omitting Speria-Atmadia et al(2020)                              |                           | 0.26       | [0.21, 0.33]<br>[0.21, 0.32] |         | 0.0676 | 0.2599 | 96% |
| Omitting Aulicino et al(2019) –                                  | <u> </u>                  | 0.26       | [0.21; 0.32]                 |         | 0.0677 | 0.2601 | 97% |
| Omitting Abidi et al(2021) –                                     | •                         | 0.26       | [0.21; 0.32]                 |         | 0.0676 | 0.2600 | 97% |
| Omitting Kovacs et al(2005) -                                    | <u> </u>                  | 0.26       | [0.21; 0.32]                 |         | 0.0676 | 0.2600 | 97% |
| Omitting Delaugerre et al(2009)                                  |                           | 0.26       | [0.21; 0.32]                 |         | 0.0676 | 0.2599 | 97% |
| Omitting Ikomey et al(2017) –                                    | <u>.</u>                  | 0.26       | [0.21; 0.32]                 |         | 0.0676 | 0.2600 | 97% |
| Omitting Andrade et al(2017) –                                   |                           | 0.26       | [0.21; 0.33]                 |         | 0.0674 | 0.2596 | 96% |
| Omitting Kuhn et al(2015) –                                      |                           | 0.20       | [0.20, 0.32]<br>[0.21, 0.32] |         | 0.0676 | 0.2572 | 90% |
| Omitting Fokam et al(2013)                                       | - in -                    | 0.20       | [0.21; 0.32]                 |         | 0.0663 | 0.2575 | 96% |
| Omitting Han et al(2009)                                         | <u> </u>                  | 0.26       | [0.21; 0.32]                 |         | 0.0673 | 0.2594 | 97% |
| Omitting Eshleman et al(2001) -                                  | <u>.</u>                  | 0.26       | [0.20; 0.32]                 |         | 0.0671 | 0.2590 | 97% |
| Omitting Martinson et al(2007) -                                 |                           | 0.26       | [0.20; 0.32]                 |         | 0.0671 | 0.2590 | 97% |
| Omitting Vaz et al(2012) -                                       |                           | 0.27       | [0.21; 0.33]                 |         | 0.0662 | 0.2572 | 96% |
| Omitting Olusola et al (2021) –                                  |                           | 0.26       | [0.21; 0.32]                 | •       | 0.0675 | 0.2597 | 97% |
| Omitting Guimaraes et al(2015) –                                 |                           | 0.26       | [0.21; 0.32]                 | •       | 0.0675 | 0.2598 | 97% |
| Omitting Jordan et al(2007)                                      |                           | 0.20       | [0.21, 0.32]<br>[0.20, 0.32] | •       | 0.0675 | 0.2583 | 96% |
| Omitting Jordan et al(2017) –                                    | - i-                      | 0.26       | [0.21: 0.32]                 |         | 0.0675 | 0.2597 | 97% |
| Omitting Yeganeh et al(2018) -                                   | -                         | 0.27       | [0.21; 0.33]                 |         | 0.0670 | 0.2588 | 96% |
| Omitting Neogi et al(2012) -                                     | <u> </u>                  | 0.27       | [0.21; 0.33]                 |         | 0.0662 | 0.2574 | 96% |
| Omitting de Azevedo et al(2022) -                                | -                         | 0.26       | [0.21; 0.32]                 |         | 0.0676 | 0.2600 | 97% |
| Omitting de Azevedo et al(2022) –                                |                           | 0.27       | [0.21; 0.33]                 | •       | 0.0669 | 0.2587 | 96% |
| Omitting Rogo et al(2015) –                                      |                           | 0.27       | [0.21; 0.33]                 |         | 0.0654 | 0.2584 | 96% |
| Omitting Phung et al(2015)                                       |                           | 0.20       | [0.21, 0.32]<br>[0.21, 0.33] |         | 0.0674 | 0.2590 | 97% |
| Omitting Phung et al(2015)                                       | i.                        | 0.27       | [0.21: 0.33]                 |         | 0.0657 | 0.2564 | 96% |
| Omitting Antunes et al(2015) -                                   | <u>i</u>                  | 0.26       | [0.20; 0.32]                 |         | 0.0664 | 0.2577 | 96% |
| Omitting Almeida et al(2009) -                                   |                           | 0.27       | [0.21; 0.33]                 |         | 0.0650 | 0.2549 | 96% |
| Omitting Fogel et al(2013) -                                     |                           | 0.27       | [0.21; 0.33]                 |         | 0.0667 | 0.2582 | 96% |
| Omitting Chaix et al(2007) -                                     | <u>.</u>                  | 0.26       | [0.21; 0.32]                 |         | 0.0676 | 0.2599 | 97% |
| Omitting Jarchi et al(2019) –                                    | -                         | 0.26       | [0.21; 0.32]                 |         | 0.0673 | 0.2594 | 97% |
| Omitting Knann Thu et al(2024) –                                 |                           | 0.26       | [0.20; 0.32]                 |         | 0.0655 | 0.2560 | 96% |
| Omitting Eenman et al(2015)                                      | -                         | 0.20       | [0.20, 0.32]                 |         | 0.0670 | 0.2580 | 97% |
| Omitting Ronen et al(2017) –                                     | ÷                         | 0.26       | [0.20: 0.32]                 |         | 0.0672 | 0.2591 | 97% |
| Omitting Fokam et al(2018)                                       | -                         | 0.27       | [0.21; 0.33]                 |         | 0.0655 | 0.2560 | 96% |
|                                                                  |                           |            |                              |         |        |        |     |
| Random effects model                                             | $\overset{\cdot}{\frown}$ | 0.26       | [0.21; 0.32]                 |         | 0.0666 | 0.2580 | 96% |
|                                                                  |                           |            |                              |         |        |        |     |
| -0.3-0.2-0.1 0 0.1 0.2                                           | 0.3                       |            |                              |         |        |        |     |

# Figure S3B: Sensitivity analysis for the variation of the prevalence of treatment-experienced groups

| Study                                                              |            | Proportion | 95%-CI       | P-value Tau2 | Tau    | 12   |
|--------------------------------------------------------------------|------------|------------|--------------|--------------|--------|------|
| Omitting Boender et al(2016)                                       | +          | 0.74       | [0.67; 0.80] | . 0.0950     | 0.3082 | 97%  |
| Omitting Towler et al(2010)                                        | *          | 0.74       | [0.67; 0.80] | . 0.0938     | 0.3062 | 97%  |
| Omitting Kamori et al(2023)                                        | =          | 0.74       | [0.68; 0.80] | . 0.0955     | 0.3090 | 97%  |
| Omitting Rossouw et al(2015)                                       | -          | 0.74       | [0.67; 0.80] | 0.0925       | 0.3041 | 97%  |
| Omitting Chaix et al(2005)                                         |            | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Machado et al(2004)                                       | +          | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Rodríguez-Galet et al(2023)                               |            | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Rubio-Garrido et al(2021)                                 | =          | 0.74       | [0.68; 0.80] | . 0.0953     | 0.3088 | 97%  |
| Omitting Mossoro-Kpinde et al(2017)                                |            | 0.74       | [0.67: 0.80] | 0.0946       | 0.3076 | 97%  |
| Omitting Kebe et al(2013)                                          | ÷          | 0.74       | [0.67; 0.80] | . 0.0947     | 0.3077 | 97%  |
| Omitting Crowell et al(2017)                                       | +          | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Stoddart et al(2014)                                      |            | 0.74       | [0.67; 0.80] | . 0.0940     | 0.3066 | 97%  |
| Omitting Aboulker et al(2004)                                      | =          | 0.75       | [0.68; 0.81] | . 0.0932     | 0.3053 | 97%  |
| Omitting Nvandiko et al(2022)                                      |            | 0.74       | [0.67: 0.80] | . 0.0945     | 0.3075 | 97%  |
| Omitting Taylor et al(2011)                                        | ÷          | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Fofana et al(2023)                                        |            | 0.75       | [0.69; 0.81] | . 0.0847     | 0.2911 | 97%  |
| Omitting Contreras et al(2013)                                     |            | 0.75       | [0.68; 0.81] | . 0.0934     | 0.3056 | 97%  |
| Omitting Delaugerre et al(2007)                                    | 三          | 0.74       | [0.68; 0.80] | . 0.0955     | 0.3090 | 97%  |
| Omitting Inzaule et al(2014)                                       |            | 0.74       | [0.68: 0.80] | . 0.0953     | 0.3087 | 97%  |
| Omitting Kityo et al(2017)                                         | +          | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Soeria-Atmadja et al(2020)                                |            | 0.75       | [0.68; 0.81] | . 0.0920     | 0.3034 | 97%  |
| Omitting Jittamala et al(2009)                                     | -          | 0.74       | [0.67; 0.80] | . 0.0939     | 0.3065 | 97%  |
| Omitting Abidi et al(2021)                                         | =          | 0.75       | [0.68; 0.81] | . 0.0940     | 0.3066 | 97%  |
| Omitting Shet et al(2013)                                          |            | 0.75       | [0.66, 0.61] | 0.0936       | 0.3003 | 97%  |
| Omitting Theodore et al(2011)                                      |            | 0.75       | [0.69: 0.81] | . 0.0896     | 0.2994 | 97%  |
| Omitting Yan et al(2022)                                           | -          | 0.74       | [0.68; 0.80] | . 0.0955     | 0.3090 | 97%  |
| Omitting Zhao et al(2011)                                          | +          | 0.74       | [0.67; 0.80] | . 0.0924     | 0.3039 | 97%  |
| Omitting Bratholm et al(2010)                                      | <u>+</u>   | 0.74       | [0.68; 0.80] | . 0.0950     | 0.3083 | 97%  |
| Omitting Gupta et al(2010)                                         | =          | 0.74       | [0.68; 0.80] | . 0.0952     | 0.3086 | 97%  |
| Omitting Beghin et al(2020)                                        |            | 0.74       | [0.68, 0.80] | 0.0928       | 0.3046 | 97%  |
| Omitting Ventosa-Cubillo et al(2023)                               |            | 0.74       | [0.68; 0.80] | . 0.0951     | 0.3084 | 97%  |
| Omitting Muri et al(2017)                                          | +          | 0.74       | [0.67; 0.80] | . 0.0949     | 0.3080 | 97%  |
| Omitting Vaz et al(2018)                                           |            | 0.74       | [0.67; 0.80] | . 0.0940     | 0.3065 | 97%  |
| Omitting Makadzange et al(2015)                                    |            | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Vaz et al(2009)                                           |            | 0.74       | [0.68; 0.80] | 0.0954       | 0.3089 | 97%  |
| Omitting Vaz et al(2012)                                           |            | 0.75       | [0.69: 0.81] | . 0.0883     | 0.2972 | 97%  |
| Omitting Brindeiro et al(2002)                                     | +          | 0.74       | [0.67; 0.80] | . 0.0941     | 0.3068 | 97%  |
| Omitting Adje-Toure et al(2008)                                    |            | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Tagnouokam Ngoupo et al(2021)                             | =          | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Amani-Bosse et al(2017)                                   |            | 0.74       | [0.68; 0.80] | 0.0954       | 0.3089 | 97%  |
| Omitting Ahoua et al(2011)                                         |            | 0.74       | [0.67; 0.80] | . 0.0947     | 0.3077 | 97%  |
| Omitting Mutwa et al(2014)                                         | ÷          | 0.74       | [0.67; 0.80] | . 0.0941     | 0.3068 | 97%  |
| Omitting Rogo et al(2015)                                          | <u>+</u>   | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3089 | 97%  |
| Omitting Mulder et al(2011)                                        |            | 0.75       | [0.68; 0.81] | . 0.0940     | 0.3067 | 97%  |
| Omitting Francesca et al(2004)                                     |            | 0.74       | [0.68: 0.80] | 0.094        | 0.3088 | 97%  |
| Omitting Ross et al(2015)                                          |            | 0.75       | [0.68; 0.81] | . 0.0937     | 0.3061 | 97%  |
| Omitting Ross et al(2015)                                          |            | 0.75       | [0.69; 0.81] | . 0.0868     | 0.2946 | 97%  |
| Omitting Lwembe et al(2007)                                        | -          | 0.75       | [0.68; 0.80] | . 0.0937     | 0.3061 | 97%  |
| Omitting Hajjar et al(2012)                                        |            | 0.74       | [0.67; 0.80] | . 0.0945     | 0.3074 | 97%  |
| Omitting Makatini et al(2019)<br>Omitting Camara–Cissé et al(2021) |            | 0.74       | [0.67; 0.80] | 0.0945       | 0.3074 | 97%  |
| Omitting Dumans et al(2009)                                        |            | 0.74       | [0.68; 0.80] | . 0.0954     | 0.3088 | 97%  |
| Omitting Fokam et al(2011)                                         | ÷          | 0.74       | [0.67; 0.80] | . 0.0949     | 0.3081 | 97%  |
| Omitting Green et al(2012)                                         | *          | 0.74       | [0.67; 0.80] | . 0.0952     | 0.3086 | 97%  |
| Omitting Pillay et al (2014)                                       |            | 0.74       | [0.67; 0.80] | . 0.0948     | 0.3079 | 97%  |
| Omitting Funt et al(2023)<br>Omitting Fofana et al(2018)           |            | 0.74       | [0.67; 0.80] | 0.095        | 0.3083 | 97%  |
| Omitting Servais et al(2002)                                       |            | 0.74       | [0.67: 0.80] | . 0.0933     | 0.3054 | 97%  |
| Omitting Ramkissoon et al(2015)                                    | ÷.         | 0.74       | [0.67; 0.80] | . 0.0944     | 0.3072 | 97%  |
| Omitting Saravanan et al(2017)                                     | *          | 0.74       | [0.67; 0.80] | . 0.0944     | 0.3073 | 97%  |
| Omitting Bismara et al(2012)                                       | ±          | 0.74       | [0.67; 0.80] | . 0.0935     | 0.3058 | 97%  |
| Omitting Abuogi et al(2023)                                        |            | 0.74       | [0.68; 0.80] | 0.0944       | 0.3073 | 97%  |
| Omitting Khamadi et al(2023)                                       | ÷          | 0.74       | [0.68: 0.80] | . 0.0954     | 0.3088 | 97%  |
| Omitting Charpentier et al(2012)                                   |            | 0.74       | [0.67; 0.80] | . 0.0952     | 0.3086 | 97%  |
| Omitting Bouassa et al(2019)                                       | +          | 0.74       | [0.68; 0.80] | . 0.0953     | 0.3087 | 97%  |
| Omitting Pang et al(2024)                                          |            | 0.74       | [0.68; 0.80] | . 0.0948     | 0.3079 | 97%  |
| Omitting Tambuyzer et al(2016)                                     |            | 0.74       | [0.68: 0.81] | . 0.0955     | 0.3090 | 97%  |
| Omitting Lange et al(2015)                                         |            | 0.75       | [0.68: 0.80] | 0.0952       | 0.3086 | 97%  |
| Omitting Gopalan et al(2019)                                       | ÷          | 0.74       | [0.67; 0.80] | . 0.0952     | 0.3085 | 97%  |
| Omitting Szubert et al(2017)                                       | -          | 0.74       | [0.68; 0.80] | . 0.0946     | 0.3076 | 97%  |
| Devidence officiale model                                          |            |            | 10 00. 0 00. |              | 0.0000 | 070/ |
| Random effects model                                               |            | 0.74       | [0.68; 0.80] | . 0.0942     | 0.3069 | 97%  |
|                                                                    | -0.5 0 0.5 |            |              |              |        |      |

# Figure S4A: Forest plot of the NNRTI mutation prevalence among treatment-naive groups

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Events Tota                                                                                                                                                                                                                             | I | Proportion                                                                                                                                                                                 | 95%-CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weight                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Region = Southern Africa<br>Lindström et al(2010)<br>Lindström et al(2010)<br>Fogel et al(2011)<br>Nelson et al(2015)<br>Nelson et al(2015)<br>Bennett et al(2015)<br>Hunt et al(2011)<br>Taylor et al(2011)<br>Hunt et al(2011)<br>Hunt et al(2011)<br>Hunt et al(2019)<br>Jordan et al(2012)<br>Kuhn et al(2015)<br>Kuhn et al(2015)<br>Martinson et al(2007)<br>Vaz et al(2012)<br>Jordan et al(2017)<br>Yeganeh et al(2017)<br>Fisher et al(2015)<br>Fisher et al(2015)<br>Random effects model<br>Heterogeneity: $r^2 = 97\%$ , $r^2 = 0.0737$ , p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 43<br>37 45<br>78 100<br>3 28<br>1 16<br>4 17<br>32 46<br>27 255<br>33 155<br>33 155<br>33 155<br>33 155<br>131 220<br>130 199<br>88 155<br>18 75<br>24 53<br>5 112<br>516 1046<br>12 122<br>36 75<br>1 18<br>6 16<br>2805<br>< 0.01 |   | 0.6512<br>0.7222<br>0.1721<br>0.0625<br>0.3077<br>0.6531<br>0.1059<br>0.2129<br>0.5091<br>0.5697<br>0.2400<br>0.4528<br>0.0446<br>0.4924<br>0.0976<br>0.4557<br>0.5556<br>0.4000<br>0.3657 | $\begin{matrix} [0.4907; 0.7899]\\ [0.6795; 0.9200]\\ [0.6278; 0.8041]\\ [0.0227; 0.2823]\\ [0.006; 0.3023]\\ [0.0909; 0.6143]\\ [0.5036; 0.7833]\\ [0.709; 0.1503]\\ [0.513; 0.2858]\\ [0.4410; 0.5769]\\ [0.4410; 0.5769]\\ [0.4859; 0.7224]\\ [0.4859; 0.6470]\\ [0.1489; 0.3525]\\ [0.3136; 0.5855]\\ [0.3146; 0.5855]\\ [0.3146; 0.5854]\\ [0.147; 0.5311]\\ [0.0471; 0.1011]\\ [0.4514; 0.1642]\\ [0.6341; 0.5717]\\ [0.1634; 0.6771]\\ [0.2494; 0.4901] \end{matrix}$ | $\begin{array}{c} 1.4\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.3\%\\ 29.0\%\end{array}$ |
| $\label{eq:response} \begin{array}{l} \mbox{Region} = \mbox{Eastern Africa} \\ \mbox{Towler et al}(2010) \\ \mbox{Church et al}(2010) \\ \mbox{Course} \\ \mbox{Rescaled} \\ \mbox{Rescaled} \\ \mbox{Course} \\ \mbox{Course} \\ \mbox{Course} \\ \mbox{Course} \\ \mbox{Course} \\ \mbox{Rescaled} \\ Res$ | 1 74<br>33 46<br>21 275<br>34 66<br>6 32<br>8 57<br>16 90<br>11 24<br>80 224<br>1 16<br>10 20<br>19 43<br>975<br>< 0.01                                                                                                                 |   | 0.0135<br>0.6735<br>0.0753<br>0.5231<br>0.1875<br>0.1404<br>0.1778<br>0.4583<br>0.3571<br>0.0556<br>0.5000<br>0.4419<br>0.2703                                                             | [0.0003; 0.0730]<br>[0.5246; 0.8005]<br>[0.0472; 0.1128]<br>[0.3954; 0.6485]<br>[0.0721; 0.3644]<br>[0.1052; 0.2726]<br>[0.2555; 0.6718]<br>[0.2944; 0.4237]<br>[0.2720; 0.7280]<br>[0.270; 0.7280]<br>[0.270; 0.7280]<br>[0.2908; 0.6012]<br>[0.1485; 0.4116]                                                                                                                                                                                                               | 1.5%<br>1.5%<br>1.5%<br>1.4%<br>1.5%<br>1.5%<br>1.3%<br>1.3%<br>1.3%<br>1.4%<br>1.3%                                                                                                                 |
| Region = North America<br>Van Dyke et al(2016)<br>Louis et al(2019)<br>Parker et al(2003)<br>Parker et al(2003)<br>Karchava et al(2006)<br>Rogo et al(2015)<br>Lehman et al(2015)<br>Random effects model<br>Heterogeneity: $l^2 = 97\%$ , $r^2 = 0.0959$ , p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105 234<br>210 304<br>2 49<br>1 38<br>5 42<br>1 16<br>10 20<br>703<br>< 0.01                                                                                                                                                            |   | 0.4487<br>0.6908<br>0.0408<br>0.0263<br>0.1190<br>0.0625<br>0.5000<br>0.2375                                                                                                               | [0.3839; 0.5149]<br>[0.6355; 0.7423]<br>[0.0050; 0.1398]<br>[0.0007; 0.1381]<br>[0.0398; 0.2563]<br>[0.0016; 0.3023]<br>[0.2720; 0.7280]<br>[0.2720; 0.7280]                                                                                                                                                                                                                                                                                                                 | 1.5%<br>1.5%<br>1.4%<br>1.4%<br>1.3%<br>1.3%<br>10.0%                                                                                                                                                |
| Region = Asia<br>Kurle et al(2007)<br>Kurle et al(2007)<br>Ngo-Giang-Huong et al(2016)<br>Han et al(2009)<br>Neogi et al(2012)<br>Chalermchockcharoenkit et al(2009)<br>Phung et al(2015)<br>Jarchi et al(2019)<br>Khanh Thu et al(2024)<br>Random effects model<br>Heterogeneity: $l^2 = 95\%$ , $\tau^2 = 0.0546$ , p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 19<br>6 13<br>17 476<br>2 14<br>5 100<br>2 10<br>2 65<br>2 15<br>60 100<br>822<br>< 0.01                                                                                                                                              |   | 0.1053<br>0.4615<br>0.0357<br>0.1429<br>0.0476<br>0.2000<br>0.0308<br>0.1333<br>0.5714<br>0.1556                                                                                           | [0.0130; 0.3314]<br>[0.1922; 0.7487]<br>[0.0209; 0.0566]<br>[0.0178; 0.4281]<br>[0.0156; 0.1076]<br>[0.0252; 0.5561]<br>[0.0037; 0.1068]<br>[0.0166; 0.4046]<br>[0.4711; 0.6676]<br>[0.0478; 0.3018]                                                                                                                                                                                                                                                                         | 1.3%<br>1.2%<br>1.6%<br>1.2%<br>1.5%<br>1.5%<br>1.3%<br>1.5%<br>1.5%                                                                                                                                 |
| Region = Western and Central Afri<br>Boerma et al(2016)<br>Inzaule et al(2018)<br>Crowell et al(2017)<br>Salou et al(2017)<br>Salou et al(2013)<br>Ikomey et al(2013)<br>Ikomey et al(2011)<br>Olusola et al(2021)<br>Chaix et al(2007)<br>Fokam et al(2007)<br>Fokam et al(2008)<br>Random effects model<br>Heterogeneity: $l^2 = 93\%$ , $l^2 = 0.0462$ , p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ca<br>13 82<br>194 430<br>27 120<br>120 201<br>5 10<br>11 37<br>2 41<br>3 12<br>6 26<br>0 16<br>974<br>< 0.01                                                                                                                           |   | 0.1585<br>0.4512<br>0.2250<br>0.5970<br>0.5000<br>0.2973<br>0.0488<br>0.2500<br>0.2308<br>0.0000<br>0.2539                                                                                 | [0.0872; 0.2558]<br>[0.4034; 0.4996]<br>[0.1538; 0.3102]<br>[0.5257; 0.6654]<br>[0.1871; 0.8129]<br>[0.1887; 0.4698]<br>[0.0600; 0.1653]<br>[0.0549; 0.4719]<br>[0.0897; 0.4365]<br>[0.0900; 0.2180]<br>[0.1346; 0.3936]                                                                                                                                                                                                                                                     | 1.5%<br>1.5%<br>1.5%<br>1.2%<br>1.4%<br>1.4%<br>1.2%<br>1.4%<br>1.3%                                                                                                                                 |
| Region = Europe<br>Neubert et al(2016)<br>Frange et al(2018)<br>Ngo-Giang-Huong et al(2016)<br>Delaugerre et al(2009)<br>Masquelier et al(2001)<br>Random effects model<br>Heterogeneity: $l^2 = 71\%$ , $r^2 = 0.0094$ , p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 24<br>5 84<br>17 476<br>2 60<br>7 34<br>678<br>< 0.01                                                                                                                                                                                 |   | 0.1250<br>0.0595<br>0.0357<br>0.0333<br>0.2059<br>0.0695                                                                                                                                   | [0.0266; 0.3236]<br>[0.0196; 0.1335]<br>[0.0209; 0.0566]<br>[0.0041; 0.1153]<br>[0.0870; 0.3790]<br>[0.0234; 0.1339]                                                                                                                                                                                                                                                                                                                                                         | 1.4%<br>1.5%<br>1.6%<br>1.5%<br>1.4%<br>7.3%                                                                                                                                                         |
| Region = South America<br>Aulicino et al(2019)<br>Andrade et al(2017)<br>Guimarães et al(2015)<br>Yeganeh et al(2018)<br>de Azevedo et al(2022)<br>de Azevedo et al(2022)<br>Almeida et al(2009)<br>Random effects model<br>Heterogeneity: $l^2 = 74\%$ , $\tau^2 = 0.0100$ , p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 115<br>16 117<br>1 31<br>12 123<br>3 35<br>5 97<br>0 24<br>545<br>< 0.01                                                                                                                                                             |   | 0.2174<br>0.1368<br>0.0323<br>0.0976<br>0.0789<br>0.0515<br>0.0000<br>0.0855                                                                                                               | [0.1459; 0.3040]<br>[0.0802; 0.2126]<br>[0.0008; 0.1670]<br>[0.0514; 0.1642]<br>[0.0166; 0.2138]<br>[0.0169; 0.1162]<br>[0.0000; 0.1425]<br>[0.0402; 0.1437]                                                                                                                                                                                                                                                                                                                 | 1.5%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>1.5%<br>1.4%<br>10.2%                                                                                                                                        |
| <b>Random effects model</b><br>Heterogeneity: $l^2 = 97\%$ , $\tau^2 = 0.0675$ , <i>p</i><br>Test for subgroup differences: $\chi_6^2 = 32.94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>7505</b><br>= 0<br>4, df = 6 (p < 0.0                                                                                                                                                                                                | 5 | 0.2364                                                                                                                                                                                     | [0.1826; 0.2945]                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100.0%                                                                                                                                                                                               |

# Figure S4B: Forest plot of the NNRTI mutation prevalence among treatment-experienced groups

| Study                                                                                          | Events      | Total     | P             | roportion | 95%-CI                           | Weight |
|------------------------------------------------------------------------------------------------|-------------|-----------|---------------|-----------|----------------------------------|--------|
| Region1 = Europe                                                                               | 20          | 96        |               | 0.2256 10 | 2204: 0 42521                    | 1 20/  |
| Aboulker et al (2006)                                                                          | 28          | 20        |               | 0.3256 [0 | 0.0000 0 1684                    | 1.3%   |
| Delaugerre et al(2007)                                                                         | 49          | 119       |               | 0.4118 [0 | 0.3224; 0.5057]                  | 1.3%   |
| Mulder et al(2011)                                                                             | 35          | 157       |               | 0.2229 [0 | 0.1605; 0.2962]                  | 1.3%   |
| Francesca et al(2019)<br>Servais et al(2002)                                                   | 21          | 22        |               | 1.0000 [0 | 0.1073; 0.5022]                  | 1.2%   |
| Sivay et al(2024)                                                                              | 57          | 96        |               | 0.5938 [0 | .4887; 0.6929]                   | 1.3%   |
| Random effects model                                                                           |             | 521       |               | 0.3998 [0 | .1347; 0.6997]                   | 8.6%   |
| Heterogeneity: $T = 95\%$ , $\tau = 0.1560$                                                    | ), p < 0.01 |           |               |           |                                  |        |
| Region1 = Eastern Africa                                                                       | 19          | 56        |               | 0.9571 0  | 7279.0 02621                     | 1 20/  |
| Towler et al(2010)                                                                             | 12          | 12        |               | 1.0000 [0 | 0.7354; 1.0000]                  | 1.1%   |
| Kamori et al(2023)                                                                             | 64          | 92        |               | 0.6957 [0 | 0.5910; 0.7873]                  | 1.3%   |
| Tadesse et al(2018)                                                                            | 72          | 90        |               | 0.8000 [0 | 0.7025; 0.8769]                  | 1.3%   |
| Kityo et al(2017)                                                                              | 64          | 84        |               | 0.7619 [0 | 0.6565; 0.8481]                  | 1.3%   |
| Soeria-Atmadja et al(2020)                                                                     | 22          | 92        |               | 0.2391 [0 | 0.1563; 0.3394]                  | 1.3%   |
| Chohan et al(2015)                                                                             | 12          | 19        |               | 0.3684 [0 | 0.1629; 0.6164]                  | 1.2%   |
| Bratholm et al(2010)                                                                           | 11          | 19        |               | 0.5789 [0 | 0.3350; 0.7975]                  | 1.2%   |
| Muri et al(2017)                                                                               | 47          | 52        |               | 0.9038 [0 | 0.7897; 0.9680]                  | 1.2%   |
| Ahoua et al(2011)<br>Aboua et al(2011)                                                         | 12          | 17        |               | 0.7059 [0 | 0.4404; 0.8969]                  | 1.2%   |
| Mutwa et al(2014)                                                                              | 49          | 52        |               | 0.9423 [0 | 0.8405; 0.9879]                  | 1.2%   |
| Lwembe et al(2007)                                                                             | 4           | 12        |               | 0.3333 [0 | 0.0992; 0.6511]                  | 1.1%   |
| Abuogi et al(2023)<br>Khamadi et al(2023)                                                      | 87          | 199       |               | 0.4372 [0 | 0.3672; 0.5091]                  | 1.3%   |
| Random effects model                                                                           | 00          | 1031      |               | 0.6048 [0 | .4482; 0.7517]                   | 20.6%  |
| Heterogeneity: $I^{+} = 96\%$ , $\tau^{-} = 0.0952$                                            | 2, p < 0.01 |           |               |           |                                  |        |
| Region1 = Asia                                                                                 | 50          | E1        |               | 0.0004 10 | 1 8055 · 0 0005                  | 1 20/  |
| Puthanakit et al(2013)                                                                         | 117         | 120       |               | 0.9804 [0 |                                  | 1.2%   |
| Nyandiko et al(2022)                                                                           | 119         | 128       | -             | 0.9297 [0 | 0.8707; 0.9673]                  | 1.3%   |
| Jittamala et al(2009)                                                                          | 37          | 39        |               | 0.9487 [0 | 0.8268; 0.9937]                  | 1.2%   |
| Yan et al(2022)                                                                                | 59          | 93        |               | 0.6344 [0 | 0.5281: 0.7319                   | 1.3%   |
| Zhao et al(2011)                                                                               | 38          | 76        |               | 0.5000 [0 | .3830; 0.6170]                   | 1.3%   |
| Hajjar et al(2012)<br>Saravanan et al(2017)                                                    | 0           | 22        |               | 0.0000 [0 | 0.0000; 0.1544]                  | 1.2%   |
| Pang et al(2024)                                                                               | 192         | 396       |               | 0.4848 [0 | 0.4346; 0.5353]                  | 1.3%   |
| Tambuyzer et al(2016)                                                                          | 75          | 101       |               | 0.7426 [0 | 0.6460; 0.8244]                  | 1.3%   |
| Random effects model<br>Heterogeneity: $I^2 = 98\%$ , $\tau^2 = 0.1759$                        | ), p < 0.01 | 1193      |               | 0.6886 [0 | .4391; 0.8917]                   | 13.8%  |
| Desilent - Desilent Africa                                                                     |             |           |               |           |                                  |        |
| Region1 = Southern Africa<br>Rossouw et al(2015)                                               | 29          | 65        |               | 0 4462 [0 | 3227 0 57471                     | 1.3%   |
| Stoddart et al(2014)                                                                           | 265         | 370       |               | 0.7162 [0 | 0.6673; 0.7616]                  | 1.3%   |
| Taylor et al(2011)                                                                             | 5           | 41        |               | 0.1220 [0 | 0.0408; 0.2620]                  | 1.2%   |
| Beghin et al(2010)                                                                             | 13          | 20        |               | 0.4483 [0 | 2645: 0.6431                     | 1.2%   |
| Beghin et al(2020)                                                                             | 13          | 64        |               | 0.2031 [0 | 0.1128; 0.3223]                  | 1.3%   |
| Vaz et al(2018)                                                                                | 69          | 248       | *             | 0.2782 [0 | 0.2234; 0.3384]                  | 1.3%   |
| Vaz et al(2009)                                                                                | 26          | 84        |               | 0.2549 [0 | 0.1738; 0.3508]                  | 1.3%   |
| Vaz et al(2012)                                                                                | 9           | 113       |               | 0.0796 [0 | 0.0371; 0.1458]                  | 1.3%   |
| Makatini et al(2019)                                                                           | 14          | 22        |               | 0.6364 [0 | 0.4066; 0.8280]                  | 1.2%   |
| Pillay et al(2012)                                                                             | 64          | 41        |               | 0.4146 [0 | 0.2632; 0.5789]                  | 1.2%   |
| Hunt et al(2023)                                                                               | 625         | 809       |               | 0.7726 [0 | 0.7421; 0.8010]                  | 1.3%   |
| Tambuyzer et al(2016)                                                                          | 75          | 101       | - <del></del> | 0.7426 [0 | 0.6460; 0.8244]                  | 1.3%   |
| Random effects model                                                                           | '           | 2214      |               | 0.5145 [0 | .3664; 0.6613]                   | 19.8%  |
| Heterogeneity: $I^2 = 98\%$ , $\tau^2 = 0.0842$                                                | e, p < 0.01 |           |               |           |                                  |        |
| Region1 = Western and Central                                                                  | Africa      |           |               |           |                                  |        |
| Chaix et al(2005)                                                                              | 14          | 38        |               | 0.3684 [0 | 0.2181; 0.5401]                  | 1.2%   |
| Rubio-Garrido et al(2023)                                                                      | 18          | 27        |               | 0.6667 [0 | 0.4604: 0.8348                   | 1.2%   |
| Mossoro-Kpinde et al(2017)                                                                     | 28          | 58        |               | 0.4828 [0 | 0.3495; 0.6178]                  | 1.3%   |
| Kebe et al(2013)                                                                               | 48          | 52        |               | 0.9231 [0 | 0.8146; 0.9786]                  | 1.2%   |
| Yendewa et al(2021)                                                                            | 49          | 64        |               | 0.7656 [0 | 0.6431: 0.8625                   | 1.3%   |
| Brice et al (2020)                                                                             | 49          | 91        |               | 0.5385 [0 | 0.4308; 0.6436]                  | 1.3%   |
| Sylla et al (2019)<br>Adie-Toure et al (2009)                                                  | 10          | 33        |               | 0.3030 [0 | 0.1559; 0.4871]                  | 1.2%   |
| Tagnouokam Ngoupo et al(2021)                                                                  | 14          | 57        |               | 0.2632 [0 | 0.1554; 0.3966]                  | 1.2%   |
| Amani-Bossé et al(2017)                                                                        | 4           | 28        |               | 0.1429 [0 | 0.0403; 0.3267]                  | 1.2%   |
| Camara-Cisse et al(2021)<br>Fokam et al(2011)                                                  | 34          | 61<br>50  |               | 0.8800 0  | 0.4245; 0.6845]                  | 1.3%   |
| Fofana et al(2018)                                                                             | 45          | 53        |               | 0.8491 [0 | 0.7241; 0.9325]                  | 1.2%   |
| Djiyou et al(2023)                                                                             | 41          | 54        |               | 0.7593 [0 | 0.6236; 0.8651]                  | 1.2%   |
| Bouassa et al(2012)                                                                            | 59          | 69<br>18  |               | 0.8551 [0 | .7490; 0.9283]<br>.4099: 0.86661 | 1.3%   |
| Random effects model                                                                           |             | 896       |               | 0.5940 [0 | .4706; 0.7120]                   | 22.2%  |
| Heterogeneity: $I^{*} = 93\%$ , $\tau^{e} = 0.0631$                                            | , p < 0.01  |           |               |           |                                  |        |
| Region1 = North America                                                                        | 12.2        |           | _             | 0.0.17    | 0050 5                           |        |
| Contreras et al(2013)<br>Aqui et al(2014)                                                      | 23          | 66<br>117 |               | 0.3485 [0 | 9690 1 0000                      | 1.3%   |
| Rogo et al(2015)                                                                               | 15          | 26        |               | 0.5769 [0 | 0.3692; 0.7665]                  | 1.2%   |
| Fitzgibbon et al(2004)                                                                         | 4           | 17        |               | 0.2353 [0 | 0.0681; 0.4990]                  | 1.2%   |
| Ross et al(2015)<br>Ross et al(2015)                                                           | 1           | 25<br>54  |               | 0.0400 [0 | 0.0010; 0.2035]                  | 1.2%   |
| Ramkissoon et al(2015)                                                                         | 28          | 41        |               | 0.6829 [0 | 0.5191; 0.8192]                  | 1.2%   |
| Tambuyzer et al(2016)                                                                          | 75          | 101       |               | 0.7426 [0 | 0.6460; 0.8244]                  | 1.3%   |
| Heterogeneity: $l^2 = 98\%$ , $\tau^2 = 0.1987$                                                | ', p < 0.01 | -1-41     |               | 0.4010 [0 |                                  | 3.070  |
| Region1 = South Amorica                                                                        |             |           |               |           |                                  |        |
| Ventosa-Cubillo et al(2023)                                                                    | 23          | 62        |               | 0.3710 [0 | 0.2516; 0.5031]                  | 1.3%   |
| Brindeiro et al(2002)                                                                          | 50          | 52        |               | 0.9615 [0 | 0.8679; 0.9953]                  | 1.2%   |
| Tambuyzer et al(2012)                                                                          | 8           | 61<br>101 |               | 0.7426 0  | 0.0584; 0.2422]                  | 1.3%   |
| Random effects model                                                                           |             | 276       |               | 0.5716 [0 | .1758; 0.9203]                   | 5.0%   |
| Heterogeneity: $I^2 = 98\%$ , $\tau^2 = 0.1774$                                                | , p < 0.01  |           |               |           |                                  |        |
| Random effects model                                                                           |             | 6578      | $\diamond$    | 0.5639 [0 | .4876; 0.6388]                   | 100.0% |
| Heterogeneity: $I^2 = 97\%$ , $\tau^2 = 0.1119$<br>Test for subgroup differences: $\tau^2 = 2$ | p = 0       | (n = 0 =  |               |           |                                  |        |
|                                                                                                |             | J- 0.7    |               |           |                                  |        |

#### Figure S5A: Forest plot of the NRTI mutation prevalence among treatment-naive groups

| Study                                                                                                                                                                                                                                                                                                                                                                                                                    | Events Total                                                                                                                                   |                           | Proportion 95%-C                                                                                                                                                                                                                                                                                                                                                                                   | l Weight                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Region = Southern Africa<br>Lindström et al(2010)<br>Bennett et al(2010)<br>Bennett et al(2010)<br>Hunt et al(2011)<br>Taylor et al(2011)<br>Hunt et al(2011)<br>Jordan et al(2012)<br>Kuhn et al(2015)<br>Vaz et al(2015)<br>Vaz et al(2015)<br>Jordan et al(2017)<br>Yeganeh et al(2018)<br>Antunes et al(2015)<br>Fisher et al(2015)<br>Random effects model<br>Heterogeneity: $J^2 = 91\%$ , $\tau^2 = 0.0300$ , $p$ | 0 43<br>0 45<br>6 49<br>19 255<br>11 155<br>10 220<br>41 198<br>23 155<br>8 75<br>1 112<br>71 1048<br>2 123<br>33 79<br>5 15<br>2572<br>< 0.01 |                           | 0.0000 [0.0000; 0.0822<br>0.0000 [0.0000; 0.0787<br>0.1224 [0.0463; 0.2477<br>0.0745 [0.0455; 0.1139<br>0.0710 [0.0360; 0.1234<br>0.0455 [0.0220; 0.0820<br>0.2071 [0.1529; 0.2702<br>0.1484 [0.0964; 0.2143<br>0.1067 [0.0472; 0.1994<br>0.0089 [0.0002; 0.0487<br>0.0677 [0.0533; 0.0847<br>0.0163 [0.0020; 0.0575<br>0.4177 [0.3077; 0.5341<br>0.3333 [0.1182; 0.6162<br>0.0850 [0.0373; 0.1478 | 1.6%         1.7%         1.7%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         1.9%         2.9% |
| Region = Eastern Africa<br>Towler et al(2010)<br>Kityo et al(2016)<br>Dow et al(2017)<br>Zeh et al(2017)<br>Tadesse et al(2019)<br>Soeria-Atmadja et al(2020)<br>Jordan et al(2017)<br>Lehman et al(2015)<br>Random effects model<br>Heterogeneity: $J^2$ = 84%, $\tau^2$ = 0.0254, $p$                                                                                                                                  | 1 74<br>16 279<br>12 65<br>14 32<br>3 57<br>4 90<br>19 224<br>2 20<br>841<br>< 0.01                                                            | <br><br>↓↓++              | 0.0135 [0.0003; 0.0730<br>0.0573 [0.0331; 0.0915<br>0.1846 [0.0992; 0.3003<br>0.4375 [0.2636; 0.6234<br>0.0526 [0.0110; 0.1462<br>0.0444 [0.0122; 0.1099<br>0.0848 [0.0518; 0.1293<br>0.1000 [0.0123; 0.3170<br>0.0957 [0.0345; 0.1800                                                                                                                                                             | 1.8%         1.9%         1.7%         1.5%         1.5%         1.7%         1.8%         1.8%         1.8%         1.3.8%                                                                                                                                                                                     |
| Region = North America<br>Van Dyke et al(2016)<br>Louis et al(2019)<br>Parker et al(2003)<br>Parker et al(2003)<br>Karchava et al(2006)<br>Kovacs et al(2005)<br>Rogo et al(2015)<br>Lehman et al(2015)<br>Random effects model<br>Heterogeneity: $I^2$ = 96%, $\tau^2$ = 0.0656, $p$                                                                                                                                    | 142 234<br>123 304<br>1 49<br>6 38<br>3 42<br>11 44<br>0 16<br>2 20<br>747<br><0.01                                                            | *                         | - 0.6068 [0.5411; 0.6698<br>0.4046 [0.3490; 0.4621<br>0.0204 [0.0005; 0.1085<br>0.1579 [0.0602; 0.3125<br>0.0714 [0.0150; 0.1948<br>0.2500 [0.1319; 0.4034<br>0.0000 [0.0000; 0.2059<br>0.1000 [0.0123; 0.3170<br>0.1770 [0.0547; 0.3437                                                                                                                                                           | 1.9%         1.9%         1.7%         1.6%         1.6%         1.6%         1.3%         1.3%         1.4%         13.1%                                                                                                                                                                                      |
| Region = Asia<br>Kurle et al(2007)<br>Kurle et al(2007)<br>Ngo-Giang-Huong et al(2016)<br>Han et al(2009)<br>Neogi et al(2012)<br>Chalermchockcharoenkit et al(2009)<br>Phung et al(2015)<br>Jarchi et al(2019)<br>Khanh Thu et al(2024)<br>Random effects model<br>Heterogeneity: $l^2$ = 0.0028, $p$                                                                                                                   | 0 19<br>0 13<br>28 476<br>0 14<br>2 105<br>0 10<br>2 65<br>2 15<br>11 105<br>822<br>= 0.14                                                     |                           | 0.0000 [0.0000; 0.1765<br>0.0000 [0.0000; 0.2471<br>0.0588 [0.0394; 0.0839<br>0.0000 [0.0000; 0.2316<br>0.0190 [0.0002; 0.0671<br>0.0000 [0.0000; 0.3085<br>0.0308 [0.0037; 0.1068<br>0.1333 [0.0166; 0.4046<br>0.1048 [0.0535; 0.1797<br>0.0320 [0.0104; 0.0613                                                                                                                                   | 1.3%         1.2%         2.0%         1.2%         1.2%         1.1%         1.1%         1.2%         1.1%         1.2%         1.3%         1.3%         1.3%         1.3%         1.3%         1.3%         1.3%                                                                                            |
| Region = Europe<br>Gibb et al(2003)<br>Neubert et al(2016)<br>Frange et al(2018)<br>Ngo-Giang-Huong et al(2016)<br>Delaugerre et al(2009)<br>Random effects model<br>Heterogeneity: $l^2 = 72\%$ , $\tau^2 = 0.0103$ , p                                                                                                                                                                                                 | 4 105<br>5 24<br>3 84<br>28 476<br>10 60<br>749<br>< 0.01                                                                                      |                           | 0.0381 [0.0105; 0.0947<br>0.2083 [0.0713; 0.4215<br>0.0357 [0.0074; 0.1008<br>0.0588 [0.0394; 0.0839<br>0.1667 [0.0829; 0.2852<br>0.0784 [0.0298; 0.1449                                                                                                                                                                                                                                           | ] 1.8%<br>] 1.4%<br>] 1.8%<br>] 2.0%<br>] 1.7%<br>] 8.7%                                                                                                                                                                                                                                                        |
| Region = Western and Central Afric<br>Boerma et al(2016)<br>Inzaule et al(2017)<br>Salou et al(2017)<br>Salou et al(2016)<br>Nii-Trebi et al(2013)<br>Ikomey et al(2017)<br>Fokam et al(2011)<br>Olusola et al(2021)<br>Fokam et al(2018)<br>Random effects model<br>Heterogeneity: $J^2 = 86\%, \tau^2 = 0.0117, p$                                                                                                     | ca<br>7 82<br>94 430<br>4 120<br>22 201<br>0 10<br>1 37<br>1 41<br>1 12<br>0 15<br>948<br>< 0.01                                               |                           | 0.0854 [0.0350; 0.1680<br>0.2186 [0.1804; 0.2607<br>0.0333 [0.0092; 0.0831<br>0.1095 [0.0699; 0.1610<br>0.0000 [0.0000; 0.3085<br>0.0270 [0.0007; 0.1416<br>0.0244 [0.0006; 0.1286<br>0.0833 [0.0021; 0.388<br>0.0000 [0.0020; 0.2180<br>0.0620 [0.0220; 0.1160                                                                                                                                    | 1.8%         1.9%         1.8%         1.9%         1.1%         1.6%         1.1%         1.2%                                                                                                                                                                                                                 |
| Region = South America<br>Aulicino et al(2019)<br>Andrade et al(2017)<br>Guimarães et al(2015)<br>Yeganeh et al(2018)<br>de Azevedo et al(2022)<br>de Azevedo et al(2022)<br>Almeida et al(2009)<br>Random effects model<br>Heterogeneity: $f^2$ = 79%, $\tau^2$ = 0.0137, $\rho$                                                                                                                                        | 14 115<br>2 117<br>3 31<br>2 123<br>8 38<br>5 97<br>0 24<br>545<br>< 0.01                                                                      |                           | 0.1217 [0.0682; 0.1958<br>0.0171 [0.0021; 0.0604<br>0.0968 [0.0204; 0.2575<br>0.0163 [0.0020; 0.0575<br>0.2105 [0.0955; 0.3732<br>0.0515 [0.0169; 0.1162<br>0.0000 [0.0000; 0.1425<br>0.0559 [0.0159; 0.1137                                                                                                                                                                                       | 1.8%         1.8%         1.5%         1.9%         1.6%         1.8%         1.4%         1.9%                                                                                                                                                                                                                 |
| Random effects model<br>Heterogeneity: $l^2 = 93\%$ , $\tau^2 = 0.0270$ , $p$<br>Test for subgroup differences: $\chi_6^2 = 7.35$ ,                                                                                                                                                                                                                                                                                      | <b>7224</b><br>< 0.01<br>df = 6 (p = 0.29)                                                                                                     | 0 0.1 0.2 0.3 0.4 0.5 0.6 | 0.0804 [0.0556; 0.1087                                                                                                                                                                                                                                                                                                                                                                             | j 100.0%                                                                                                                                                                                                                                                                                                        |

# Figure S5B: Forest plot of the NRTI mutation prevalence among treatment-experienced groups

| Study E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vents                                                                                                                                     | Total                                                                                                  |                       | Proportion                                                                                                                                                              | 95%-CI                                                                                                                                                                                                                                                                                                                                                                       | Weight                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Region1 = Europe<br>Green et al (2006)<br>Aboulker et al(2004)<br>Delaugerre et al(2007)<br>Mulder et al(2017)<br>Francesca et al(2019)<br>Servais et al(2019)<br>Servais et al(2020)<br>Sivay et al(2024)<br>Random effects model<br>Heterogeneity: $l^2 = 97\%$ , $t^2 = 0.1248$ , p                                                                                                                                                                                                                                                                                                             | 84<br>5<br>77<br>54<br>11<br>21<br>81                                                                                                     | 86<br>20<br>119<br>157<br>22<br>21<br>96<br>521                                                        | **                    | 0.9767<br>0.2500<br>0.6471<br>0.3439<br>0.5000<br>1.0000<br>0.8438<br>0.7022                                                                                            | [0.9185; 0.9972]<br>[0.0866; 0.4910]<br>[0.5542; 0.7324]<br>[0.2701; 0.4239]<br>[0.8282; 0.7178]<br>[0.8389; 1.0000]<br>[0.7554; 0.9098]<br>[0.4332; 0.9142]                                                                                                                                                                                                                 | 1.3%<br>1.2%<br>1.3%<br>1.3%<br>1.2%<br>1.2%<br>1.3%<br>8.9%                                                  |
| Region = Lasen Annea<br>Boender et al (2016)<br>Towler et al (2010)<br>Kamori et al (2023)<br>Tadesse et al (2013)<br>Inzaule et al (2013)<br>Kityo et al (2017)<br>Soeria-Atmadja et al (2020)<br>Chohan et al (2015)<br>Theodore et al (2011)<br>Bratholm et al (2010)<br>Muri et al (2017)<br>Ahoua et al (2011)<br>Ahoua et al (2011)<br>Mutwa et al (2011)<br>Mutwa et al (2011)<br>Abua et al (2011)<br>Abua et al (2011)<br>Khamadi et al (2023)<br>Random effects model<br>Heterogeneity: $I^2 = 96\%$ , $t^2 = 0.0996$ , $p$                                                              | 43<br>12<br>49<br>64<br>16<br>63<br>11<br>2<br>14<br>11<br>42<br>13<br>16<br>47<br>3<br>700<br>50                                         | 56<br>12<br>92<br>90<br>24<br>84<br>92<br>19<br>129<br>52<br>17<br>17<br>52<br>12<br>199<br>74<br>1031 |                       | 0.7679<br>0.5326<br>0.7111<br>0.6667<br>0.7500<br>0.1196<br>0.1053<br>0.1167<br>0.5789<br>0.8077<br>0.7647<br>0.90412<br>0.9038<br>0.2500<br>0.3518<br>0.6757<br>0.5992 | $\begin{matrix} [0.6358; 0.8702] \\ [0.7354; 1.0000] \\ [0.4256; 0.6374] \\ [0.4606; 0.8018] \\ [0.4468; 0.8437] \\ [0.6436; 0.8381] \\ [0.612; 0.2039] \\ [0.0130; 0.3314] \\ [0.6633; 0.1880] \\ [0.3635; 0.7975] \\ [0.6747; 0.9037] \\ [0.701; 0.9031] \\ [0.7397; 0.9680] \\ [0.5498; 0.5719] \\ [0.2568; 0.4224] \\ [0.5568; 0.4726] \\ [0.4393; 0.7496] \end{matrix}$ | 1.3%<br>1.1%<br>1.3%<br>1.2%<br>1.3%<br>1.2%<br>1.3%<br>1.2%<br>1.3%<br>1.2%<br>1.3%<br>1.3%<br>1.3%<br>21.3% |
| Region1 = Asia<br>Coetzer et al(2013)<br>Puthanakit et al(2010)<br>Nyandiko et al(2022)<br>Jittamala et al(2009)<br>Shet et al(2013)<br>Yan et al(2022)<br>Zhao et al(2011)<br>Hajjar et al(2012)<br>Saravanan et al(2017)<br>Pang et al(2024)<br>Tambuyzer et al(2016)<br>Random effects model<br>Heterogeneity: $I^2$ = 98%, $r^2$ = 0.0996, p                                                                                                                                                                                                                                                   | 49<br>118<br>114<br>34<br>11<br>45<br>59<br>21<br>80<br>138<br>82                                                                         | 51<br>120<br>128<br>39<br>70<br>93<br>76<br>22<br>97<br>396<br>101<br>1193                             | * * *                 | 0.9608<br>0.9833<br>0.8906<br>0.8718<br>0.1571<br>0.4839<br>0.7763<br>0.9545<br>0.8247<br>0.3485<br>0.8119<br>0.7623                                                    | $\begin{array}{l} [0.8654; 0.9952] \\ (0.9411; 0.9980] \\ (0.8233; 0.9389] \\ (0.7257; 0.9570] \\ (0.811; 0.2638] \\ (0.3789; 0.5899] \\ (0.6662; 0.8640] \\ (0.7716; 0.9988] \\ (0.7343; 0.8945] \\ (0.3016; 0.3977] \\ (0.5219; 0.8828] \\ (0.5824; 0.9047] \end{array}$                                                                                                   | 1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.2%<br>1.3%<br>1.4%<br>1.3%<br>1.4%                          |
| Region1 = Southern Africa<br>Rossouw et al(2015)<br>Stoddart et al(2014)<br>Taylor et al(2011)<br>Beghin et al(2020)<br>Beghin et al(2020)<br>Vaz et al(2018)<br>Makadzinage et al(2015)<br>Vaz et al(2019)<br>Green et al(2012)<br>Pillay et al(2014)<br>Hunt et al(2023)<br>Tambuyzer et al(2016)<br>Random effects model<br>Heterogeneity. $f^2 = 98\%, t^2 = 0.1101, \mu$                                                                                                                                                                                                                      | 63<br>354<br>30<br>10<br>9<br>220<br>41<br>74<br>10<br>17<br>29<br>73<br>563<br>82                                                        | 65<br>370<br>41<br>29<br>64<br>248<br>102<br>84<br>113<br>22<br>41<br>89<br>809<br>101<br>2178         |                       | 0.9692<br>0.9568<br>0.7317<br>0.3448<br>0.1406<br>0.8871<br>0.4020<br>0.8810<br>0.0885<br>0.7727<br>0.7073<br>0.8202<br>0.6959<br>0.8119<br>0.6790                      |                                                                                                                                                                                                                                                                                                                                                                              | 1.3%<br>1.4%<br>1.2%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3                           |
| Region1 = Western and Central A<br>Chaix et al(2005)<br>Rodríguez-Calet et al(2023)<br>Rubio-Garrído et al(2021)<br>Mossoro-Kpinde et al(2021)<br>Kebe et al(2013)<br>Crowell et al(2017)<br>Yendewa et al(2021)<br>Brice et al (2020)<br>Sylla et al (2019)<br>Adje-Toure et al(2008)<br>Tagnouckam Ngoupo et al(2021)<br>Amani-Bossé et al(2017)<br>Camara-Cissé et al(2021)<br>Fokam et al(2011)<br>Fokam et al(2011)<br>Dijvou et al(2023)<br>Charpentier et al(2012)<br>Bouassa et al(2012)<br>Bouassa et al(2019)<br>Random effects model<br>Heterogeneity. $f^2$ = 87%, $t^2$ = 0.0281, $p$ | frica<br>30<br>21<br>15<br>27<br>47<br>26<br>29<br>30<br>20<br>30<br>30<br>30<br>30<br>30<br>38<br>13<br>42<br>45<br>37<br>35<br>58<br>11 | 38<br>38<br>52<br>37<br>64<br>91<br>33<br>68<br>67<br>28<br>61<br>50<br>53<br>54<br>9<br>18<br>896     |                       | 0.7895<br>0.5526<br>0.5556<br>0.9038<br>0.7027<br>0.4531<br>0.3297<br>0.6061<br>0.4643<br>0.6685<br>0.9000<br>0.6981<br>0.6481<br>0.6481<br>0.6481<br>0.6481            | [0.6268; 0.9045]<br>[0.3630; 0.7138]<br>[0.3533; 0.7452]<br>[0.3533; 0.7452]<br>[0.3533; 0.613]<br>[0.5302; 0.8413]<br>[0.3282; 0.5825]<br>[0.2347; 0.4361]<br>[0.4214; 0.7709]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5294; 0.7860]<br>[0.5528; 0.7192]          | 1.3%<br>1.2%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3                                   |
| Region1 = South America<br>Machado et al(2004)<br>Ventosa-Cubillo et al(2023)<br>Brindeiro et al(2002)<br>Bismara et al(2012)<br>Tambuyzer et al(2016)<br>Random effects model<br>Heterogeneity: $l^2$ = 87%, $t^2$ = 0.0289, $p$                                                                                                                                                                                                                                                                                                                                                                  | 28<br>36<br>50<br>42<br>82                                                                                                                | 37<br>62<br>52<br>61<br>101<br>313                                                                     | ****                  | 0.7568<br>0.5806<br>0.9615<br>0.6885<br>0.8119<br>0.7754                                                                                                                | [0.5880; 0.8823]<br>[0.4485; 0.7049]<br>[0.8679; 0.9953]<br>[0.5571; 0.8010]<br>[0.7219; 0.8828]<br>[0.6270; 0.8958]                                                                                                                                                                                                                                                         | 1.3%<br>1.3%<br>1.3%<br>1.3%<br>1.3%<br>6.5%                                                                  |
| Region1 = North America<br>Rogo et al(2015)<br>Filzgibbon et al(2004)<br>Ross et al(2015)<br>Ramkisson et al(2015)<br>Tambuyzer et al(2015)<br>Random effects model<br>Heterogeneity: $r^2$ = 97% $r^2$ = 0.1157. z                                                                                                                                                                                                                                                                                                                                                                                | 13<br>4<br>4<br>1<br>24<br>82                                                                                                             | 26<br>17<br>25<br>54<br>41<br>101<br>264                                                               |                       | 0.5000<br>0.2353<br>0.1600<br>0.0185<br>0.5854<br>0.8119<br>0.3633                                                                                                      | [0.2993; 0.7007]<br>[0.0681; 0.4990]<br>[0.0454; 0.3608]<br>[0.005; 0.0989]<br>[0.4211; 0.7368]<br>[0.7219; 0.8828]<br>[0.1196; 0.6493]                                                                                                                                                                                                                                      | 1.2%<br>1.2%<br>1.3%<br>1.3%<br>1.3%<br>7.5%                                                                  |
| Random effects model<br>Heterogeneity: $l^2 = 97\%$ , $\tau^2 = 0.0868$ , $\mu$<br>Test for subgroup differences: $\chi_6^2 = 8.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o = 0<br>9, df =                                                                                                                          | <b>6396</b><br>6 (p = 0                                                                                | 0.17) 0.2 0.4 0.6 0.8 | 0.6519                                                                                                                                                                  | [0.5848; 0.7162]                                                                                                                                                                                                                                                                                                                                                             | 100.0%                                                                                                        |

#### Figure S6A: Forest plot of the PI mutation prevalence among treatment-naive groups

| Study                                                                                                                                                                                                                                                                         | Events Total                                                                      |                     | Proportion                                                                                       | 95%-CI                                                                                                                                                                                               | Weight                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Region = North America<br>Van Dyke et al(2016)<br>Louis et al(2019)<br>Parker et al(2003)<br>Parker et al(2003)<br>Karchava et al(2006)<br>Random effects model<br>Heterogeneity: $I^2 = 97\%$ , $\tau^2 = 0.03$                                                              | 80 234<br>10 304<br>1 49<br>2 38<br>1 42<br>667                                   |                     | 0.3419<br>0.0329<br>0.0204<br>0.0526<br>0.0238<br>0.0754                                         | [0.2813; 0.4065]<br>[0.0159; 0.0597]<br>[0.0005; 0.1085]<br>[0.0064; 0.1775]<br>[0.0066; 0.1257]<br>[0.0060; 0.1989]                                                                                 | 3.3%<br>3.3%<br>2.4%<br>2.2%<br>2.3%<br>13.6%                                 |
| Region = Western and Centra<br>Boerma et al(2016)<br>Inzaule et al(2018)<br>Crowell et al(2017)<br>Nii-Trebi et al(2017)<br>Ikomey et al(2017)<br>Fokam et al(2018)<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 0$ , $p =$                              | Al Africa<br>0 82<br>2 430<br>0 120<br>0 10<br>0 37<br>0 15<br>694<br>= 0.97      | B                   | 0.0000<br>0.0047<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                               | [0.0000; 0.0440]<br>[0.0006; 0.0167]<br>[0.0000; 0.0303]<br>[0.0000; 0.3085]<br>[0.0000; 0.0949]<br>[0.0000; 0.2180]<br>[0.0000; 0.0007]                                                             | 2.8%<br>3.4%<br>3.0%<br>1.1%<br>2.2%<br>1.4%<br>14.0%                         |
| Region = Southern Africa<br>Bennett et al(2020)<br>Hunt et al(2011)<br>Taylor et al(2011)<br>Jordan et al(2012)<br>Kuhn et al(2015)<br>Kuhn et al(2015)<br>Yeganeh et al(2015)<br>Fisher et al(2015)<br>Random effects model<br>Heterogeneity: $/^2 = 45\%$ , $\tau^2 = 0.00$ | 2 49<br>4 255<br>2 155<br>3 198<br>2 155<br>1 75<br>2 123<br>7 79<br>2 15<br>1104 |                     | 0.0408<br>0.0157<br>0.0129<br>0.0152<br>0.0129<br>0.0133<br>0.0163<br>0.0886<br>0.1333<br>0.0182 | [0.0050; 0.1398]<br>[0.0043; 0.0397]<br>[0.0016; 0.0458]<br>[0.0016; 0.0458]<br>[0.0003; 0.0458]<br>[0.0003; 0.0721]<br>[0.0020; 0.0575]<br>[0.0364; 0.1741]<br>[0.0166; 0.4046]<br>[0.0082; 0.0312] | 2.4%<br>3.3%<br>3.1%<br>3.2%<br>3.1%<br>2.7%<br>3.0%<br>2.8%<br>1.4%<br>25.1% |
| Region = Eastern Africa<br>Kityo et al(2016)<br>Dow et al(2017)<br>Tadesse et al(2019)<br>Random effects model<br>Heterogeneity: $l^2 = 0\%$ , $\tau^2 = 0$ , $p =$                                                                                                           | 0 279<br>0 65<br>0 57<br>401                                                      | ⊨<br>■<br>}         | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                             | [0.0000; 0.0131]<br>[0.0000; 0.0552]<br>[0.0000; 0.0627]<br>[0.0000; 0.0031]                                                                                                                         | 3.3%<br>2.6%<br>2.6%<br>8.5%                                                  |
| Region = Europe<br>Neubert et al(2016)<br>Frange et al(2018)<br>Ngo-Giang-Huong et al(2016)<br>Delaugerre et al(2009)<br>Random effects model<br>Heterogeneity: $I^2 = 21\%$ , $\tau^2 = < 0$ .                                                                               | 1 24<br>0 84<br>3 476<br>1 60<br>644<br>0001, <i>p</i> = 0.29                     |                     | 0.0417<br>0.0000<br>0.0063<br>0.0167<br>0.0022                                                   | [0.0011; 0.2112]<br>[0.0000; 0.0430]<br>[0.0013; 0.0183]<br>[0.0004; 0.0894]<br>[0.0000; 0.0099]                                                                                                     | 1.8%<br>2.8%<br>3.4%<br>2.6%<br>10.7%                                         |
| Region = Asia<br>Ngo-Giang-Huong et al(2016)<br>Abidi et al(2021)<br>Han et al(2009)<br>Phung et al(2015)<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 0.000$                                                                                            | 3 476<br>0 50<br>0 14<br>2 86<br>626<br>02, p = 0.52                              | н                   | 0.0063<br>0.0000<br>0.0000<br>0.0233<br>0.0012                                                   | [0.0013; 0.0183]<br>[0.0000; 0.0711]<br>[0.0000; 0.2316]<br>[0.0028; 0.0815]<br>[0.0000; 0.0099]                                                                                                     | 3.4%<br>2.5%<br>1.4%<br>2.8%<br>10.1%                                         |
| Region = South America<br>Aulicino et al(2019)<br>Andrade et al(2017)<br>Guimarães et al(2015)<br>Yeganeh et al(2018)<br>de Azevedo et al(2022)<br>de Azevedo et al(2022)<br>Almeida et al(2009)<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 0$ , $p =$ | 4 115<br>4 117<br>2 31<br>2 123<br>0 38<br>2 97<br>0 24<br>545                    |                     | 0.0348<br>0.0342<br>0.0645<br>0.0163<br>0.0000<br>0.0206<br>0.0000<br>0.0204                     | [0.0096; 0.0867]<br>[0.0094; 0.0852]<br>[0.0079; 0.2142]<br>[0.0020; 0.0575]<br>[0.0000; 0.0925]<br>[0.0025; 0.0725]<br>[0.0000; 0.1425]<br>[0.00084; 0.0360]                                        | 3.0%<br>3.0%<br>2.1%<br>3.0%<br>2.2%<br>2.9%<br>1.8%<br>18.0%                 |
| <b>Random effects model</b><br>Heterogeneity: $l^2 = 87\%$ , $\tau^2 = 0.01$<br>Test for subgroup differences: $\chi_6^2 =$                                                                                                                                                   | <b>4681</b><br>108, <i>p</i> < 0.01<br>: 31.71, df = 6 ( <i>p</i> < 0.01)         | ♦ 0 0.1 0.2 0.3 0.4 | 0.0150  <br>4                                                                                    | [0.0053; 0.0280]                                                                                                                                                                                     | 100.0%                                                                        |

# Figure S6B: Forest plot of the PI mutation prevalence among treatment-experienced groups

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Events Total                                                                                                                                                                |                                                                                 | Proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95%-CI Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Region1 = Europe<br>Green et al (2006)<br>Aboulker et al(2004)<br>Delaugerre et al(2007)<br>Mulder et al(2011)<br>Francesca et al(2019)<br>Servais et al(2020)<br>Sivay et al(2024)<br>Random effects model<br>Heterogeneity: $I^2$ = 96%, $\tau^2$ = 0.141                                                                                                                                                                                                                                                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                        |                                                                                 | 0.6047 [0.48<br>0.3000 [0.11<br>0.3529 [0.26<br>0.2357 [0.17<br>0.3182 [0.13<br>1.0000 [0.83<br>0.0417 [0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34: 0.7085]         1.7%           89: 0.5428]         1.5%           76: 0.4458]         1.7%           87: 0.5487]         1.6%           89: 1.0000         1.5%           89: 1.0000         1.5%           15: 0.1033]         1.7%           19; 0.6961]         11.4%                                                                                                                                                                                                                                                                                                                              |
| Region1 = Eastern Africa<br>Kamori et al(2023)<br>Tadesse et al(2018)<br>Kityo et al(2017)<br>Bratholm et al(2010)<br>Muri et al(2017)<br>Abuogi et al(2023)<br>Khamadi et al(2023)<br>Random effects model<br>Heterogeneity: $I^2 = 62\%, \tau^2 = 0.005$                                                                                                                                                                                                                                                            | 7 92<br>1 90<br>0 84<br>0 19<br>0 52<br>10 199<br>1 74<br>610<br>1, p = 0.01                                                                                                |                                                                                 | 0.0761 [0.03<br>0.0111 [0.00<br>0.0000 [0.00<br>0.0000 [0.00<br>0.0503 [0.02<br>0.0503 [0.02<br>0.0135 [0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11; 0.1505]         1.7%           03; 0.0604]         1.7%           00; 0.0430]         1.7%           00; 0.1765]         1.5%           00; 0.0685]         1.6%           44; 0.0905]         1.7%           03; 0.0730]         1.7%           13; 0.0416]         11.6%                                                                                                                                                                                                                                                                                                                            |
| Region1 = Southern Africa<br>Rossouw et al(2015)<br>Stoddart et al(2014)<br>Taylor et al(2011)<br>Beghin et al(2020)<br>Beghin et al(2020)<br>Vaz et al(2018)<br>Makadzange et al(2015)<br>Makatini et al(2019)<br>Pillay et al(2014)<br>Hunt et al(2023)<br>Tambuyzer et al(2016)<br>Lange et al(2015)<br>Random effects model<br>Heterogeneity: $l^2$ = 97%, $t^2$ = 0.106                                                                                                                                          | 32 65<br>109 370<br>14 41<br>3 29<br>9 64<br>4 248<br>4 102<br>21 22<br>1 89<br>64 809<br>46 101<br>2 10<br>1950<br>1, p < 0.01                                             |                                                                                 | 0.4923 [0.36<br>0.2946 [0.24<br>0.3415 [0.22<br>0.1034 [0.02<br>0.1034 [0.02<br>0.0161 [0.00<br>0.0392 [0.01<br>0.9545 [0.77<br>0.0112 [0.00<br>0.4751 [0.35<br>0.2000 [0.02<br>0.2213 [0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60; 0.6193]         1.7%           86; 0.3439]         1.7%           08; 0.5059]         1.6%           19; 0.2735]         1.6%           64; 0.2502]         1.7%           08; 0.0948]         1.7%           08; 0.0941         1.7%           08; 0.0974         1.7%           08; 0.0974         1.7%           06; 0.0576         1.7%           06; 0.5576         1.7%           52; 0.5561]         1.4%           31; 0.3990]         19.7%                                                                                                                                                  |
| Region1 = Western and Centra<br>Chaix et al(2005)<br>Rodriguez-Galet et al(2023)<br>Rubio-Garrido et al(2021)<br>Mossoro-Kpinde et al(2017)<br>Kebe et al(2017)<br>Yendewa et al(2017)<br>Brice et al (2020)<br>Sylla et al (2019)<br>Adje-Toure et al(2008)<br>Tagnouckam Ngoupo et al(2021)<br>Amani-Bossé et al(2017)<br>Fokam et al(2011)<br>Fofana et al(2011)<br>Fofana et al(2013)<br>Charpentier et al(2012)<br>Bouassa et al(2019)<br>Random effects model<br>Heterogeneity: $l^2 = 90\%$ , $\tau^2 = 0.061$ | I Africa<br>22 38<br>1 38<br>2 27<br>11 58<br>0 52<br>0 37<br>4 64<br>5 91<br>17 33<br>20 68<br>3 57<br>1 28<br>4 50<br>1 53<br>6 54<br>4 69<br>12 18<br>835<br>0, p < 0.01 |                                                                                 | $\begin{array}{c} 0.5789 & [0.40 \\ 0.0263 & [0.00 \\ 0.0741 & [0.00 \\ 0.0897 & [0.09 \\ 0.0000 & [0.00 \\ 0.0625 & [0.01 \\ 0.0549 & [0.01 \\ 0.05152 & [0.33 \\ 0.2941 & [0.18 \\ 0.0526 & [0.01 \\ 0.0357 & [0.00 \\ 0.0357 & [0.00 \\ 0.0357 & [0.00 \\ 0.0189 & [0.00 \\ 0.1111 & [0.04 \\ 0.6667 & [0.40 \\ 0.1215 & [0.04 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041 \\ 0.041$ | 82: 0.7369]         1.6%           07; 0.1381]         1.6%           91; 0.2429]         1.6%           87; 0.3141]         1.7%           00; 0.0685]         1.6%           73; 0.1524]         1.7%           81; 0.1236]         1.7%           98; 0.4171]         1.7%           98; 0.4171]         1.7%           00; 0.0949]         1.6%           73; 0.1524]         1.7%           98; 0.4171]         1.7%           09; 0.1835]         1.6%           05; 0.1007]         1.7%           19; 0.2263]         1.7%           99; 0.8666]         1.5%           94; 0.2165]         27.7% |
| Region1 = South America           Machado et al(2004)           Ventosa-Cubillo et al(2023)           Brindeiro et al(2002)           Dumans et al(2009)           Bismara et al(2012)           Tambuyzer et al(2016)           Random effects model           Heterogeneity: $l^2 = 96\%$ , $\tau^2 = 0.112$                                                                                                                                                                                                        | 0 37<br>3 62<br>23 52<br>59 90<br>31 61<br>46 101<br>403<br>5, p < 0.01                                                                                                     | ₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩-<br>₩ | 0.0000 [0.00<br>0.0484 [0.01<br>0.4423 [0.30<br>0.6556 [0.54<br>0.5082 [0.37<br>0.4554 [0.35<br>0.3064 [0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00: 0.0949]         1.6%           01: 0.1350]         1.7%           47: 0.5867]         1.6%           80: 0.7526]         1.7%           70: 0.6386]         1.7%           60: 0.5576]         1.7%           05: 0.5788]         10.0%                                                                                                                                                                                                                                                                                                                                                               |
| Region1 = Asia<br>Shet et al(2013)<br>Yan et al(2022)<br>Zhao et al(2011)<br>Hajjar et al(2012)<br>Pang et al(2024)<br>Tambuyzer et al(2016)<br>Random effects model<br>Heterogeneity: $l^2 = 98\%, \tau^2 = 0.171$                                                                                                                                                                                                                                                                                                   | 0 70<br>3 93<br>0 76<br>17 22<br>4 396<br>46 101<br>758<br>7, p < 0.01                                                                                                      |                                                                                 | 0.0000 [0.00<br>0.0323 [0.00<br>0.0000 [0.00<br>0.7727 [0.54<br>0.0101 [0.00<br>0.4554 [0.35<br>0.1211 [0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00; 0.0513]         1.7%           67; 0.0914]         1.7%           00; 0.0474]         1.7%           63; 0.9218]         1.6%           28; 0.0257]         1.7%           60; 0.5576]         1.7%           00; 0.4133]         10.0%                                                                                                                                                                                                                                                                                                                                                               |
| Region1 = North AmericaRogo et al(2015)Fitzgibbon et al(2004)Ross et al(2015)Ross et al(2015)Ramkissoon et al(2015)Tambuyzer et al(2016)Random effects modelHeterogeneity: $I^2 = 93\%$ , $\tau^2 = 0.058$                                                                                                                                                                                                                                                                                                            | 6 26<br>7 17<br>4 25<br>0 54<br>4 41<br>46 101<br>264<br>5, <i>p</i> < 0.01                                                                                                 |                                                                                 | 0.2308 [0.08<br>0.4118 [0.18<br>0.1600 [0.04<br>0.0000 [0.00<br>0.0976 [0.02<br>0.4554 [0.38<br>0.1882 [0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97; 0.4365] 1.6%<br>44; 0.6708] 1.5%<br>54; 0.3608] 1.6%<br>00; 0.0660] 1.7%<br>60; 0.5576] 1.7%<br>07; 0.3783] 9.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Random effects model</b><br>Heterogeneity: $l^2 = 96\%$ , $\tau^2 = 0.100$<br>Test for subgroup differences: $\chi_6^2 = 3$                                                                                                                                                                                                                                                                                                                                                                                        | <b>5341</b><br>5, <i>p</i> < 0.01<br>36.19, df = 6 ( <i>p</i> < 0.01)                                                                                                       | 0 0.2 0.4 0.6 0.8                                                               | <b>0.1714 [0.11</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22; 0.2394] 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Test for subgroup differences:  $\chi_6^2$  = 36.19, df = 6 (p < 0.01)

#### Figure S7A: Forest plot of the INST mutation prevalence among treatment-naive groups



#### Figure S7B: Forest plot of the INST mutation prevalence among treatment-experienced groups

| Study                                                                                                                                                                                                                                                                           | Events                                                              | Total                                                 |                             | Proportion                                                             | 95%-CI                                                                                                                                                       | Weight                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Region1 = Eastern Africa<br>Boender et al(2016)<br>Kamori et al(2023)<br>Khamadi et al(2023)<br>Random effects model<br>Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 0$ , $J$                                                                                                         | 3<br>5<br>3<br>9 = 0.91                                             | 56<br>92<br>74<br>222                                 |                             | 0.0536<br>0.0543<br>0.0405<br>0.0491                                   | [0.0112; 0.1487]<br>[0.0179; 0.1223]<br>[0.0084; 0.1139]<br>[0.0229; 0.0832]                                                                                 | 8.3%<br>9.4%<br>9.0%<br>26.7%                                 |
| Region1 = Western and Cer<br>Rodríguez–Galet et al(2023)<br>Rubio–Garrido et al(2021)<br>Fofana et al(2023)<br>Yendewa et al(2021)<br>Fofana et al(2018)<br>Djiyou et al(2023)<br>Bouassa et al(2019)<br>Random effects model<br>Heterogeneity: $J^2 = 75\%$ , $\tau^2 = 0.000$ | ntral Afric<br>0<br>2<br>0<br>0<br>0<br>8<br>2<br>.0176, <i>p</i> < | 38<br>27<br>31<br>64<br>53<br>54<br>18<br>285<br>0.01 |                             | - 0.0000<br>- 0.0741<br>0.0000<br>0.0000<br>0.1481<br>0.1111<br>0.0231 | [0.0000; 0.0925]<br>[0.0091; 0.2429]<br>[0.0000; 0.1122]<br>[0.0000; 0.0560]<br>[0.0000; 0.0672]<br>[0.0662; 0.2712]<br>[0.0138; 0.3471]<br>[0.0000; 0.0785] | 7.2%<br>6.2%<br>6.6%<br>8.6%<br>8.1%<br>8.2%<br>5.0%<br>49.8% |
| Region1 = Asia<br>Yan et al(2022)                                                                                                                                                                                                                                               | 0                                                                   | 93                                                    |                             | 0.0000                                                                 | [0.0000; 0.0389]                                                                                                                                             | 9.5%                                                          |
| Region1 = South America<br>Ventosa-Cubillo et al(2023)                                                                                                                                                                                                                          | 4                                                                   | 62                                                    |                             | 0.0645                                                                 | [0.0179; 0.1570]                                                                                                                                             | <mark>8.5%</mark>                                             |
| Region1 = Europe<br>Francesca et al(2019)                                                                                                                                                                                                                                       | 1                                                                   | 22                                                    |                             | 0.0455                                                                 | [0.0012; 0.2284]                                                                                                                                             | 5.6%                                                          |
| <b>Random effects model</b><br>Heterogeneity: $I^2 = 66\%$ , $\tau^2 = 0$ .<br>Test for subgroup differences: $\chi$                                                                                                                                                            | .0094, <i>p</i> <<br><sup>2</sup> <sub>4</sub> = 10.99,             | <b>684</b><br>0.01<br>df = 4 (p =                     | 0.03) 0 0.05 0.1 0.15 0.2 0 | 0.0282                                                                 | [0.0075; 0.0580]                                                                                                                                             | 100.0%                                                        |

#### Figure S8A: Forest plot of the dual-class mutation prevalence among treatment-naive groups

| Study                                    | Events            | Total       |           |            |     |     |     | F   | Proportion | 95%-CI           | Weight |
|------------------------------------------|-------------------|-------------|-----------|------------|-----|-----|-----|-----|------------|------------------|--------|
| Dual = NNRTI+NRTI                        |                   |             |           |            |     |     |     |     |            |                  |        |
| Church et al(2008)                       | 12                | 49          |           |            |     |     |     |     | 0.2449     | [0.1334: 0.3887] | 2.8%   |
| Van Dyke et al(2016)                     | 77                | 234         |           |            | _   |     |     |     | 0.3291     | [0.2692; 0.3933] | 3.1%   |
| Louis et al(2019)                        | 121               | 304         |           |            |     |     |     |     | 0.3980     | [0.3426: 0.4555] | 3.1%   |
| Inzaule et al(2018)                      | 88                | 430         |           |            | +   |     |     |     | 0.2047     | [0.1675: 0.2459] | 3.1%   |
| Crowell et al(2017)                      | 4                 | 120         |           |            | _   |     |     |     | 0.0333     | [0.0092; 0.0831] | 3.0%   |
| Salou et al(2016)                        | 21                | 201         |           |            | -   |     |     |     | 0.1045     | [0.0658; 0.1553] | 3.1%   |
| Kityo et al(2016)                        | 9                 | 279         |           | +-         |     |     |     |     | 0.0323     | [0.0149: 0.0604] | 3.1%   |
| Zeh et al(2011)                          | 4                 | 32          |           |            | -1  |     |     |     | 0.1250     | [0.0351; 0.2899] | 2.6%   |
| Neubert et al(2016)                      | 2                 | 24          |           |            |     |     |     |     | 0.0833     | [0.0103; 0.2700] | 2.5%   |
| Hunt et al(2019)                         | 10                | 220         |           |            |     |     |     |     | 0.0455     | [0.0220; 0.0820] | 3.1%   |
| Parker et al(2003)                       | 1                 | 49          |           | -          |     |     |     |     | 0.0204     | [0.0005; 0.1085] | 2.8%   |
| Karchava et al(2006)                     | 1                 | 42          |           | +          |     |     |     |     | 0.0238     | [0.0006; 0.1257] | 2.7%   |
| Frange et al(2018)                       | 1                 | 84          |           | +          |     |     |     |     | 0.0119     | [0.0003; 0.0646] | 3.0%   |
| Tadesse et al(2019)                      | 3                 | 57          |           | -+-        | _   |     |     |     | 0.0526     | [0.0110; 0.1462] | 2.9%   |
| Soeria-Atmadja et al(2020)               | 2                 | 90          |           | -+         |     |     |     |     | 0.0222     | [0.0027; 0.0780] | 3.0%   |
| Aulicino et al(2019)                     | 7                 | 115         |           |            |     |     |     |     | 0.0609     | [0.0248; 0.1214] | 3.0%   |
| Delaugerre et al(2009)                   | 1                 | 60          |           | + 1        |     |     |     |     | 0.0167     | [0.0004; 0.0894] | 2.9%   |
| Ikomey et al(2017)                       | 1                 | 37          |           |            | -   |     |     |     | 0.0270     | [0.0007; 0.1416] | 2.7%   |
| Andrade et al(2017)                      | 2                 | 117         |           | +          |     |     |     |     | 0.0171     | [0.0021; 0.0604] | 3.0%   |
| Kuhn et al(2015)                         | 18                | 155         |           |            | •   |     |     |     | 0.1161     | [0.0703; 0.1773] | 3.1%   |
| Fokam et al(2011)                        | 1                 | 41          |           | +          | -   |     |     |     | 0.0244     | [0.0006; 0.1286] | 2.7%   |
| Vaz et al(2012)                          | 1                 | 112         |           | +          |     |     |     |     | 0.0089     | [0.0002; 0.0487] | 3.0%   |
| Yeganeh et al(2018)                      | 3                 | 123         |           | +          |     |     |     |     | 0.0244     | [0.0051; 0.0696] | 3.0%   |
| Yeganeh et al(2018)                      | 3                 | 123         |           | -+         |     |     |     |     | 0.0244     | [0.0051; 0.0696] | 3.0%   |
| de Azevedo et al(2022)                   | 2                 | 38          |           | -+         |     |     |     |     | 0.0526     | [0.0064; 0.1775] | 2.7%   |
| de Azevedo et al(2022)                   | 1                 | 97          |           | +          |     |     |     |     | 0.0103     | [0.0003; 0.0561] | 3.0%   |
| Phung et al(2015)                        | 2                 | 65          |           | +          |     |     |     |     | 0.0308     | [0.0037; 0.1068] | 2.9%   |
| Jarchi et al(2019)                       | 2                 | 15          |           | -          | +   |     |     |     | 0.1333     | [0.0166; 0.4046] | 2.2%   |
| Khanh Thu et al(2024)                    | 2                 | 105         |           | +          |     |     |     |     | 0.0190     | [0.0023; 0.0671] | 3.0%   |
| Lehman et al(2015)                       | 12                | 20          |           |            |     |     | 1   |     | 0.6000     | [0.3605; 0.8088] | 2.4%   |
| Lehman et al(2015)                       | 12                | 20          |           |            |     | 2   |     |     | 0.6000     | [0.3605; 0.8088] | 2.4%   |
| Fisher et al(2015)                       | 4                 | 15          |           | 1          | 1   |     | _   |     | 0.2667     | [0.0779; 0.5510] | 2.2%   |
| Random effects model                     |                   | 3473        |           | $\diamond$ | >   |     |     |     | 0.0822     | [0.0460; 0.1265] | 91.1%  |
| Heterogeneity: $I^2 = 94\%$ , $\tau^2 =$ | 0.0358, p         | < 0.01      |           |            |     |     |     |     |            |                  |        |
| Dual = PI+NRTI                           |                   |             |           |            |     |     |     |     |            |                  |        |
| Van Dyke et al(2016)                     | 71                | 234         |           |            |     | +   |     |     | 0.3034     | [0.2452: 0.3667] | 3.1%   |
| Parker et al(2003)                       | 1                 | 49          |           | -+         |     |     |     |     | 0.0204     | [0.0005: 0.1085] | 2.8%   |
| Random effects model                     |                   | 283         |           | ~          |     |     | _   |     | 0.1351     | [0.0000: 0.5017] | 5.9%   |
| Heterogeneity: $I^2 = 96\%$ , $\tau^2 =$ | 0.0821, p         | < 0.01      |           |            |     |     |     |     | 0.1001     | [010000, 010011] | 0.070  |
| Dual = INI+NRTI                          |                   |             |           | _          |     |     |     |     |            |                  |        |
| Frange et al(2018)                       | 1                 | 84          |           | +          |     |     |     |     | 0.0119     | [0.0003; 0.0646] | 3.0%   |
| Random effects model                     |                   | 3840        |           | $\diamond$ | >   |     |     |     | 0.0824     | [0.0475; 0.1248] | 100.0% |
| Heterogeneity: $l^2 = 94\%$ , $\tau^2 =$ | 0.0363, p         | < 0.01      |           |            | T   | 1   | 1   |     |            |                  |        |
| Test for subgroup differences:           | $\chi^2_2 = 7.51$ | , df = 2 (j | o = 0.02) | 0          | 0.2 | 0.4 | 0.6 | 0.8 |            |                  |        |

#### Figure S8B: Forest plot of the dual-class mutation prevalence among treatment-experienced groups

| Nandom enects model                      | 0004                                  |
|------------------------------------------|---------------------------------------|
| Heterogeneity: $I^2 = 97\%$ , $\tau^2 =$ | 0.0983, <i>p</i> < 0.01               |
| Test for subgroup differences:           | $\chi_2^2 = 6.15$ , df = 2 (p = 0.05) |

|                   | Proportion                                                                                                                                                                                                                                                                                                                                       | 95%-CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight                                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                   | 1.0000<br>0.4674<br>0.9608<br>0.5000<br>0.4444<br>0.6889<br>0.3276<br>0.8077<br>0.7027<br>0.8906<br>0.2689<br>0.7500<br>0.1087<br>0.1429<br>0.3871<br>0.5789<br>0.1290<br>0.7885<br>0.0796<br>0.1071<br>0.3462<br>0.2941<br>0.2500<br>0.1967<br>0.2933<br>0.6415<br>0.8041<br>0.1475<br>0.2563<br>0.4259<br>0.6111<br>0.3005<br>0.7292<br>0.4655 | $ \begin{bmatrix} 0.7354; 1.0000 \\ [0.3626; 0.5744] \\ [0.8654; 0.9952] \\ [0.3338; 0.6662] \\ [0.2548; 0.6467] \\ [0.5826; 0.7823] \\ [0.2101; 0.4634] \\ [0.6747; 0.9037] \\ [0.5302; 0.8413] \\ [0.6734; 0.9389] \\ [0.1918; 0.3579] \\ [0.6436; 0.8381] \\ [0.0534; 0.1908] \\ [0.0707; 0.2471] \\ [0.2878; 0.4938] \\ [0.3550; 0.7975] \\ [0.6530; 0.8894] \\ [0.371; 0.1458] \\ [0.0227; 0.2823] \\ [0.1721; 0.5567] \\ [0.1031; 0.5596] \\ [0.0549; 0.5719] \\ [0.1060; 0.3184] \\ [0.586; 0.6274] \\ [0.4980; 0.7686] \\ [0.7111; 0.8776] \\ [0.4980; 0.7686] \\ [0.7111; 0.8776] \\ [0.4980; 0.7686] \\ [0.7111; 0.8776] \\ [0.2923; 0.5679] \\ [0.3575; 0.8270] \\ [0.2557; 0.3483] \\ [0.3622; 0.5703] \\ \end{bmatrix} $ | 2.2%<br>2.6%<br>2.5%<br>2.5%<br>2.5%<br>2.5%<br>2.6%<br>2.6%<br>2.6%<br>2.6%<br>2.6%<br>2.6%<br>2.6%<br>2.6 |
|                   | 0.2500<br>0.4754<br>0.0101<br>0.1943                                                                                                                                                                                                                                                                                                             | [0.0866; 0.4910]<br>[0.3460; 0.6073]<br>[0.0012; 0.0358]<br>[0.0001; 0.5650]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3%<br>2.5%<br>2.6%<br>7.5%                                                                                |
|                   | 0.3902<br>0.1311<br>0.0101<br>0.1348                                                                                                                                                                                                                                                                                                             | [0.2420; 0.5550]<br>[0.0584; 0.2422]<br>[0.0012; 0.0358]<br>[0.0000; 0.4180]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5%<br>2.5%<br>2.6%<br>7.6%                                                                                |
| 0.2 0.4 0.6 0.8 1 | 0.4156                                                                                                                                                                                                                                                                                                                                           | [0.3173; 0.5172]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.0%                                                                                                      |

# Figure S9A: Forest plot of the triple-class mutation prevalence among treatment-naive groups

| Study                                                                                                                                                                                                                                           | Events                                     | Total                                                   |                              | Proportion                                                                                       | 95%-CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Van Dyke et al(2016)<br>Neubert et al(2016)<br>Frange et al(2018)<br>Frange et al(2018)<br>Ngo-Giang-Huong et al(2016)<br>Ngo-Giang-Huong et al(2016)<br>Aulicino et al(2019)<br>Andrade et al(2017)<br>Phung et al(2015)<br>Fisher et al(2015) | 43<br>0<br>0<br>0<br>0<br>1<br>0<br>2<br>1 | 234<br>24<br>84<br>476<br>476<br>115<br>117<br>65<br>15 |                              | 0.1838<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0087<br>0.0000<br>0.0308<br>0.0667 | $\begin{bmatrix} 0.1363; 0.2394 \\ 0.0000; 0.1425 \\ 0.0000; 0.0430 \\ 0.0000; 0.0430 \\ 0.0000; 0.0077 \\ 0.0000; 0.0077 \\ 0.0000; 0.0077 \\ 0.0002; 0.0475 \\ 0.0000; 0.0310 \\ 0.0037; 0.1068 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.3195 \\ 0.0017; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.001; 0.$ | 11.3%<br>7.6%<br>10.2%<br>10.2%<br>11.6%<br>11.6%<br>10.6%<br>10.7%<br>9.8%<br>6.3% |
| <b>Random effects model</b><br>Heterogeneity: $I^2 = 94\%$ , $\tau^2 = 0.01$                                                                                                                                                                    | 81, p < 0                                  | <b>1690</b><br>.01                                      | 0 0.05 0.1 0.15 0.2 0.25 0.3 | 0.0094                                                                                           | [0.0000; 0.0404]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0%                                                                              |

#### Figure S9B: Forest plot of the triple-class mutation prevalence among treatment-experienced groups

| Study                       | Events | Total |
|-----------------------------|--------|-------|
| Rodríguez-Galet et al(2023) | 1      | 38    |
| Rubio-Garrido et al(2021)   | 2      | 27    |
| Tadesse et al(2018)         | 1      | 90    |
| Mossoro-Kpinde et al(2017)  | 8      | 58    |
| Taylor et al(2011)          | 2      | 41    |
| Delaugerre et al(2007)      | 27     | 119   |
| Yan et al(2022)             | 3      | 93    |
| Amani-Bossé et al(2017)     | 1      | 28    |
| Rogo et al(2015)            | 3      | 26    |
| Fitzgibbon et al(2004)      | 1      | 17    |
| Fokam et al(2011)           | 3      | 50    |
| Fofana et al(2018)          | 2      | 53    |
| Bismara et al(2012)         | 8      | 61    |
| Abuogi et al(2023)          | 8      | 199   |
| Abuogi et al(2023)          | 8      | 199   |
| Abuogi et al(2023)          | 8      | 199   |
| Djiyou et al(2023)          | 6      | 54    |
| Bouassa et al(2019)         | 9      | 18    |
| Pang et al(2024)            | 3      | 396   |
| Random effects model        |        | 1766  |
|                             | A 4 4  | 0.01  |

Heterogeneity:  $I^2 = 84\%$ ,  $\tau^2 = 0.0147$ , p < 0.01

|            | _ |     |     |     |     |     |     |
|------------|---|-----|-----|-----|-----|-----|-----|
| -          |   |     |     |     |     |     |     |
| +          |   |     |     |     |     |     |     |
| <u>i</u>   | + | -   |     |     |     |     |     |
| -          | _ | _   |     |     |     |     |     |
| -          |   |     | -   |     |     |     |     |
| -          |   |     |     |     |     |     |     |
| -          | - |     |     |     |     |     |     |
|            | + |     | _   |     |     |     |     |
| -          | _ |     | _   |     |     |     |     |
|            |   | -   |     |     |     |     |     |
|            | _ |     |     |     |     |     |     |
| _          | + | _   |     |     |     |     |     |
|            |   |     |     |     |     |     |     |
|            |   |     |     |     |     |     |     |
| - <b>-</b> |   |     |     |     |     |     |     |
|            |   |     |     |     | 101 |     |     |
| 100        |   |     | 3   |     | 100 |     |     |
|            |   |     |     |     |     |     |     |
|            |   |     |     |     |     |     |     |
|            | _ |     |     |     |     |     |     |
| 0.         | 1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |

| Proportion | 95%-CI           | Weight |
|------------|------------------|--------|
| 0.0263     | [0.0007; 0.1381] | 4.8%   |
| 0.0741     | [0.0091; 0.2429] | 4.3%   |
| 0.0111     | [0.0003; 0.0604] | 5.8%   |
| 0.1379     | [0.0615; 0.2538] | 5.4%   |
| 0.0488     | [0.0060; 0.1653] | 4.9%   |
| 0.2269     | [0.1552; 0.3127] | 6.1%   |
| 0.0323     | [0.0067; 0.0914] | 5.9%   |
| 0.0357     | [0.0009; 0.1835] | 4.3%   |
| 0.1154     | [0.0245; 0.3015] | 4.2%   |
| 0.0588     | [0.0015; 0.2869] | 3.5%   |
| 0.0600     | [0.0125; 0.1655] | 5.2%   |
| 0.0377     | [0.0046; 0.1298] | 5.3%   |
| 0.1311     | [0.0584; 0.2422] | 5.4%   |
| 0.0402     | [0.0175; 0.0777] | 6.4%   |
| 0.0402     | [0.0175; 0.0777] | 6.4%   |
| 0.0402     | [0.0175; 0.0777] | 6.4%   |
| 0.1111     | [0.0419; 0.2263] | 5.3%   |
| 0.5000     | [0.2602; 0.7398] | 3.6%   |
| 0.0076     | [0.0016; 0.0220] | 6.7%   |
| 0.0669     | [0.0367; 0.1039] | 100.0% |

58

#### **PRISMA Checklist**

| Section and Topic                | Item<br>#                                                                                                                                                                                                       | Checklist item                                                                                                                                                                                                                                                                                       | Page where<br>item is<br>reported |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| TITLE                            |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                   |
| Title                            | 1                                                                                                                                                                                                               | Identify the report as a systematic review.                                                                                                                                                                                                                                                          | 1                                 |
| ABSTRACT                         |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                   |
| Abstract                         | 2                                                                                                                                                                                                               | See the PRISMA 2020 for Abstracts checklist.                                                                                                                                                                                                                                                         | 2-3                               |
| INTRODUCTION                     | <u> </u>                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      |                                   |
| Rationale                        | 3                                                                                                                                                                                                               | Describe the rationale for the review in the context of existing knowledge.                                                                                                                                                                                                                          | 5                                 |
| Objectives                       | 4                                                                                                                                                                                                               | Provide an explicit statement of the objective(s) or question(s) the review addresses.                                                                                                                                                                                                               |                                   |
| METHODS                          | <u> </u>                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      |                                   |
| Eligibility criteria             | 5                                                                                                                                                                                                               | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.                                                                                                                                                                                          |                                   |
| Information sources              | 6                                                                                                                                                                                                               | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.                                                                                            |                                   |
| Search strategy                  | 7                                                                                                                                                                                                               | Present the full search strategies for all databases, registers and websites, including any filters and limits used.                                                                                                                                                                                 |                                   |
| Selection process                | 8                                                                                                                                                                                                               | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable details of automation tools used in the process.                      | 6                                 |
| Data collection process          | 9                                                                                                                                                                                                               | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. |                                   |
| Data items                       | 10a                                                                                                                                                                                                             | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.                        | 7                                 |
|                                  | 10b                                                                                                                                                                                                             | List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.                                                                                         | 7                                 |
| Study risk of bias<br>assessment | 11                                                                                                                                                                                                              | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.                                    |                                   |
| Effect measures                  | 12                                                                                                                                                                                                              | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.                                                                                                                                                                  |                                   |
| Synthesis methods                | 13a                                                                                                                                                                                                             | Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5))                                                                                  | 8                                 |
|                                  | 13b                                                                                                                                                                                                             | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.                                                                                                                                                | 8                                 |
|                                  | 13c                                                                                                                                                                                                             | Describe any methods used to tabulate or visually display results of individual studies and syntheses.                                                                                                                                                                                               | 8                                 |
|                                  | 13d                                                                                                                                                                                                             | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-<br>analysis was performed, describe the model(s), method(s) to identify the presence and extent of<br>statistical heterogeneity, and software package(s) used                                    | 8-9                               |
|                                  | 13e                                                                                                                                                                                                             | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).                                                                                                                                                                 | 8                                 |
|                                  | 13f                                                                                                                                                                                                             | Describe any sensitivity analyses conducted to assess robustness of the synthesized results.                                                                                                                                                                                                         | 8                                 |
| Reporting bias assessment        | 14                                                                                                                                                                                                              | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).                                                                                                                                                                              |                                   |
| Certainty assessment             | 15                                                                                                                                                                                                              | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.                                                                                                                                                                                                | 8                                 |
| RESULTS                          |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      |                                   |
| Study selection                  | Idy selection16aDescribe the results of the search and selection process, from the number of records identified in the<br>search to the number of studies included in the review, ideally using a flow diagram. |                                                                                                                                                                                                                                                                                                      | 9, Figure 1                       |
|                                  | 16b                                                                                                                                                                                                             | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.                                                                                                                                                                          | 9                                 |
| Study characteristics            | 17                                                                                                                                                                                                              | Cite each included study and present its characteristics.                                                                                                                                                                                                                                            | 9, Table 1                        |

| Risk of bias in studies                              | 18  | Present assessments of risk of bias for each included study.                                                                                                                                                                                                                         | 9, Table S3 |  |  |
|------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Results of individual studies                        | 19  | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.                                                     |             |  |  |
| Results of syntheses                                 | 20a | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.                                                                                                                                                                               | 9-10        |  |  |
|                                                      | 20b | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | 10-12       |  |  |
|                                                      | 20c | Present results of all investigations of possible causes of heterogeneity among study results.                                                                                                                                                                                       | 10-11       |  |  |
|                                                      | 20d | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.                                                                                                                                                                           | 11          |  |  |
| Reporting biases                                     | 21  | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.                                                                                                                                                              | 10-11       |  |  |
| Certainty of evidence                                | 22  | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.                                                                                                                                                                                  | 9-12        |  |  |
| DISCUSSION                                           |     |                                                                                                                                                                                                                                                                                      |             |  |  |
| Discussion                                           | 23a | Provide a general interpretation of the results in the context of other evidence.                                                                                                                                                                                                    | 12          |  |  |
|                                                      | 23b | Discuss any limitations of the evidence included in the review.                                                                                                                                                                                                                      | 14-15       |  |  |
|                                                      | 23c | Discuss any limitations of the review processes used.                                                                                                                                                                                                                                | 14-15       |  |  |
|                                                      | 23d | Discuss implications of the results for practice, policy, and future research.                                                                                                                                                                                                       | 12-15       |  |  |
| OTHER INFORMATIO                                     | N   | <u>.</u>                                                                                                                                                                                                                                                                             |             |  |  |
| Registration and protocol                            | 24a | Provide registration information for the review, including register name and registration number, or state that the review was not registered.                                                                                                                                       | 7           |  |  |
|                                                      | 24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared.                                                                                                                                                                                       | 7           |  |  |
|                                                      | 24c | Describe and explain any amendments to information provided at registration or in the protocol.                                                                                                                                                                                      | 7           |  |  |
| Support                                              | 25  | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.                                                                                                                                                        | 9           |  |  |
| Competing interests                                  | 26  | Declare any competing interests of review authors.                                                                                                                                                                                                                                   | 16          |  |  |
| Availability of data,<br>code and other<br>materials | 27  | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.                                           | 16          |  |  |

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71