Stage-specific expression patterns and co-targeting relationships among miRNAs in the

developing mouse cerebral cortex

Hristo Todorov, Stephan Weißbach, Laura Schlichtholz, Hanna Mueller, Dewi Hartwich,

Susanne Gerber, Jennifer Winter

Supplementary Figure 1. Top 20 most highly expressed miRNAs in E14, E17 and P0 mouse cortical samples. Values in the heatmap correspond to log2-transformed normalized counts. M – males, F – females.

Supplementary Figure 2. Differential expression analysis of miRNAs in neuronal progenitor cells (NPCs) vs. neurons. a Volcano plot of differentially expressed miRNAs. Orange dots correspond to miRNAs up-regulated in NPCs, blue dots signify miRNAs that are up-regulated in neurons. Non-significant results are shown in gray, n = 3 biological replicates per group. **a-c** Venn diagrams showing the overlap of miRNAs that were up- or down-regulated in bulk cortical samples from E14 vs. P0 and NPCs vs. neurons. **d** Heatmap showing the expression levels of the top 20 down- and top 20 up-regulated miRNAs in NPCs vs. neurons. Values correspond to z-scores of normalized miRNA expression.

Supplementary Figure 3. Weighted gene co-expression network analysis. Histograms show the frequency distribution for the number of miRNAs targeting a gene for the black (a) and green (b) modules. c Venn diagram with the overlap of common genes targeted by miRNAs in the black and green modules. Target predictions were obtained from TargetScan using conserved miRNA families and binding sites. d Venn diagram with validated targets for conserved hub miRNAs from the black and green module obtained from miRTarBase. e-h Box

plots with the module membership and gene-trait significance values for the hub miRNAs and the remaining miRNAs in the black and green modules. ***p<0.001, * p<0.05, unpaired t-test.

Supplementary Figure 4. Relative quantification of miRNA expression using RT-qPCR. a-e Expression levels of miRNAs selected for luciferase experiments in neuronal progenitor cells (NPCs) versus neurons. Relative quantification (RQ) values were normalized to the mean expression in NPCs.f-j Expression levels in cortical samples at E14, E17 and P0. RQ values were normalized to the mean expression in the E14 group.

Data are shown as mean \pm standard error of the mean and individual values, n=3 biological replicates per group. *p<0.05, ** p<0.01, *** p<0.001, unpaired t-test of log-transformed RQ values.

Supplementary Figure 5. Luciferase activity in lysates of HEK293 cells transfected with plasmids containing 3' UTR fragments of target genes. Lysates were co-transfected with different combinations of miRNA mimics. Fold change (FC) of luciferase activity was obtained by calculating the ratio of *Renilla* luciferace and firefly luciferase activity and then normalizing to the mean of the control siRNA or miRNA group. Locations of the binding sites in the 3' UTR of the respective gene are represented by colored dots. The length of the 3' UTRs is indicated in kbp. Data are shown as mean \pm standard error of the mean and individual values, n=9

replicates per group. *p<0.05, ** p<0.01, *** p<0.001, only statistical comparisons containing groups with at least two miRNA mimics are shown, p=0.05 siRNA control vs. all other groups, two-way analysis of variance followed by Tukey's post-hoc test.

Supplementary Figure 6. Expression of target genes from the luciferase assay at different developmental time points. Bar plots show DESeq2-normalized counts for target genes that were used in the luciferase experiments at E14.5, E16.5 and P0 of cortical development. Data are depicted as mean and individual values. ** p<0.01, ***p<0.001, Wald test from DESeq2, n=2 biological replicates per group. The expression values of genes were obtained by reprocessing data from the bulk RNA-seq study of the developing cerebral cortex by Weyn-Vanhentenryck et al. ¹

Supplementary Table 1. Primers used for PCR and nested PCR of target genes used in luciferase assays.

Primer name	Sequence 5' to 3'	PCR product size
Neurod1_Xhol_forw	ACGT <u>CTCGAG</u> GCCTTTGGAAGAAACAGGGG	274 bp
Neurod1_Notl_rev	ACGT <u>GCGGCCGC</u> GGTCACAGGTAGTAAAATGCTGG	_
Neurod1_lo_Xhol_for	ACGT <u>CTCGAG</u> CGTCAGTTTCACTATTCCCGG	1188 bp
Neurod1_lo_Notl_rev	ACGT <u>GCGGCCGC</u> CAGCACTTATTCTGGACTGCA	-
Zeb2_Xhol_forw	ACGT <u>CTCGAG</u> CCAGGAAGCTGTAGAGAGGG	1555 bp
Zeb2_Notl_rev	ACGT <u>GCGGCCGC</u> CAGGATCAGTTGAGAAAAGCTGT	
Dcx_Xhol_forw	ACGT <u>CTCGAG</u> GTTTGGGGTACATGATGTCACA	1022 bp
Dcx_Notl_rev	ACGT <u>GCGGCCGC</u> CATCAGCAATGCCACCAAGT	
Ndst1_Xhol_forw	ACGT <u>CTCGAG</u> CTTGTGTTCGCAGGGATGTC	1221 bp
Ndst1_Notl_rev	ACGT <u>GCGGCCGC</u> AGGACCCTTCAAGACTTCGC	
Src_Xhol_forw	ACGT <u>CTCGAG</u> CCCTGTGTGTGTGTGTGTTTGT	484 bp
Src_Notl_rev	ACGT <u>GCGGCCGC</u> TACAACAAGTCTGGGTCCCC	
Cxcl12_XhoI_forw	ACGT <u>CTCGAG</u> ACAGTGGGGATTCTGGGTTC	407 bp
Cxcl12_NotI_rev	ACGT <u>GCGGCCGC</u> ACGGTAGGAGGTTTACAGCA	
Nipbl_Xhol_forw	ACGT <u>CTCGAG</u> ACATGCAGCCAAATTTACAGG	748 bp
Nipbl_Notl_rev	ACGT <u>GCGGCCGC</u> AAGTCAGCCTGTACAAACTGT	
Cited2_XhoI_forw	ACGT <u>CTCGAG</u> CACAAACTGCCATCTCGCTT	311 bp
Cited2_NotI_rev	ACGT <u>GCGGCCGC</u> CCTAAAAAGCTTTCAACACAGTAG	
Nfib_1_Xhol_forw	ACGT <u>CTCGAG</u> ACATTACGTGCCTTGCCTTG	2529 bp
Nfib_1_Notl_rev	ACGT <u>GCGGCCGC</u> CTTCTCTCTCCTCGCAGCTT	
Nfib_2_Xhol_forw	ACGT <u>CTCGAG</u> ATGCATTCTTCATCGAGGGC	957 bp
Nfib_2_NotI_rev	ACGT <u>GCGGCCGC</u> GTCTGTAGCATAGCTCATTT	
Apc_nested_forw	GAGCCCAAAGTCCTAAACGC	1304 bp

Apc_nested_rev	CGGAGAAGATGACGGGGTAA	
Apc_Xhol_forw	ACGT <u>CTCGAG</u> CTGGTCATTTTGGGAGGCAC	962 bp
Apc_Xhol_forw	ACGT <u>GCGGCCGC</u> GCCCTTATGTCCAGTGCCTA	

Supplementary Table 2. Primers used for targeted in vitro mutagenesis of miRNA binding sites.

Primer name	Sequence 5' to 3'
Neurod1_Mut137_forw	CTGATCGGGATAAAAAAAAATCACAA <u>ACG</u> ATAATTAGGATC
Neurod1_Mut137_rev	GATCCTAATTAT <u>CGT</u> TTGTGATTTTTTTTATCCCGATCAG
Neurod1_Mut153_forw	TAATTAGGATCT <u>GTA</u> CAATTTTTAAACTAGTAATGGGCC
Neurod1_Mut153_rev	GGCCCATTACTAGTTTAAAAATTG <u>TAC</u> AGATCCTAATTA
Cxcl12_Mut135b_forw	ATATATTTGAAGTGGAGC <u>TAC</u> AGTAATGCCAGTAGAT
Cxcl12_Mut135b_rev	ATCTACTGGCATTACT <u>GTA</u> GCTCCACTTCAAATATAT
Cxcl12_Mut137_forw	CTGTGACATTATATGCACTA <u>ACG</u> ATAAAATGCTAATTGTTTC
Cxcl12_Mut137_rev	GAAACAATTAGCATTTTAT <u>CGT</u> TAGTGCATATAATGTCACAG
Src_Mut137_forw	CCATTGCCCCATCACA <u>ACG</u> ATAATGTCCCCGCTACTGG
Src_Mut137_rev	CCAGTAGCGGGGACATTAT <u>CGT</u> TGTGATGGGGCAATGG
Src_Mut153_forw	GTAGATTTCAGATGACT <u>GAT</u> CAGAGGCCTTGGGGACC
Src_Mut153_rev	GGTCCCCAAGGCCTCTG <u>ATC</u> AGTCATCTGAAATCTAC

References

1 Weyn-Vanhentenryck, S. M. *et al.* Precise temporal regulation of alternative splicing during neural development. *Nature Communications* **9**, 2189, doi:10.1038/s41467-018-04559-0 (2018).