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CD4 Down-Modulation Timescale. Three HIV genes, namely, nef, env, and vpu, are

responsible for down-modulation of surface CD4 receptors via independent pathways.

Together, the products of these genes rid the surface of an infected cell of nearly all CD4

molecules (1). Of the three genes, nef has been shown to have the predominant down-

modulating influence (1). Piguet et al. (2) have recently measured the fraction of surface

CD4 receptors internalized, i(t), by nef and the fraction of internalized receptors recycled

back to the surface, r(t), as a function of time, t, on transfected 293T cells. Assuming that

infection aborts (or significantly inhibits) the continued presentation of CD4 receptors on

the cell surface, as suggested by r(t) < 10% (2), it follows that the fraction of CD4

molecules expressed on the surface at time t, x(t) ≈ 1 – i(t), where the infection rate k =

k0x(t), with k0 the infection rate in the absence of CD4 down-modulation (see Eq. 4 in the

main text). Letting x(t) = exp(–t/td), where t = 0 marks the onset of nef expression in an

infected cell, which is approximately the infection event because nef is expressed early in

the HIV life cycle, we fit the i(t) data of Piguet et al. (2) and find td ≈ 40 min or 0.028 day

(Fig 6).

Other experiments suggest, however, that CD4 down-modulation may be significantly

slower. For instance, in Jurkat cells, CD4 down-modulation was not observed for up to

12–16 h after infection with wild-type viruses (3). Similarly, 3 days after infection, only

92% of CD4 molecules were down-modulated on average in PBMC (1). We therefore

investigate the effect of CD4 down-modulation on multiple infections by varying td over

two orders of magnitude from 0.028 to 2.8 days (see main text).

Scaling Regimes. We derive three sets of conditions that give rise to the power law

scaling, ( )* *
1~

i

iT T , and describe how these conditions relate to the various scaling

regimes in Figs. 4 and 5.

At short times following the onset of infection, the number of infected cells, T*, is

sufficiently small that changes in V and T may be neglected. Let this regime hold for t <



ts. Further, if ts < td, infected cells continue to express nearly normal levels of CD4 in this

regime. The evolution of multiply infected cell subpopulations may then be written as
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where the latter approximations are based on the assumptions that *
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which when δt is small becomes
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It can be shown similarly that ( )3* *
3 1~T T , and so on. Thus, for small times, t < min(ts, td,

1/δ), the power law scaling, ( )* *
1~

i

iT T , is obtained.

We next consider larger times where T* is sufficiently large that viral production and

clearance are rapid compared with the rate of evolution of T*. Let this happen for times t

> teq. Then, the pseudo-steady-state solution of Eq. 8 in the main text along with the

approximation * * *
1i

i

T T T= ≈∑ , since * *
1i iT T −<< , yields,
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If td < teq, infected cells will have begun to down-modulate CD4 so that k changes with

time for these cells. Let us assume that td is small compared with the timescale over

which T* varies. This holds, for instance, for the parameter values used in Fig. 4a. Then,

after the first infection of a cell, a narrow time window exists during which the cell can

be infected again. During this window, V may be assumed to remain constant. The

average number of additional infections a cell first infected at time t undergoes is then

given by
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Because infections may be assumed to be independent processes following Poisson

statistics, the probability that the cell undergoes (i – 1) additional infections, i.e., it is

totally infected i times, is
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where n! = n(n – 1).2.1, and the latter approximation arises from the assumption that td is

small so that ν = k0Vtd → 0. In a small time interval ∆t (>td) near t, if ∆T* is the number

of cells infected, the fraction of these cells that are infected i times is ∆T*P(i). If the

number of cells infected before time teq that survive at time t is assumed to be small, then

considering all intervals ∆t from teq to t, it follows that * * ( )iT T P i∝ . Therefore,

combining Eqs. 7–9, we get
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and recognizing that * *
1T T≈ , the desired scaling,
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emerges, where G(i) = [(k0tdδN/c)i – 1]/(i – 1)!.

This same scaling emerges in yet another limit where td is large compared with the

timescale over which T* varies. Then, we may use the approximation k = k0 and rewrite

Eq. 2 as
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Substituting the pseudo-steady-state approximation, Eq. 7, in Eqs. 14 and 15, we get
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where K = k0δN/c is a constant. Assuming T to vary slowly, Eq. 17 can be solved to give
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where *
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1T  at t ≈ teq when the pseudo-steady-state approximation

(Eq. 7) first applies and is thus nonzero. Substituting Eq. 18 in Eq. 16 for i = 2 yields
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which for t >> 1/(2KT – δ) yields,
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In summary, the power law scaling, *
iT  ≈ ( )*

1

i
T , arises according to our model in the

following three cases: (i) At small times after the onset of infection, t < min(ts, td, 1/δ),

where ts is the timescale over which V and T vary, td is the timescale for CD4 down-

modulation, and 1/δ is the average lifetime of infected cells; (ii) at large times, t > teq,

when T* is sufficiently large that V is in pseudo-steady-state with T*, i.e., V ≈ NδT*/c,

and when CD4 down-modulation is rapid, t >> td; and (iii) at large times, t > teq, and

when CD4 down-modulation is slow, t << td. Below, we show how these parameter

regimes relate to the scaling regimes in Figs. 4 and 5.

In Fig. 4a, td (= 0.028 days) is so small that no short time scaling is observed. When *
1T

increases to ≈2 × 105, i.e., at t ≈ 1–1.5 days, the pseudo-state approximation, V ≈ NδT*/c,

holds. Note that the curves for V and T* are parallel around t ≈ 1.5 days in Fig. 2a.

Because td << t, case (ii) above applies and the power law scaling is observed. In Fig. 4b,

td = 0.28 day, and V ≈ V0 for times larger than td after the onset of infection (Fig. 2a).

Also, 1/δ >> td. Thus, case (i) applies, and a short time scaling is observed up to *
1T  ≈ 3-4

× 104, which corresponds to t ≈ 0.3 days. For t > td, the scaling temporarily vanishes.

However, when ≈2 × 105 < *
1T  < 106, case (ii) applies and the scaling reemerges. In Fig.

4c, td (= 2.8 days) is large. Of the three times, ts, td, and 1/δ, the shortest is 1/δ ≈ 0.7 day.

Thus, the short-term scaling [case (i)] is observed until t ≈ 0.7 days. By the end of the

short-term scaling regime, however, V is nearly in pseudo-equilibrium with T* and case

(iii) applies, since td >> t. Thus, with minor deviations during the transition from cases (i)



to (iii), a single scaling regime that spans the entire first phase of T* is observed in Fig.

4c.

We present in Fig. 5a the time evolution of *
iT  and present in Fig. 5b the corresponding

parametric plots of *( )iT t  vs. *
1 ( )T t , for k0 = 2 × 10–10 day–1, td = 0.28 day, and V0 = 108.

The corresponding evolution of T, V, and T* are presented in Fig. 2c. The lower value of

k0 compared with Fig. 2a implies that infection proceeds at a slower rate. Thus, in Fig.

2c, T* remains small, which in turn postpones the rise in V and the subsequent fall of T.

The dynamics, however, is qualitatively similar to that in Fig. 2a. The same scaling

regimes are observed as in Fig. 4b (td = 0.28 day), except that the second scaling regime

appears delayed. Short time scaling is observed for *
1T  < 4–5 × 103, which corresponds in

Fig. 5a to t ≈ 0.3 day. Note in Fig. 2c that V ≈ V0 and T ≈ T0 for much longer times than

0.3 day. Thus, this short-term scaling may be attributed to case (i) above. The second

scaling regime occurs in the range 2 × 106 < *
1T  < 107, which corresponds to the time

interval 5 days < t < 6.5 days in Fig. 5a. Note in Fig. 2c that this is precisely the time

interval during which T* evolves parallel to V indicating that the pseudo-steady-state

approximation holds. Scaling as described by case (ii) above thus applies. Note that the

lower infection rate in Fig. 2c compared with Fig. 2a postpones the attainment of the

pseudo-steady state in Fig. 2c. Accordingly, the second scaling regime is postponed in

Fig. 5b compared with Fig. 4b. However, the small time scaling is limited by CD4 down-

modulation, which is chosen to have the same timescale, in both cases. In accordance, the

short-time scaling occurs for the same times in Figs. 4b and 5b.

In Fig. 5c, we present the time evolution of *
iT , and in Fig. 5d the corresponding

parametric plots of *( )iT t  vs. *
1 ( )T t , for k0 = 2 × 10–10 day–1, td = 0.28 day, and V0 = 1010.

The evolution of T, V, and T* for these parameters is shown in Fig. 2d. The two orders of

magnitude higher V0 dramatically shortens the first phase of evolution of T* to t ≈ 0.8

days. However, the lower infectivity allows target cells to proliferate, and the evolution

follows predator-prey dynamics. In Fig. 5d, we find that a short time power law scaling



of *
iT  is observed for *

1T < 3–4 × 105, which from Fig. 5c corresponds to t ≈ 0.3 day,

again corresponding to the CD4 down-modulation time, since V ≈ V0 and T ≈ T0 during

these times. However, no further scaling regimes are observed as the first phase of T*

evolution ends immediately thereafter. For higher values of k0 or V0, the first phase is

further short-lived and the power law scaling is difficult to observe (data not shown).
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