PNAS

² Supporting Information for

JADES: Using NIRCam Photometry to Investigate the Dependence of Stellar Mass Inferences on the IMF in the Early Universe

⁵ Charity Woodrum, Marcia Rieke, Zhiyuan Ji, William M. Baker, Rachana Bhatawdekar, Andrew J. Bunker, Stéphane Charlot,

6 Emma Curtis-Lake, Daniel J. Eisenstein, Kevin Hainline, Ryan Hausen, Jakob M. Helton, Raphael E. Hviding, Benjamin D.

7 Johnson, Brant Robertson, Fengwu Sun, Sandro Tacchella, Lily Whitler, Christina C. Williams, and Christopher N.A. Willmer

8 Marcia Rieke

1

9 E-mail: mrieke@as.arizona.edu

10 This PDF file includes:

- 11 Supporting text
- 12 Table S1
- 13 SI References

14 Supporting Information Text

¹⁵ Multi-band photometry and Prospector output for 102 galaxies are presented in an excel spreadsheet. One tab presents the ¹⁶ Prospector output and a second tab labelled "Photometric Data" presents the fluxes for each galaxy in nJy in a Kron-radius ¹⁷ size aperture for all filters used. Ref. (1) describes the measurement of these fluxes. The filters included in the spreadsheet for ¹⁸ all galaxies include F090W. F115W, F150W, F200W, F277W, F356W, F410M, and F444W. Those galaxies which also have ¹⁹ measurements from JEMS have photometry in the filters F182M, F210M, F335M, F430M, F460M. and F480M. Note that the ¹⁰ filter is in the filters in the filters fluxed in the filters fluxed in the spreadsheet for the filters in the filters fluxed in the filte

filter designations indicate the center wavelength as 100x wavelength in microns and W indicates $\lambda/\delta\lambda = 4$ and M indicates $\lambda/\delta\lambda \sim 10$.

The Prospector output tabulated in the spreadsheet includes the JADES identification number which can be used to find the galaxies in the JADES photometric catalog available from the Space Telescope Science Institute High Level Science Products (HLSP) at the Mikulski Archive for Space Telescopes (MAST). The other entries on the speadsheet include right

ascension, declination, spectroscopic and photometric redshifts, and redshift source. Table S1 lists the Prospector-specific

 $_{26}$ $\,$ output parameters. As described in the main body of the paper, the IMF used is shown in this equation:

$$\xi(m) = \begin{cases} A_l (0.5n_c m_c)^{-x} \exp\left[-\frac{(\log m - \log m_c)^2}{2\sigma^2}\right], & m \le n_c m_c, \\ A_h m^{-x}, & m > n_c m_c \end{cases}$$
[1]

with $m_c \propto (1+z)^{\beta}$, $\beta=1$, 1.5 or 2, $A_l = 0.140$, $n_c = 25$, $\sigma = 0.69$, $A_h = 0.0443$, and x=1.3

Table S1. Prospector output parameters

Parameter	Spreadsheet Column Label
Total Mass (IMF with $\beta = 1$)	$log(M_{total})$
Remaining Stellar Mass (Chabrier (2) IMF)	$log(M_{star})$ (C03)
Remaining Stellar Mass (IMF with $\beta = 1.0$	$log(M_{star}) \ (\beta = 1.0)$
Remaining Stellar Mass (IMF with $\beta = 1.5$ Lower mass limit = 3 M_{\odot}	$log(M_{star}) \ (\beta = 1.0) \ M_{limit} = 3$
Mass weighted age of the galaxy in years	$\log(age)$
Dust optical depth to newly formed stars	$ au_1$
Dust optical depth affecting all stars	$ au_2$
Modifier for the dust attenuation power law	n
Intergalactic medium attenuation curve scale factor	f_{IGM}
Stellar metallicity	Z_*
Gas metallicity	Z_{gas}
Nebular emission ionization parameter	U

28 References

- MJ Rieke, et al., JADES Initial Data Release for the Hubble Ultra Deep Field: Revealing the Faint Infrared Sky with Deep JWST NIRCam Imaging. ApJS 269, 16 (2023).
- 2. G Chabrier, Galactic Stellar and Substellar Initial Mass Function. *PASP* **115**, 763–795 (2003).