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S1 The Model’s Chemical Master Equation

In this section, we state the chemical master equation presented in the main paper. In

addition, we provide some background on chemical reaction networks and show how our

system can be modelled by these.

d

dt
p(zi, r, p ∣ c, t) =

n

∑
j=1,j≠i

Λji p(zi, r, p ∣ c, t) −
n

∑
j=1,j≠i

Λij p(zi, r, p ∣ c, t)

+ µ1 ai p(zi, r − 1, p ∣ c, t) − µ1 ai p(zi, r, p ∣ c, t)

+ δ1 (r + 1) p(zi, r + 1, p ∣ c, t) − δ1 r p(zi, r, p ∣ c, t)

+ µ2 r p(zi, r, p − 1 ∣ c, t) − µ2 r p(zi, r, p ∣ c, t)

+ δ2 (p + 1) p(zi, r, p + 1 ∣ c, t) − δ2 p p(zi, r, p ∣ c, t)

S1.1 Chemical Reaction Networks

Within this work, we oftenly consider chemical reaction networks. Formally, they are defined

by the set R = {R1, . . . ,RM} of chemical reactions on the N ∈ N chemical species X =

(X1, . . . ,XN). The single reactions are defined as

Rm ∶
N

∑
n=1

a
(m)
n Xn

km
Ð→

N

∑
n=1

b
(m)
n Xn

where km is the reaction rate constant and a
(m)
n , b

(m)
n ∈ N are the substrate and product

coefficients for species Xn in reaction Rm, which are subsumed in the matrices A andB, with

A,B ∈ NM×N . The stoichiometric matrix N ∈ ZM×N of the system is given by N = B −A.

The stoichiometric change vectors νm follow directly as the column vectors of N and give

rise to the change in the species vector X induced by reaction Rm.

Not yet specified further is the rate of the reaction. Within this work, we assume the rates to

follow mass action kinetics (1–3 ) and describe the resulting rate by the propensity function

λm(X) ∈ R≥0, where X is the vector of molecule counts associated to the species in X.
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S1.2 The Model’s Chemical Reaction Network Representation

We can subdivide the presented model into three parts. The promoter, the RNA dynamics

and the protein dynamics. To allow for a convenient treatment later on, we here present how

to capture the model and especially the promoter in terms of a chemical reaction network.

Beginning with the promoter, we represent by Z the promoter’s state. At a single point in

time, this variable can take a single value of z1, . . . , zn for an n state promoter. In addition,

only transitions starting at the current state (e.g. zi) are allowed. We can realize this

conveniently by representing the promoter’s state by a one-hot encoding, where we introduce

for each state zi a chemical species Zi and enforce ∑
n
i=1Zi = 1 for the species’ molecule counts.

The current state of the promoter is then the species vector Z = (Z1, . . . , Zn).

By representing the state in terms of a one-hot encoding, we can make use of the law of mass

action to describe the rates of the reactions. In particular, the propensities arise naturally

from our definition as

Λij(Z) = Λij = Zi k̃ij (S1)

with Zi ∈ {0,1} and k̃ij being a pseudo reaction rate constant defined as k̃ij = f(c)kij,

where kij is the actual reaction rate constant and f(c) a monomial function realizing the

dependency on the transcription factors of relevance.

Consequently, this interpretation has to propagate to the distribution characterizing our

system. Practically, πi is still the probability of finding the system in state zi in the steady

state. However, now this gives rise to the probability of Zi = 1 instead of Z = zi.

For the RNA and protein dynamics, the formulation is straight forward and follows directly
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from the model definition.

I ∶ Zi
µ1 ai
Ð→ Zi +RNA i = 1, . . . , n

II ∶ RNA
µ2
Ð→ RNA + protein

III ∶ RNA
δ1
Ð→ ∅

IV ∶ protein
δ2
Ð→ ∅

By introducing Zi as substrate species for the transcription, we implicitly add the dependency

on this species for the respective transcription rate via the law of mass action, while the

corresponding transcriptional activity is indicated by ai. In particular, the reaction I exists

n times, such that the instantaneous rate of RNA production is

n

∑
j=1

µ1 aj Zj = µ1

n

∑
j=1

aj Zj

= µ1 aiZi + µ1

n

∑
j=1,j≠i

aj Zj

= µ1 ai

(S2)

which is the desired rate of RNA production in state zi. For the transition to the last step,

we exploit that Zi = 1 implies Zj = 0 for all j ≠ i, which is a direct consequence of the one-hot

encoding. In the later, we use R and P to the abundance of RNA and protein.

Stoichiometric Change Vectors and Propensities We here extend on the stoichiomet-

ric change vectors ν and the propensities of our CTMC. For the promoter, the stoichiometric

change vector realizes the transition from state zi to state zj. Following the one-hot encod-

ing, a state zi is represented by ei, wich is the ith unit vector with all zeros except a single

one at position i. Consequently, the stoichiometric change vector associated to the transition
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zi to zj and acting on the promoter state representation Z is given by

νij = ej − ei (S3)

and extends to the overall state vector X by adding zeros at the positions of RNA and

protein. For the RNA and protein dynamics, the change vectors for the state vector [R P ]
T

are

νI =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νII =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νIII =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

νIV =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As before, they extend to X by adding zeros at the positions of the promoter species.

Left over are the propensities of the reactions. For the promoter, the propensities are given

by Equation (S1) where the dependency on external transcription factor concentrations is

included in k̃ij. For the RNA and protein dynamics, the propensities are

λI(X) = Zi µ1 ai λII(X) = Rµ2 λIII(X) = Rδ1 λIV(X) = P δ2

with R,P as the current RNA and protein abundance levels. As shown previously, the overall

instantaneous RNA production rate is µ1 ai for the promoter being in state zi as given by

Equation (S2).

S1.3 The Model’s Chemical Master Equation

On the basis of the chemical reaction network presented previously, we can derive the cor-

responding chemical master equation. This master equation gives rise to the time evolution

of the system’s probability distribution. In particular, it describes the in and outflux of

probability mass into a distinct state of the system. Formally, the chemical master equation
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for a chemical reaction network as defined previously is given by

d

dt
P[X(t) = x] =

M

∑
j=1

λj(x − νj) P[X(t) = x − νj] −
M

∑
j=1

λj(x) P[X(t) = x]

where the sum goes over all reactions and X(t) is the vector of species, explicitly including

the time dependency.

In the context of our model, with Z being the random variable vector for the promoter state

in one-hot encoding and R and P being the random variables for RNA and protein, we get

X(t) = (Z(t),R(t), P (t)), while the corresponding probability reads P[Z(t) = ei,R(t) =

r,P (t) = p ∣ c], with c being the vector of cognate transcription factor concentrations and

ei denoting the ith unit vector. For reasons of brevity, we use p(ei, r, p ∣ c, t) = P[Z(t) =

ei,R(t) = r,P (t) = p ∣ c] and obtain the chemical master equation

d

dt
p(ei, r, p ∣ c, t) =

n

∑
j=1,j≠i

Λji p(ej, r, p ∣ c, t) −
n

∑
j=1,j≠i

Λij p(ei, r, p ∣ c, t)

+ µ1 ai p(ei, r − 1, p ∣ c, t) − µ1 ai p(ei, r, p ∣ c, t)

+ δ1 (r + 1) p(ei, r + 1, p ∣ c, t) − δ1 r p(ei, r, p ∣ c, t)

+ µ2 r p(ei, r, p − 1 ∣ c, t) − µ2 r p(ei, r, p ∣ c, t)

+ δ2 (p + 1) p(ei, r, p + 1 ∣ c, t) − δ2 p p(ei, r, p ∣ c, t)

where the first line corresponds to the promoter dynamics governed by the propensities

Λij, the second and third row describe the RNA and the fourth and fifth row the protein

dynamics. Reidentifying the one-hot encoding of the promoter with the states z1, . . . , zn and

the state variable Z, we get

P[Z(t) = zi,R(t) = r,P (t) = p ∣ c] = P[Z(t) = ei,R(t) = r,P (t) = p ∣ c].

Consequently, the desired chemical master equation presented in the main part follows by
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using p(zi, r, p ∣ c, t) = P[Z(t) = zi,R(t) = r,P (t) = p ∣ c].

d

dt
p(zi, r, p ∣ c, t) =

n

∑
j=1,j≠i

Λji p(zi, r, p ∣ c, t) −
n

∑
j=1,j≠i

Λij p(zi, r, p ∣ c, t)

+ µ1 ai p(zi, r − 1, p ∣ c, t) − µ1 ai p(zi, r, p ∣ c, t)

+ δ1 (r + 1) p(zi, r + 1, p ∣ c, t) − δ1 r p(zi, r, p ∣ c, t)

+ µ2 r p(zi, r, p − 1 ∣ c, t) − µ2 r p(zi, r, p ∣ c, t)

+ δ2 (p + 1) p(zi, r, p + 1 ∣ c, t) − δ2 p p(zi, r, p ∣ c, t)

(S4)

S1.4 The Promoter’s Marginal Distribution

We here show, that the distribution of the promoter can be directly derived from the pro-

moter’s propensity matrix. To this end, we start with the definition of the promoters

marginal distribution.

P[Z(t) = zi ∣ c] =
∞
∑
r,p=0

P[Z(t) = zi,R(t) = r,P (t) = p ∣ c]

Making use of the compressed notation p(zi, r, p ∣ c, t) again and taking the derivative of

both sides yields

d

dt
p(zi ∣ c, t) =

d

dt

∞
∑
r,p=0

p(zi, r, p ∣ c, t)

=
∞
∑
r,p=0

d

dt
p(zi, r, p ∣ c, t).
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Inserting the chemical master equation (Equation (S4)) and rearranging the sums a bit gives

d

dt
p(zi ∣ c, t) =

n

∑
j=1,j≠i

Λji

∞
∑
r,p=0

p(zi, r, p ∣ c, t) −
n

∑
j=1,j≠i

Λij

∞
∑
r,p=0

p(zi, r, p ∣ c, t)

+ µ1 ai
∞
∑
r,p=0

p(zi, r − 1, p ∣ c, t) − µ1 ai
∞
∑
r,p=0

p(zi, r, p ∣ c, t)

+ δ1
∞
∑
r,p=0
(r + 1) p(zi, r + 1, p ∣ c, t) − δ1

∞
∑
r,p=0

r p(zi, r, p ∣ c, t)

+ µ2

∞
∑
r,p=0

r p(zi, r, p − 1 ∣ c, t) − µ2

∞
∑
r,p=0

r p(zi, r, p ∣ c, t)

+ δ2
∞
∑
r,p=0
(p + 1) p(zi, r, p + 1 ∣ c, t) − δ2

∞
∑
r,p=0

p p(zi, r, p ∣ c, t)

which we can simplify further by defining p(zi, r, p ∣ c, t) = 0 for r, p < 0 giving rise to the

following identities:

∞
∑
r=0

p(zi, r − 1, p ∣ c, t) = p(zi,−1, p ∣ c, t) +
∞
∑
r=1

p(zi, r − 1, p ∣ c, t)

=
∞
∑
r=0

p(zi, r, p ∣ c, t)

∞
∑
p=0

p(zi, r, p − 1 ∣ c, t) =
∞
∑
p=0

p(zi, r, p ∣ c, t)

∞
∑
r=0
(r + 1)p(zi, r + 1, p ∣ c, t) =

∞
∑
r=1

r p(zi, r, p ∣ c, t)

=
∞
∑
r=0

r p(zi, r, p ∣ c, t)

∞
∑
p=0
(p + 1)p(zi, r, p + 1 ∣ c, t) =

∞
∑
p=0

pp(zi, r, p ∣ c, t)

Making use of promoter marginal distribution definition and reshaping after inserting the

previous identities, we obtain

d

dt
p(zi ∣ c, t) =

n

∑
j=1,j≠i

Λji p(zi ∣ c, t) −
n

∑
j=1,j≠i

Λij p(zi ∣ c, t)
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which is the intended result. In particular it states, that the probability evolution of the

promoter only depends on the propensities given by the Λij. Because of this, it is applicable

to derive the steady state distribution of the promoter following the descriptions presented

in the methods of this work.

S2 The Model’s Moment Equations

On the basis of the chemical reaction network and the chemical master equation introduced

previously, we derive in this section the moment equations for RNA and protein character-

izing our model. In particular, these are the average promoter activity

α(c) =
n

∑
i=1

ai πi.

and the protein’s mean and variance and the RNA’s mean

E[P ∣ c] =
µ2

δ2
E[R ∣ c] E[R ∣ c] =

µ1

δ1
α(c)

Var[P ∣ c] =
µ

δ
α(c) (1 −

µ

δ
α(c)) +

µ2

δ2 + δ1

µ

δ
α(c)

+
µ2

δ + δ22
a (δ−11 +M

−1
2 )M

−1
1 (a⊙π(c))

as presented in the main part of this work.

S2.1 Chapman Kolmogorov Backward Equation

The general Chapman Kolmogorov backward equation is given by

d

dt
E[g(X(t))] =

M

∑
m=1

E[λm(X(t)) (g(X(t) + νm) − g(X(t)))]

S11



and provides a formal method to derive the moments, here given by the monomial function

g(⋅), of a system modelled by a CTMC. For example, g(X(t)) = P returns the mean dynamics

of protein, where we drop the explicit dependency on t for reasons of brevity. As before,

λj(⋅) is the propensity function of the jth reaction and νj is the associated change vector.

In the steady state, the previous simplifies to

M

∑
m=1

E[λm(X(t)) (g(X(t) + νm) − g(X(t)))] = 0

M

∑
m=1

E[λm(X(t)) g(X(t) + νm)] =
M

∑
m=1

E[λm(X(t)) g(X(t))]

which we will use to derive the first and second order moments of the RNA and protein

distribution. A fortunate aspect of the chemical reaction network under consideration is,

that all propensities are zero or first order and so linear. This yields closed equations for

all moments and allows to derive the moments of interest exactly. In systems with second

or higher order reactions, moment equations would depend on higher order moments, which

need to be approximated by a moment closure technique.

S2.2 Steady State Promoter Dynamics

The transcriptional activity of the promoter depends on the state the promoter is in. In

particular, we remember that we assigned the transcriptional activity ai ∈ R≥0 to promoter

state zi. The instantaneous overall transcriptional activity, which we denote by a(c) follows

from the previous as

a(c) =
n

∑
j=1

aj Zj

= aiZi

S12



for i such that Zi = 1. The property that Zi = 1 implies Zj = 0 for all j ≠ i follows directly

from the one-hot encoding and we will make use of it extensively within the following.

In the context of the moment equations presented later, the promoter has a special role as it

is fully described by its steady state distribution. To emphasize this, we denote the steady

state distribution of the promoter by π = (π1, . . . , πn) with πΛ = 0, where Λ = Λ(c) is the

propensity matrix. In particular πi = limt⇒∞ p(zi ∣ c, t), where we drop the dependence on c

to emphasize brevity.

Mean Promoter Activity With the steady state distribution and the instantaneous

promoter activity at hand, we can derive the average promoter activity α(c).

α(c) = E[a(c) ∣ c]

= E [
n

∑
j=1

aj Zj∣c]

=
n

∑
j=1

aj E[Zj ∣ c]

=
n

∑
j=1

aj πj

For this, we make use of

E[Zj ∣ c] =
1

∑
x=0

x P[Zj = x ∣ c, t]

= 0 (1 − πj) + 1πj

= πj

where P[Zj = 0 ∣ c, t] = 1 − πj follows from the one-hot encoding as Zj = 0 implies Zi = 1 for

some i ≠ j.
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Distributions and Moments of the Promoter’s States Already used in the previous

equation, we here state the distribution of the state species Zi completely.

P[Zi = xi ∣ c, t] =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 − πi xi = 0

πi xi = 1

= (1 − xi) (1 − πi) + xi πi

As required later, we next consider the conditional distribution between two state species

Zi and Zj. However, this requires the distinction of the two cases i = j and i ≠ j. For i = j,

P[Zi = xi ∣ Zj = xj,c, t] is given by

P[Zi = xi ∣ Zj = xj,c, t] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 xi = 0 and xj = 0

0 xi = 1 and xj = 0

0 xi = 0 and xj = 1

1 xi = 1 and xj = 1

= δ(xj − xi)

and for k ≠ j by

P[Zi = xi ∣ Zj = xj,c, t] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − πi

1−πj
xi = 0 and xj = 0

πi

1−πj
xi = 1 and xj = 0

1 xi = 0 and xj = 1

0 xi = 1 and xj = 1

= (1 − xi) + (1 − xj) (2xi − 1)
πi

1 − πj

.
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With these two distributions, we can evaluate the moment E[ZiZj] as follows.

E [ZiZj ∣ c] =
1

∑
xi=0

1

∑
xj=0

xi xj P[Zi = xi, Zj = xj ∣ c, t]

=
1

∑
xi=0

1

∑
xj=0

xi xj P[Zi = xi ∣ Zj = xj,c, t] P[Zj = xj ∣ c, t]

= P[Zi = 1 ∣ Zj = 1,c, t] P[Zj = 1 ∣ c, t]

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

πj k = j

0 k ≠ j

Finally, we consider the moment E[a(c)Zi] for which we use the result of E [ZiZj].

E[a(c)Zi ∣ c] = E [Zi

n

∑
j=1

aj Zj∣c]

=
n

∑
j=1

aj E [ZiZj ∣ c]

= ai E [ZiZi ∣ c] +
n

∑
j=1,j≠k

aj E [ZiZj ∣ c]

= ai πi

Rational Fraction Representation of the Promoter Activity Considering a pro-

moter with n states and a single cognate transcription factor whose abundance is represented

by c. Following the method of Kirchoff for deriving the steady state distribution, probability

of being in state zi is of the form

πi =
∑

n
j=0α

(i)
j cj

∑
n
j=0 (α

(i)
j + β

(i)
j ) c

j

with α
(i)
j , β

(i)
j ∈ R≥0 and m being the number of transitions depending on the concentration

c, which is here assumed to enter linearly. Assigning one of multiple classes to each state,

S15



the probability of encountering a state to which class k is associated is of the form

pk =
∑

m
j=0 ᾱ

(k)
j cj

∑
m
j=0 (ᾱ

(k)
j + β̄

(k)
j ) c

j

where the ᾱ
(k)
j and β̄

(k)
j are given by

ᾱ
(k)
j = ∑

i∈Ik
α
(i)
j β̄

(k)
j =

m

∑
i=1,i∉Ik

α
(i)
j

where Ik is the index set of all states class k is assigned to and the α
(i)
j and β

(i)
j as introduced

previously.

Splitting the promoter in ON and OFF states with respective transcription rates a1 and a2

(without loss of generality a2 > a1) and assign on of these states as class to the promoter

states, the average transcription rate is given by

y =
∑

m
j=0(a2αj + a2αj) c

j

∑
m
j=0(αj + αj) c

j

where the αj = ∑i∈X α
(i)
j are the coefficients of the ON states and αj = ∑i∈X β

(i)
j the one of the

OFF states. As the α and αj are sums of non-negative values, they are itself non-negative.

This provides a convenient representation of the average promoter activity in terms of a

rational fraction of two positive definite polynomials, depending in total on 2 (m + 1) + 2

parameters. We will extend on the consequence of this in the following example considering

the three binding site promoter model presented in the main part of this work.

Three Binding Site Model The three binding site model acting as example in this

work features eight states and six of the twenty reactions depend on the transcription factor

concentration, thus m = 6. This yields y as the fraction of two sixth degree polynomials

consisting of 2 ⋅7 = 14 parameters defining the shape and two parameters defining the output

range. This is 16 parameters in total. The corresponding CTMC features 20 reactions
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and as such 20 reaction rate constants describing the behaviour of the CTMC. In the non-

equilibrium case, they can be chosen arbitrarily but positive.

Comparing the 16 parameters defining the average response curve with the 22 parameters

of the full model, we observe that the model is not fully determined by considering the

mean only. However, this gives space for the incorporation of further moments such as the

variance, which depends on the whole set of reaction rate constants as we will see later on.

S2.3 Steady State RNA Dynamics

For the RNA dynamics, the transcription and RNA degradation reactions are of relevance.

We refer to the random variable representing the RNA abundance by R and use the in-

stantaneous and average RNA production rates a(c) and α(c) from the previous. For RNA

degradation, we include the degradation rate δ1.

First Raw Moment For the first raw moment, we set g(X(t)) = R and obtain the Chap-

man Kolmogorov Backward equation as

d

dt
E[R ∣ c] =

n

∑
i,j=1,j≠i

E[Λij ((R + 0) −R) ∣ c]

+ E[µ1 a(c) ((R + 1) −R) ∣ c] + E[δ1R ((R − 1) −R) ∣ c]

+ E[µ2R ((R + 0) −R) ∣ c] + E[δ2P ((R + 0) −R) ∣ c]

= µ1 E[a(c) ∣ c] − δ1 E[R ∣ c]

where the steady state condition (e.g. d
dt E[R ∣ c] = 0) and E[a(c) ∣ c] = α(c) yields

E[R ∣ c] =
µ1

δ1
α(c)

as the RNA’s mean.
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Second Raw Moment To derive the protein’s variance, we can take the intermediate

step of determining the second raw moment first. The monomial function associated to this

moment is g(X(t)) = R2 and we derive

d

dt
E[R2 ∣ c] =

n

∑
i,j=1,j≠i

E[Λij ((R + 0)
2 −R2) ∣ c]

+ E[µ1 a(c) ((R + 1)
2 −R2) ∣ c] + E[δ1R ((R − 1)

2 −R2) ∣ c]

+ E[µ2R ((R + 0)
2 −R2) ∣ c] + E[δ2P ((R + 0)

2 −R2) ∣ c]

= µ1 E[a(c) (R
2 + 2R + 1 −R2) ∣ c] + δ1 E[R (R

2 − 2R + 1 −R2) ∣ c]

= µ1 (2 E[a(c)R ∣ c] + E[a(c) ∣ c]) + δ1 (E[R ∣ c] − 2 E[R2 ∣ c]).

In the steady state, we obtain after some rearrangement the relation

E[R2 ∣ c] =
1

2
E[R ∣ c] +

µ1

2 δ1
E[a(c) ∣ c] +

µ1

δ1
E[a(c)R ∣ c]

Inserting the moments already known and the ones derived subsequently, we obtain

E[R2 ∣ c] =
µ1

δ1
α(c) +

µ2
1

δ1
aT (δ1 In − K̃

T
)
−1
(a⊙π)

where a = [a1 . . . an]T is the vector of state activities and ⊙ denotes the Hadamard

product of two vectors.
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Proportionality of Promoter Activity and RNAAbundance The moment g(X(t)) =

a(c)R can be stated in terms of the moment E [Zj R] as illustrated by the relation

E[a(c)R ∣ c] = E [
n

∑
j=1

aj Zj R∣c]

=
n

∑
j=1

aj E [Zj R ∣ c]

= aT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[Z1R ∣ c]

⋮

E[ZnR ∣ c]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To determine the moments E [Zj R ∣ c], we again make use of the Chapman Kolmogorov

backward equation for g(X(t)) = ZkR. In addition, we consider the moments derived in

Section S2.2.

d

dt
E[ZkR ∣ c] =

n

∑
i,j=1,j≠i

E[Zi k̃ij ((Zk + νijk)R −ZkR) ∣ c]

+ E[µ1 a(c) (Zk (R + 1) −ZkR) ∣ c] + E[δ1R (Zk (R − 1) −ZkR) ∣ c]

+ E[µ2R (ZkR −ZkR) ∣ c] + E[δ2P (ZkR −ZkR) ∣ c]

= µ1 E[a(c)Zk ∣ c] − δ1 E[ZkR ∣ c] +
n

∑
i,j=1,j≠i

νijk E[Zi k̃ij R ∣ c]

= µ1 E[a(c)Zk ∣ c] − δ1 E[ZkR ∣ c] +
n

∑
i=1,i≠k

νikk E[Zi k̃ikR ∣ c] +
n

∑
i,j=1,j≠i,j≠k

νijk E[Zi k̃ij R ∣ c]

= µ1 E[a(c)Zk ∣ c] − δ1 E[ZkR ∣ c] +
n

∑
i=1,i≠k

E[Zi k̃ikR ∣ c] −
n

∑
j=1,j≠k

E[Zk k̃kj R ∣ c]

= µ1 E[a(c)Zk ∣ c] − δ1 E[ZkR ∣ c] +
n

∑
i=1,i≠k

E[Zi k̃ikR ∣ c] − E[RZk

n

∑
j=1,j≠k

k̃kj ∣ c]

= µ1 E[a(c)Zk ∣ c] − δ1 E[ZkR ∣ c] +
n

∑
i=1,i≠k

E[Zi k̃ikR ∣ c] + E[RZk k̃kk ∣ c]

= µ1 ak πk − δ1 E[ZkR ∣ c] +
n

∑
i=1

k̃ik E[ZiR ∣ c]
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We obtain this result by using ∑
n
j=1,j≠k k̃kj = −k̃kk and

νijk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 k = j

−1 k = i

0 else

which follows from the definition of νij in Equation (S3).

Making use of the steady state assumption, we obtain

µ1 ak πk = δ1 E[ZkR ∣ c] −
n

∑
i=1

k̃ik E[ZiR ∣ c]

for each k = 1, . . . , n, giving rise to a system of n linear equations in the moments E[ZkR ∣ c].

Recognizing, that the sum goes over all elements in the kth column of matrix K̃ and the

product realizes a scalar product of two vectors, we obtain the E[ZkR ∣ c] by solving

(δ1 In − K̃
T
)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[Z1R ∣ c]

⋮

E[ZnR ∣ c]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= µ1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 π1

⋮

an πn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In turn, we obtain the desired quantities as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[Z1R ∣ c]

⋮

E[ZnR ∣ c]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= µ1 (δ1 In − K̃
T
)
−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 π1

⋮

an πn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Variance With the first and second centered moment at hand, we obtain the variance of

the RNA abundance as

Var[R ∣ c] = E[R2 ∣ c] −E[R ∣ c]2

=
µ1

δ1
α(c) (1 −

µ1

δ1
α(c)) +

µ2
1

δ1
aT (δ1 In − K̃

T
)
−1
(a⊙π(c)).

S2.4 Steady State Protein Dynamics

In this section, we derive the moment equations for the protein abundance, to which we refer

as P . The protein abundance is affected by the two reactions translation (reaction II) and

protein degradation (reaction IV). The important reaction rate constants are in this context

µ2 for translation and δ2 for degradation.

First Raw Moment We obtain the first raw moment, respectively the average, by using

g(X(t)) = P . The corresponding Chapman Kolmogorov backward equation reads

d

dt
E[P ∣ c] =

n

∑
i,j=1,j≠i

E[Λij (P − P ) ∣ c]

+ E[µ1 a(c) (P − P ) ∣ c] + E[δ1R (P − P ) ∣ c]

+ E[µ2R ((P + 1) − P ) ∣ c] + E[δ2P ((P − 1) − P ) ∣ c]

= µ2 E[R ∣ c] − δ2 E[P ∣ c]

and we obtain from the steady state condition d
dt E[P ∣ c] = 0 the relationship

E[P ∣ c] =
µ2

δ2
E[R ∣ c]

=
µ2

δ2

µ1

δ1
α(c).
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Second Raw Moment For the second raw moment we consider the monomial function

g(X(t)) = P 2 and obtain the following differential equation.

d

dt
E[P ∣ c] =

n

∑
i,j=1,j≠i

E[Λij (P
2 − P 2) ∣ c]

+ E[µ1 a(c) (P
2 − P 2) ∣ c] + E[δ1R (P

2 − P 2) ∣ c]

+ E[µ2R ((P + 1)
2 − P 2) ∣ c] + E[δ2P ((P − 1)

2 − P 2) ∣ c]

= E[µ2R (P
2 + 2P + 1 − P 2) ∣ c] + E[δ2P (P

2 − 2P + 1 − P 2) ∣ c]

= µ2 (2 E[RP ∣ c] + E[R) ∣ c]) + δ2 (E[P ∣ c] − 2 E[P P ∣ c])

Making use of the steady state, we derive

E[P 2 ∣ c] =
1

2
E[P ∣ c] +

µ2

2 δ2
E[R ∣ c] +

µ2

δ2
E[RP ∣ c]

and by inserting E[RP ∣ c] as derived subsequently and the moments already known from

the previous, we get

E[P 2 ∣ c] =
µ2

δ2

µ1

δ1
α(c) +

µ1 µ2
2

δ1 δ2 (δ1 + δ2)
α(c)

+
µ2
1 µ

2
2

δ1 δ2 (δ1 + δ2)
aT (δ1 In − K̃

T
)
−1
(a⊙π))

+
µ2
1 µ

2
2

δ2 (δ1 + δ2)
aT (δ2 In − K̃

T
)
−1
(δ1 In − K̃

T
)
−1
(a⊙π)

=
µ2

δ2

µ1

δ1
α(c) +

µ1 µ2
2

δ1 δ2 (δ1 + δ2)
α(c)

+
µ2
1 µ

2
2

δ2 (δ1 + δ2)
aT (

1

δ1
+ (δ2 In − K̃

T
)
−1
) (δ1 In − K̃

T
)
−1
(a⊙π)

where again a = [a1 . . . an]T is the vector of state activities and ⊙ denotes the Hadamard

product of two vectors.
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Proportionality of RNA and Protein Abundance To derive the expression for E[RP ∣

c] we set g(X(t)) = RP for which the Chapman Kolmogorov equation follows as

d

dt
E[RP ∣ c] =

n

∑
i,j=1,j≠i

E[Λij (RP −RP ) ∣ c]

+ E[µ1 a(c) ((R + 1)P −RP ) ∣ c] + E[δ1R ((R − 1)P −RP ) ∣ c]

+ E[µ2R (R (P + 1) −RP ) ∣ c] + E[δ2P (R (P − 1) −RP ) ∣ c]

= µ1 E[a(c)P ∣ c] − δ1 E[RP ∣ c] + µ2 E[R
2 ∣ c] + δ2 E[RP ∣ c].

Reshaping and the steady state condition give us then

E[RP ∣ c] =
µ1

δ1 + δ2
E[a(c)P ∣ c] +

µ2

δ1 + δ2
E[R2 ∣ c].

The derivation of E[a(c)P ∣ c] follows the same pattern as E[a(c)R ∣ c] before. We begin

with inserting the definition of a(c) into E[a(c)P ∣ c] to obtain

E[a(c)P ∣ c] = E [
n

∑
j=1

aj Zj P ∣c]

=
n

∑
j=1

aj E[Zj P ∣ c]

= aT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[Z1P ∣ c]

⋮

E[ZnP ∣ c]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For E[Zj P ∣ c], we evaluate the corresponding Chapman Kolmogorov backward equation
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and get for each k = 1, . . . , n

d

dt
E[Zk P ∣ c] =

n

∑
i,j=1,j≠i

E[Zi k̃ij ((Zk + νijk)P −Zk P ) ∣ c]

+ E[µ1 a(c) (Zk P −Zk P ) ∣ c] + E[δ1R (Zk P −Zk P ) ∣ c]

+ E[µ2R (Zk (P + 1) −Zk P ) ∣ c] + E[δ2P (Zk (P − 1) −Zk P ) ∣ c]

= µ2 E[RZk ∣ c] − δ2 E[P Zk ∣ c] +
n

∑
i,j=1,j≠i

νijk E[P Zi k̃ij ∣ c]

= µ2 E[RZk ∣ c] − δ2 E[P Zk ∣ c] +
n

∑
i=1,i≠k

νikk E[P Zi k̃ik ∣ c] +
n

∑
i,j=1,j≠i,j≠k

νijk E[P Zi k̃ij ∣ c]

= µ2 E[RZk ∣ c] − δ2 E[P Zk ∣ c] +
n

∑
i=1,i≠k

E[P Zi k̃ik ∣ c] −
n

∑
j=1,j≠k

E[P Zk k̃kj ∣ c]

= µ2 E[RZk ∣ c] − δ2 E[P Zk ∣ c] +
n

∑
i=1,i≠k

E[P Zi k̃ik ∣ c] − E[P Zk

n

∑
j=1,j≠k

k̃kj ∣ c]

= µ2 E[RZk ∣ c] − δ2 E[P Zk ∣ c] +
n

∑
i=1,i≠k

E[P Zi k̃ik ∣ c] + E[P Zk k̃kk ∣ c]

= µ2 E[RZk ∣ c] − δ2 E[P Zk ∣ c] +
n

∑
i=1

E[P Zi k̃ik ∣ c].

As before, the steady state gives rise to a system of n equations, which can be represented

by a single linear equation with the solution

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[Z1P ∣ c]

⋮

E[ZnP ∣ c]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= µ2 (δ2 In − K̃
T
)
−1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E[Z1R ∣ c]

⋮

E[ZnR ∣ c]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Variance After deriving the first and second order central moment, left over is their com-

bination into the variance of the protein production. In particular, the variance is given
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by

Var[P ∣ c] = E[P 2 ∣ c] − E[P ∣ c]2

=
µ2

δ2

µ1

δ1
α(c) (1 −

µ2

δ2

µ1

δ1
α(c)) +

µ1 µ2
2

δ1 δ2 (δ1 + δ2)
α(c)

+
µ2
1 µ

2
2

δ2 (δ1 + δ2)
aT (

1

δ1
+ (δ2 In − K̃

T
)
−1
) (δ1 In − K̃

T
)
−1
(a⊙π(c))

Protein and RNA Covariance To adequately state the relationship between the distri-

bution of RNA and the one of protein, the covariance is of importance. As everything is in

place, we obtain after some reshaping

Cov[RP ∣ c] = E[(R − E[R ∣ c]) (P − E[P ∣ c]) ∣ c]

= E[RP ∣ c] − E[R ∣ c] E[P ∣ c]

=
µ2

δ1 + δ2

µ1

δ1
α(c) −

µ2

δ2

µ2
1

δ21
α(c)2

+ µ2
1a

T (
µ2

δ1 + δ2
(δ2 In − K̃

T
)
−1
+

1

δ1
) (δ1 In − K̃

T
)
−1
(a⊙π(c))

S3 Stochastic Thermodynamics of Open Chemical Re-

action Networks

In the main document, we utilized the entropy production rate of the (kinetic) promoter

model to quantify the mean energy dissipation rate of the promoter. In this section, we ped-

agogically introduce the concepts of stochastic thermodynamics for open chemical reaction

networks (CRNs) in order to provide an explanation of this commonly made identification.

There is a theoretical gap between a kinetic model and its energetics. In the following,

we point out that the energy changes associated with a microscopically reversible chemical

reaction can be linked to the associated kinetic rates through a relation that establishes con-
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sistency between the kinetic and energetic descriptions. The application of this consistency

relation, also referred to as local detailed balance, allows for the expression of the energy

dissipation rate of a chemical reaction network that is coupled to a heat bath and a number

of chemostats in terms of only its kinetic rates.

The most relevant equations in this section are the energy dissipated into the environment

per reaction

∆Q(±m)(x) =W
(±m)
chem −∆g(±m)(x),

the mean energy dissipation rate

Q̇(t) =∑
x

M

∑
m=1
(∆Q(m)(x)λ+m(x) +∆Q(−m)(x)λ−m(x))p(X(t) = x),

the thermodynamic consistency relation

ln(
λ+m(x)

λ−m(x)
) = −β (∆g(m)(x) +∆µ(m)) = β∆Q(m)(x),

and the identification of the energy dissipation rate with the entropy flow into the environ-

ment

d

dt
Henv(t) = βQ̇(t) =∑

x

M

∑
m=1

ln(
λ+m(x)

λ−m(x + νm)
)Jm(x, t).

S3.1 Closed Stochastic Chemical Reaction Networks

A stochastic chemical reaction network consists of N ∈ N chemical species Z = (Z1, . . . ,ZN)

and M ∈ N reactions R1, . . . ,RM with stoichiometric balance equations

Rm ∶
N

∑
n=1

a
(m)
n Zn

λ+m
⇌
λ−m

N

∑
n=1

b
(m)
n Zn,
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where a(m), b(m) ∈ NN contain the respective numbers of reacting molecules of each species

and the numbers of the product molecules. The backward reaction microscopically reverses

the forward reaction. The difference of output and input species of a reaction Rm forms

the stoichiometric change vector νm = b(m) − a(m) of the forward reaction. Let {Z(t) ∈

NN ∶ t ≥ 0} be the continuous-time Markov chain of the species’ copy number vector. The

forward and backward reactions are assumed to follow stochastic mass action kinetics (1–3 ).

Consequently, the rates of the reactions, also referred to as propensity functions, have the

form

λ+m(z) = k
+
m

N

∏
n=1

zn!

(zn − a
(m)
n )!

, λ−m(z) = k
−
m

N

∏
n=1

zn!

(zn − b
(m)
n )!

(S5)

with z ∈ NN and stochastic rate constants k+m > 0 and k−m ≥ 0. These stochastic rate constants

are related to the deterministic rate constants κ+m > 0,κ
−
m ≥ 0 and the volume V of the solvent

via

k+m = κ
+
m

V

∏
N
n=1 V

a
(m)
n

, k−m = κ
−
m

V

∏
N
n=1 V

b
(m)
n

,

due to consistency of physical units in both the deterministic ODE model (of the concen-

trations) and the probability evolution equation of the stochastic model (4 ). A reaction is

called microscopically reversible if k−m > 0. A CRN is called microscopically reversible if all

reactions are microscopically reversible. In the following, a CRN is assumed to be micro-

scopically reversible unless otherwise noted. We also make the simplifying assumption that

all reactions are elementary, i.e., there are no reaction intermediates and each reaction has

only a single transition state in the reaction coordinate diagram (5 ). Lastly, we assume that

all reactants and products are resolved.

The probability mass function p(z, t) = P(Z(t) = z) of this model follows the chemical master

equation (1–3 )

∂tp(z, t) =
M

∑
m=1

λ+m(z − νm)p(z − νm, t) + λ
−
m(z + νm)p(z + νm, t) − (λ

+
m(z) + λ

−
m(z))p(z, t) (S6)
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This model makes several assumptions. Firstly, assuming a Markov process description

means that the future dynamics of the mesoscopic system is sufficiently described by the

current state and does not depend on the past. The microscopic states comprising any

mesoscopic state are thus assumed to be degenerate. That is, the future dynamics do not

depend on the particular microstate, the system is in, but just on the current mesostate

z. Secondly, there are assumptions about the environment in which the reaction network is

embedded. Since the propensity functions are independent of time and space, the embedding

environment must be seen as equilibrated and spatially homogeneous from the perspective

of the species Z. That is, temperature, pressure, and volume of the solvent are constant over

time and space. Similarly, the molecular composition of the solvent, which may influence

the rate constants, remains constant over time and the surrounding of each molecule of Z

homogenizes spatially on a much faster time scale than reactions occur.

A chemical reaction network is considered closed if it does not exchange molecules with

the external environment and if it does not change the number of molecules of any of the

chemical species that make up the solvent. A closed thermodynamic system may exchange

heat with its environment. We interpret the solvent as a heat bath which maintains a

constant temperature T .

The zeroth law of thermodynamics for chemical reaction networks dictates that a closed,

microscopically reversible CRN always relaxes to equilibrium (3 ). Equilibrium statistical

mechanics further requires that the equilibrium distribution of a closed chemical reaction

network is (i) a Gibbs-Boltzmann distribution π(z) = limt→∞P(Z(t) = z) ∝ e−βg(z), where

β = (kBT )−1 and g(z) is the Gibbs free energy of the state z, and (ii) it satisfies detailed

balance

λ+m(z)π(z) = λ
−
m(z + νm)π(z + νm) (S7)

for all admissible states z and all reversible reactions Rm (3 ). Plugging the Boltzmannn dis-

tribution into (S7) yields the local detailed balance condition, or thermodynamic consistency
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relation, for closed CRNs (3 ):

ln(
λ+m(z)

λ−m(z + νm)
) = −β(g(z + νm) − g(z)) (S8)

for all admissible states z and all reversible reactions Rm. It should be noted that equation

(S8) relates kinetic and energetic constants, and therefore it is also satisfied during the

transient nonequilibrium and independent of the initial conditions.

S3.2 Open Chemical Reaction Networks – Coupling to Chemostats
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Figure S1: Open chemical reaction networks. A: Visualization of an open CRN, where
the core system Z is coupled to a number of chemostat species. Each horizontal layer can
exchange energy with its vertically adjacent layers. BC: State transition diagram of the
copy numbers of RNA and protein with a switchable promoter, exhibiting ON and OFF
states. The directed edges also show which species are exchanged with the chemostat.

So far, we have suggested that the reactions of the core reaction network may also depend on

the molecular species of the solvent. For a closed network, we have assumed that the species

of the solvent do not change due to the given reactions R1, . . . ,RM , so that the stochastic

rate constants do not explicitly depend on the concentrations of the solvent species and

thus do not change with time. Otherwise, for example, some solvent species might become
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depleted. In an open CRN, the exchange of molecules with an external reservoir is allowed.

In the following, we assume that the core system is coupled to L chemostats C1, . . . ,CL via

the solvent. The open CRN is visualized in Figure S1A. The copy number of chemostat

molecules in the solvent is assumed to be high enough to enter the description of the system

only via their real-valued concentrations c = (c1, . . . , cL), which are constant over time. The

coupled system follows the stoichiometric balance equations

Rm ∶
L

∑
l=1

r
(m)
l Cl +

N

∑
n=1

a
(m)
n Zn

λ+m
⇌
λ−m

L

∑
l=1

s
(m)
l Cl +

N

∑
n=1

b
(m)
n Zn,

where γ(m) = s(m)−r(m) is the stoichiometric change vector of the chemostat species associated

with Rm. Immediately after each reaction, the chemostat is assumed to correct the copy

number of all chemostat species. Consequently, the propensity functions of the coupled

reactions maintain the form (S5) with the adjustment that the stochastic rate constants now

depend on the chemostat concentrations insofar as they incorporate a deterministic law of

mass action

k+m(c) = κ
+
m

V

∏
N
n=1 V

a
(m)
n

L

∏
l=1

c
r
(m)
l

l , k−m(c) = κ
−
m

V

∏
N
n=1 V

b
(m)
n

L

∏
l=1

c
s
(m)
l

l ,

where the units of the deterministic rate constants κ+m, κ
−
m are adapted accordingly. There-

fore, the probability evolution is still described by (S6).

Suppose a real chemical network is empirically well described by a Markovian CRN. Let

us further assume that the biomolecular species ATP, ADP and Pi are chemostat species

and some of the state changes of the system involve ATP hydrolysis. In a microscopically

reversible CRN, any ATP consuming reaction ATP ⇌ ADP + Pi always produces ATP in

the reverse direction. Consequently, if any state change is predominantly ATP-consuming

in one direction, but not ATP-producing in the reverse direction, then there are at least

two distinct reactions involved. That is, the microscopically reversible CRN features two
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reactions with the same stochiometric change vector for the core system, but distinct change

vectors for the chemostat species.

To describe the energetics of each reaction Rm we denote by µl the chemical potential of Cl,

i.e., the energy associated with a single molecule of species Cl. Reaction Rm, starting from

state z, is associated with a change in the Gibbs free energy of the state

∆g(m)(z) = g(z + νm) − g(z) = −∆g(−m)(z + νm)

and the chemical work W
(m)
chem done on the system by the chemostat

W
(±m)
chem = ∓∑

l

(s
(m)
l − r

(m)
l )µl,

where (−m) denotes the reverse reaction. Thus the energy dissipated into the environment

per reaction is

∆Q(±m)(z) =W
(±m)
chem −∆g(±m)(z) (S9)

with ∆Q(−m)(z + νm) = −∆Q(m)(z). Intuitively, the dissipated energy is the chemical work

done on the system but not stored in the system’s state. Let 0 < τ
(±m)
1 < τ

(±m)
2 < ⋅ ⋅ ⋅ ≤ t be

the random times, when reaction Rm happens in forward or backward direction. Then the

energy dissipated by the random trajectory {Z(s) ∶ 0 < s ≤ t} of the open CRN within the

time interval (0, t] is

q(t) =
M

∑
m=1

⎛
⎜
⎝
∑

k∶0<τ(m)
k
≤t

∆Q(m)(Z(τ
(m)
k −))

⎞
⎟
⎠
+
⎛
⎜
⎝
∑

k∶0<τ(−m)
k

≤t

∆Q(−m)(Z(τ
(−m)
k −))

⎞
⎟
⎠

(S10)

where Z(t−) = lims↑tZ(s) denotes the left limit in time, such that Z(τ
(m)
k −) is the state of

the CRN just before the k-th occurrence of reaction Rm in forward direction (2 ). The mean
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energy dissipation rate Q̇(t) of the open CRN can be stated as

Q̇(t) =
d

dt
E[q(t)] =

M

∑
m=1
(E[∆Q(m)(Z(t))λ+m(Z(t))] + E[∆Q(−m)(Z(t))λ−m(Z(t))])

=∑
z

M

∑
m=1
(∆Q(m)(z)λ+m(z) +∆Q(−m)(z)λ−m(z))p(z, t)

=∑
z

M

∑
m=1

∆Q(m)(z) (λ+m(z)p(z, t) − λ
−
m(z + νm)p(z + νm, t)),

(S11)

where the expectation of q is taken over the distribution of all trajectories {Z(s) ∶ 0 < s ≤ t}.

Defining the forward, the backward, and the net probability fluxes J+m(z, t) = p(Z(t) =

z)λ+m(z), J
−
m(z, t) = p(Z(t) = z + νm)λ

−
m(z + νm), and Jm(z, t) = J+m(z, t) − J

−
m(z, t), respec-

tively, of reaction Rm , we can rewrite (S11) as

Q̇(t) =∑
z

M

∑
m=1

∆Q(m)(z) Jm(z, t)

The first line in Equation (S11) follows by the theory of point processes (6 ), the second line

by evaluation of the expectations and the third line by shifting of the order of summation

of the last term and using the property of Equation (S9) stated above. For completeness we

elaborate on the first line of (S11) in the following proof.

Proof of (S11). We represent Z(t) via its forward/backward reaction counting processes

R±m(t) = N
±
m (∫

t

0
λ±m(Z(s)) ds) ,

where {N±m(t) ∈ N, t > 0} with 1 ≤m ≤M are independent unit rate Poisson processes. Then

Z(t) = Z(0) +
M

∑
m=1

νm (R
+
m(t) −R

−
m(t)) = Z(0) +

M

∑
m=1
∫

t

0
νm ( dR

+
m(s) − dR−m(s)).
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We rewrite (S10) via stochastic integrals of the reaction counting processes

q(t) =
M

∑
m=1
∫

t

0
∆Q(m)(Z(s−)) dR+m(s) + ∫

t

0
∆Q(−m)(Z(s−)) dR−m(s).

Now with the definition in (7 ), page 27, the expectations of the stochastic integrals are

rewritten as expectations of Lebesgue/Riemann integrals

E[q(t)] =
M

∑
m=1

E [∫
t

0
∆Q(m)(Z(s−)) dR+m(s) + ∫

t

0
∆Q(−m)(Z(s−)) dR−m(s)]

=
M

∑
m=1

E [∫
t

0
∆Q(m)(Z(s−))λ+m(Z(s−)) ds + ∫

t

0
∆Q(−m)(Z(s−))λ−m(Z(s−)) ds] ,

such that (S11) follows by exchanging the expectation with the integral via Fubini’s theorem

and taking the derivative.

In open CRNs the thermodynamic consistency relation

ln(
λ+m(z)

λ−m(z + νm)
) = β∆Q(m)(z) (S12)

for all admissible states z and all reversible reactionsRm generalizes the local detailed balance

(S8) (3 ). To show consistency in the deterministic limit, we use the macroscopic limit of the

Gibbs free energy of the state and the propensity functions for a large volume V

g(V z̃) ≈V
N

∑
n=1
∫

z̃n

0
(gon + β

−1 ln(yn)) dyn

∆g(m)(V z̃) ≈νm(V
−1∇z̃)g(V z̃) =

N

∑
n=1
(b
(m)
n − a

(m)
n )(g

o
n + β

−1 ln(z̃n))

λ+m(V z̃) ≈κ+mV (
L

∏
l=1

c
r
(m)
l

l )(
N

∏
n=1

z̃a
(m)
n

n ) , λ−m(V z̃) ≈ κ−mV (
L

∏
l=1

c
s
(m)
l

l )(
N

∏
n=1

z̃b
(m)
n

n ) ,

where z̃ = V −1z, ∇z̃ denotes the gradient operator w.r.t. the components of z̃, and we

assumed independence of the chemical potentials of distinct species. Further we identify

µl = µo
l + β

−1 ln(cl) and note that −W
(±m)
chem is exactly the change in Gibbs free energy of the

S33



state of the chemostat species in the macroscopic limit. Thus if the species C1, . . . ,CL and

the core system would form a closed system, then the macroscopic limit of −∆Q(m)(z) is

exactly the change of macroscopic Gibbs free energy of the total system upon reaction Rm

in forward direction. So in the macroscopic limit the thermodynamic consistency relation

for open CRNs (S12), i.e.,

ln(
λ+m(V z̃)

λ−m(V z̃)
) = β (∑

l

(s
(m)
l − r

(m)
l )µl −∆g(m)(V z̃)) ., (S13)

is consistent with (S8). Using the definition of µl and the expression for ∆g(m)(V z̃) in

Equation (S13) yields the well known relation for the macroscopic rate constants (8 )

ln(K
(m)
eq ) = ln(

κ+m
κ−m
) = −

L

∑
l=1
(s
(m)
l − r

(m)
l )βµ

o
l −

N

∑
n=1
(b
(m)
n − a

(m)
n )βg

o
n, (S14)

where K
(m)
eq is the equilibrium constant of reaction Rm. For further consistency results we

refer the reader to (3 ).

S3.3 Relation of Entropy Production Rate and Energy Dissipation

Plugging (S12) into (S11) reexpresses the mean energy dissipation rate (in units of kBT )

βQ̇(t) =∑
z

M

∑
m=1

ln(
λ+m(z)

λ−m(z + νm)
)Jm(z, t) (S15)

based only on the kinetic parameters of the open CRN. Now (S15) is further identified as

the (Shannon) entropy flow into the environment d
dtH

env(t) = βQ̇(t) (2 , 3 ). The entropy

production of the whole system Htot(t), consisting of the core system and its environment,

during the interval [0, t] is given as

Htot(t) = ∫
t

0
(

d

ds
H[Z(s)] +

d

ds
Henv(s)) ds,
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where H[Z(t)] = −∑z p(z, t) ln(p(z, t)) is the (Shannon) entropy of the core system at time

t ≥ 0. Using the CME (S6) we express the derivative of the entropy of the core system as

d

dt
H[Z(t)] = −∑

z

(ln(p(z, t)) + 1)∂tp(z, t)

=∑
z

M

∑
m=1

ln(
p(z, t)

p(z + νm, t)
) (λ+m(z)p(z, t) − λ

−
m(z + νm)p(z + νm, t)).

Thus the entropy production rate is given by

d

dt
Htot(t) =∑

z

M

∑
m=1

ln(
p(z, t)λ+m(z)

p(z + νm, t)λ−m(z + νm)
) (λ+m(z)p(z, t) − λ

−
m(z + νm)p(z + νm, t))

=∑
z

M

∑
m=1

ln(
J+m(z, t)

J−m(z, t)
)Jm(z, t).

(S16)

At stationarity we have limt→∞H[Z(t)] = −∑z π(z) ln(π(z)), implying limt→∞
d
dtH[Z(t)] =

0 and consequently

ep = lim
t→∞

d

dt
Htot(t) = lim

t→∞

d

dt
Henv(t) = lim

t→∞
βQ̇(t),

which is what we wanted to show. The entropy production rate at stationarity quantifies the

mean energy dissipation rate of the core chemical reaction network into the environment.

In the main document, we have provided the energy dissipation rate for an unspecified cou-

pling to chemostat species and unspecified chemostat concentrations. It should be noted,

however, that the deterministic rate constants depend explicitly on the coupling due to

equation (S14). Consequently, a given open CRN with specified reactions and fixed chemo-

stat concentrations has only one degree of freedom per reaction Rm and the stochastic rate

constants obey

k+m
k−m
=K

(m)
eq ⋅ (

N

∏
n=1

V b
(m)
n −a(m)n )(

L

∏
l=1

cr
(m)
l
−s(m)

l )

for a given coupling and fixed chemostat concentrations.
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S3.4 Energy Dissipation of RNA and Protein Dynamics

Lastly, we derive the energy consumption rate of RNA and protein dynamics of a single

gene. In contrast to the promoter reactions, transcription, RNA degradation, translation

and protein degradation are modelled as microscopically irreversible reactions. Each is an

effective reaction, which may consist of a sequence of microscopically reversible reactions.

However, each of the reverse microscopic reactions is significantly less likely to occur than

the corresponding forward reaction, implying that the rate of the reverse effective composite

reaction is negligible.

We model the RNA and protein dynamics with the following stoichiometric balance equa-

tions, containing both, the chemostat species and the core species, R (RNA), P (protein)

and the promoter in the on state (GON):

Transcription: lr ⋅NTP +GON
λ(Tx)
Ð→ RNA + lr ⋅PPi +GON

RNA deg.: RNA
λ(Rdeg)
Ð→ lr ⋅NMP

Translation: RNA + lp(GTP +AA +ATP) + 5RTP

λ(Tl)
Ð→ RNA +Protein + lp(GDP +Pi +AMP +PPi) + 5(RDP +Pi)

Protein deg.: Protein
λ(Pdeg)
Ð→ lp ⋅AA

The chemostat species are the building blocks of RNA and protein as well as energy-rich

molecules and their degradation products. State transition diagrams for the RNA and protein

states are depicted in Figure S1 b) and c). Denote Z(t) = (X(t),R(t), P (t)), where X(t) ∈

{0,1} is the promoter state. Let −∆µ(Tx),−∆µ(Tl) be the chemical work done to produce an

RNA molecule or a protein, respectively, i.e.,

∆µ(Tx) =lr(µ(PPi) − µ(NTP))

∆µ(Tl) =lr(µ(GDP) + µ(Pi) + µ(AMP) + µ(PPi) − µ(GTP) − µ(AA) − µ(ATP))

+ 5(µ(RDP) + µ(Pi) − µ(RTP))
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Further, let ∆g(Tx)(Z(t)), ∆g(Tl)(Z(t)) be the Gibbs free energy “stored” in, respectively,

the RNA molecule and the protein. Lastly, ∆µ(Rdeg) = lrµ(NMP), ∆µ(Pdeg) = lpµ(AA) be

the chemical energy released into the environment upon the respective degradation reactions.

As an approximation we assume that the reaction free energies are independent of the copy

number of the respective RNA or protein. Then

Q̇(TxTl)(t) =E[(−∆µ(Tx) −∆g(Tx))λ(Tx)(Z(t))] + E[(−∆µ(Rdeg) +∆g(Tx))λ(Rdeg)(Z(t))]

+ E[(−∆µ(Tl) −∆g(Tl))λ(Tl)(Z(t))] + E[(−∆µ(Pdeg) +∆g(Tl))λ(Pdeg)(Z(t))]

such that with the stationarity conditions ∂t E[R(t)] = E[λ(Tx)(Z(t))]−E[λ(Rdeg)(Z(t))] = 0

and ∂t E[P (t)] = E[λ(Tl)(Z(t))]−E[λ(Pdeg)(Z(t))] = 0 and the system variables at stationarity

Z∞ = (X∞,R∞, P∞) = limt→∞Z(t) (limit in distribution) we obtain

lim
t→∞

Q̇(TxTl)(t) = lim
t→∞

E[(−∆µ(Tx) −∆µ(Rdeg))λ(Tx)(Z∞)] + lim
t→∞

E[(−∆µ(Tl) −∆µ(Pdeg))λ(Tl)(Z∞)]

=(−∆µ(Tx) −∆µ(Rdeg))µ1π(ON) + (−∆µ(Tl) −∆µ(Pdeg))
µ1µ2

δ1
π(ON)

=(−∆µ(Tx) −∆µ(Rdeg))δ1 E[R∞] + (−∆µ(Tl) −∆µ(Pdeg))δ2 E[P∞].

Partioning the chemical potentials into length dependent and independent contributions, we

obtain the relation

−∆µ(Tx) −∆µ(Rdeg) = er lr + ēr −∆µ(Tl) −∆µ(Pdeg) = ep lp + ēp

as used in the main part.

In conclusion, the energy dissipation rate (in units of kB T s−1) of a single gene at stationarity

is given as the sum of the entropy production rate of the promoter and βQ̇(TxTl)(t).
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S3.5 Entropy Production Rate on a Finite State Space

Much of the literature on the entropy production rate uses a description based on the in-

finitesimal generator matrixΛ of a CTMC instead of a reaction network description (1 , 2 , 9 ).

A connection between the two pictures is established by using a one-hot coding of the reac-

tion network. In our case, the conversion is employed to make use of Schnakenberg’s method

(9 ) to compute the entropy production rate of the promoter.

Let Z be N-dimensional with a finite state space Z = {e1, . . . , eN} ⊂ {0,1}N , where ei is the

unit vector with a one at position i. Further, the set of reactions be {(i, j) ∈ N2∩[1,N]2∶ j > i}

with associated stoichiometric change vector ν(i,j) = ej − ei. For i < j we define the reversible

conversion reaction

R(i,j) ∶ Zi

λ+(i,j)
⇌

λ−(i,j)
Zj with λ+(i,j)(z) = Λij 1(z = ei), λ−(i,j)(z) = Λji 1(z = ej).

In the context of an open CRN, this definition implies that each reaction R(i,j) is associated

with a unique change vector of chemostat species. Plugging the definition of the rates into

(S16) we obtain

d

dt
Htot(t) =

N

∑
i=1

∑
(k,j)∶k<j

ln(
p(ei, t)Λkj 1(ei = ek)

p(ei + ej − ek, t)Λjk 1(ei + ej − ek = ej)
)

⋅ (Λkj 1(ei = ek)p(ei, t) −Λjk 1(ei + ej − ek = ej)p(ei + ej − ek, t)),

which simplifies to

d

dt
Htot(t) =

N

∑
i=1
∑
j∶ i<j

ln(
p(ei, t)Λij

p(ej, t)Λji

)(Λij p(ei, t) −Λji p(ej, t)).
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S4 Schnakenberg’s Cycle Representation of the En-

tropy Production Rate

After the derivation of the entropy production rate and it’s meaning in the context of open

chemical reaction networks, we here want to present the method of Schnakenberg (9 ) to

derive the entropy production rate in the steady state. In particular, we want to introduce

the expression

ep = ∑
o∈O

F (o)A(o) (S17)

and how to efficiently evaluate it.

While Equation (S17) appears to be more complex then the previous definition of ep, the

approach of Schnakenberg provides beautiful aspects for the practical applicability and in-

terpretation of the entropy production rate. As so, we refer the interested reader to (9 ), and

especially Sections VIII and IX thereof, for the derivation by Schnakenberg and (11 ) for a

more extensive reproduction than we provide here.

The central aspect of Schnakenberg’s treatment is the consideration of cycles within the

CTMC’s state space. In particular, a cycle o is a sequence of reversible reactions connecting

states, such that starting at any of these states and following the reactions in the forward

direction, one reaches the initial state again. Within this graph centric approach, (9 ) obtains

a so called fundamental set of cycles O by employing a spanning tree based approach.

Starting with an arbitrary spanning tree T of the state space graph, the edges, respectively

reaction pairs, not included in T are referenced by ζ and denoted as chords. Adding the

arbitrary chord ς ∈ ζ to T yields the cycle oς , from which we remove all edges not contributing

to the circle. The fundamental set is obtained by setting O = {oς ∶ ς ∈ ζ}. In addition, (9 )
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fixes for each reaction pair m and cycle oς a sense of orientation and introduces

ϕm(oς) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m is parallel to oς ,

−1 if m is antiparallel to oς ,

0 if m is not in oς

which gives rise to the relative orientation of m with respect to oς .

Next, we define for each cycle oς , the corresponding (probability) flux F (oς) and affinity,

respectively force, A(oς). To simplify notation, we identify the index i with the state z and

index j with state z + νm, which is reached after the reaction reaction m happened. The

quantities of interest are then defined as

A(oς) = ∑
m∈oς

ϕm(oς)Am Am = log(
πiΛij

πj Λji

) (S18)

F (oς) = ϕς(oς) J̄ς J̄ς = πiΛij − πj Λji. (S19)

Following (9 ), the entropy production rate is defined as

ep = ∑
oς∈O

F (oς)A(oς) (S20)

while the applicability of Kirchhoff’s Current Law, allowing the use of J̄ς , limits this expres-

sion to the steady state.

S4.1 Entropy Production Rate of the Eight State Promoter

Within this section, we want to show the relation between entropy production rate and

energy dissipation rate at the example of the eight state promoter model being the basis for
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our technology mapping. In particular, we show the equation

ep = F (o1)β µ(o1) + F (o2)β µ(o2) + F (o3)β µ(o3)

where Jo is the net flux along cycle o and β µo is the corresponding driving force.

Following Schnakenberg (9 ), we start with the state space as being depicted in Figure S2A.

For this particular structure, Kirchhoff’s matrix tree theorem tells us that 56 spanning trees

exist and we present our exemplary choice T in Figure S2B. The corresponding chords

ζ = {ς1, ς2, ς3} are given by the edges ς1 = (z5, z6), ς2 = (z6, z7), and ς3 = (z7, z8). Next, we

obtain the cycle oi ∈ O by joining the chord ςi ∈ ζ with the tree T and removing all edges

not constituting the resulting loop. At the example of o1, we add ς1 = (z5, z6) to T , yielding

the cycle over states z5, z1, z2, and z6 to state z5 again. States z3, z4, z7 and z8 are not part

of any cycle and so aren’t the edges associated. Figure S2C presents the cycle o1 obtained

by removing the edges and states not included in the cycle. The same approach applies to

o2 and o3, where Figures S2D and E present the corresponding cycles. We complete this

step by assigning to each cycle the orientation presented in the respective figure (see Figures

S2C-E).

To derive the entropy production rate, we first have to determine the thermodynamic forces

and fluxes associated to the cycles. For this, we make use of Equations (S18) and (S19).

Considering the reaction pairs in the defined orientation gives

F (o1) = π6Λ65 − π5Λ56 A(o1) = ln(
Λ12Λ26Λ65Λ51

Λ21Λ62Λ56Λ15

)

F (o2) = π7Λ76 − π6Λ67 A(o2) = ln(
Λ23Λ37Λ76Λ62

Λ32Λ73Λ67Λ26

)

F (o3) = π8Λ87 − π7Λ78 A(o3) = ln(
Λ34Λ48Λ87Λ73

Λ43Λ84Λ78Λ37

)
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A

B

C

D

E

Figure S2: Derivation of entropy production rate following Schnakenberg (9 ). A:
The state space of the CTMC under concideration. B: One of the spanning trees, whereby
the greyed out reaction pairs are the excluded transitions, constituting the set of chords.
C-E: The cycles obtained by joining the tree with each of the chords and removing all other
states and reactions (greyed out).
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where F (oi) directly follows from (S18) and A(oi) already includes the simplification

A(oi) = ∑
(j1,j2)∈oi

ϕm(oi) ln(
πj1 Λj1j2

πj2 Λj2j1

)

= ln
⎛

⎝
∏

(j1,j2)∈oi
(
πj1 Λj1j2

πj2 Λj2j1

)

ϕm(oi)⎞

⎠

= ln(
πj1 Λj1j2

πj2 Λj2j1

πj2 Λj2j3

πj3 Λj3j2

πj3 Λj3j4

πj4 Λj4j3

πj4 Λj4j1

πj1 Λj1j4

)

= ln(
Λj1j2 Λj2j3 Λj3j4 Λj4j1

Λj2j1 Λj3j2 Λj4j3 Λj1j4

)

which makes use of the cycles being closed and where we assumed that the state indices

j are ordered in the direction of the cycle. As so, the affinity or thermodynamic force of

a cycle explicitly solely depends on the propensities and is independent of the actual state

probabilities.

Inserting the previous into Equation (S20), we obtain the entropy production rate.

ep = ∑
oi∈O

F (oi)A(oi)

= (π6Λ65 − π5Λ56) ln(
Λ12Λ26Λ65Λ51

Λ21Λ62Λ56Λ15

)

+ (π7Λ76 − π6Λ67) ln(
Λ23Λ37Λ76Λ62

Λ32Λ73Λ67Λ26

)

+ (π8Λ87 − π7Λ78) ln(
Λ34Λ48Λ87Λ73

Λ43Λ84Λ78Λ37

)

By recalling the thermodynamic consistency relation for open chemical reaction networks,

we can simplify this expression further. Using the current notation for Equation (S12) for

reasons of brevity, the relation is

Λij

Λji

= exp (−β (∆gij −∆µij))

∆gij = gj − gi = −∆gji
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where gi is the Gibbs free energy of the state zi and ∆µij is the chemical potential for

transitioning from state zi to state zj. For a closed loop o in the state space of our CTMC,

the forward and backward propensities satisfy

∏
(i,j)∈o

Λij

Λji

= exp (β µ(o)) with µ(o) = ∑
(i,j)∈o

µij

which follows directly by inserting the thermodynamic consistency relation into the left side.

For the entropy production rate, this yields

ep = F (o1)β µ(o1) + F (o2)β µ(o2) + F (o3)β µ(o3)

which is the entropy production rate expressed in terms of the chemical potential and the

flux along the CTMC’s cycles. In this context, we raise the reader’s attention to the depen-

dency on the cognate transcription factor’s concentration. Despite not explicitly stated, the

propensities Λij depend on c and it’s influence is covered by the chemical potentials µ(oi).

S5 ARCTIC and Energy Aware Technology Mapping

ARCTIC is a technology mapping framework first introduced in (12 ) and extended in (13 )

as well as in this work. Given a genetic gate library and the specification of the Boolean

function, the framework provides methods to efficiently synthesize circuits for the desired

Boolean function. As a unique feature, it considers structural variants of circuits as candidate

topologies for gate assignment optimization. With simulated annealing, Branch-and-Bound,

and exhaustive enumeration, three optimization algorithms are available for the gate assign-

ment. Exhaustive enumeration is the traditional approach of evaluating all valid assignments

of genetic gates and is in turn computationally expensive. Branch-and-Bound performs an

implicit enumeration, providing a beneficial performance and can also guarantee exactness.

However, the method requires well adapted models providing guarantees on monotonicity and
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ARCTIC

ARCTICmap ARCTICsim

Library Information

Circuit Topology

Gate Assignment

Circuit Score

Circuit Analysis

Gate Assignment
Optimization

Topology Synthesis

Toolflow

Circuit Simulator Suite

Thermodynamic Simulator

Classic Simulator

f(x)

Gate Libraries

Heuristic Methods

Exact Methods

Structural Variants

Thermodynamic Libraries

Classic Libraries

Crosstalk Configurations

Figure S3: Overview of the technology mapping framework ARCTIC.

boundedness of gate transfer functions. Simulated annealing is the most versatile method, as

it is a flexible heuristic. It allows for optimizing arbitrary objective functions and extended

by context information (12 ), it provides an adequate performance.

The mapping part is complemented by genetic circuit simulators putting a special focus

on robustness and context effects. To this end, ARCTIC includes with the E-Score (12 )

(see Methods of main part) a scoring method accounting for output distributions. This

is utilized by the particle based simulation used in this work and allows to evaluate the

circuit’s performance in the presence of cell-to-cell variability and intrinsic noise. Besides,

(13 ) presents a thermodynamic equilibrium model accounting for context effects such as

cross-talk among gates, titration of transcription factors to non-cognate binding sites, and

interference of host molecules with the circuit.

As the Energy Aware Technology Mapping makes use of the model presented in this

work, we subsequently describe the creation of the genetic gate library used for the present
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evaluation.

S5.1 Library Creation

In order to highlight the adaptability to different scenarios and already existing libraries, we

use the user constraint file (UCF) of Chen et al. (14 ) as starting point for the creation of

our genetic gate library. Providing all the data relevant to Cello (14–16 ), the UCF includes

information such as cytometry data, toxicity, DNA sequences, and Hill curve parameters

for genetic logic gates implemented and evaluated in the yeast Saccharomyces cerevisiae (S.

cerevisiae). The first step in library creation is to translate the entries within the UCF

to entries compatible with our framework. This mainly involves providing new identifiers,

reshaping entries and stripping of the information currently of no use to us, such as the

motif_library collection. In the following paragraphs, we consider the most important

collections further and provide the information relevant for intercomparability.

Device The central aspect of our library is the device. It represents the actual genetic

logic gate, which is constructed of a promoter, a protein, and the UTR, respectively Kozak

sequence. As all the previously mentioned parts are included indivdually, the device collec-

tion holds a reference to the parts of relevance. In addition, it gives rise to the logic gate

primitives realizable, which are in our case NOT and NOR. To identify which gates can be

used jointly in a circuit, the group tag indicates the transcription factor used. By this, the

technology mapping algorithm can exclude gate assignments featuring a single group more

than once.

Promoter The promoter entry includes all the entries relevant for the characterization of

the promoter model employed. In particular, these are the cognate transcription factors,

references to the corresponding DNA sequences, information for the proximity based gate

assignment (12 ), and the actual parameters of the model. These include the transcriptional

activities of all promoter states and the reaction rate constants obtained through parameter
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estimation. In the following, we present the prerequisites for this process.

A key aspect of the Cello UCF is, that the values provided are in units of RPU or related to it.

RPU stands for relative promoter unit and relates the strength of a promoter to a reference

promoter (14 , 15 , 17 ). In comparison, the model presented in this work is defined with

protein abundance in mind. However, considering the derivation of the values presented

in the UCF, one observes that these relate to the fluorescence intensity of some reporter

protein and are translated to RPU by assuming that the promoter activity is proportional

to the protein expression level (15 , 17 ). In the model’s parameter estimation, we partially

adapt this view and assume, that fluorescence intensity is proportional to the expression

level. Due to the significant mismatch between the order of magnitude of RPU and protein

concentration, we rescale the protein abundance in dependence to the values of µ1, µ2, δ1,

and δ2. In particular, the rescaled protein level P̃ is

P̃ = P
δ1 δ2
µ1 µ2

(S21)

where P is the actual protein abundance. Equation (S21) eliminates the concern with respect

to the order of magnitude and at the same time preserves the coefficient of variation of the

associated distribution. As so, there is no loss of probabilistic information while obtaining a

representation compatible with RPU.

Figure S4 reassembles the setting of genetic gate characterization, respectively the one em-

ployed for the measurement of the cytometry data, at the example of the transcription factor

phlF1. The parameter estimation approach reassembles this setting to derive the param-

eters of the promoter model. By the previously introduced rescaling, the transcriptional

activity parameters ai are in the range of RPU, making the models response characteristic

comparable to the models provided in (14 ).
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P-lac phlF1 P-phl... YFPlacl

IPT...

Figure S4: Genetic gate characterization. This figure presents the gene circuit for the
characterization of the genetic logic gates. The setup consist of a constitutive promoter
expressing the protein lacl, which can act as transcription factor or bind to the inducer
IPTG. This transcription factor represses it’s cognate promoter, which realizes the input
to the gate under consideration, here P1 PhlF. The expression level of the reporter protein
succeeding the gate is in practice measured via flow cytometry and thereafter normalized to
RPU (15 ).

Protein The protein collection provides for each transcription factor the information rele-

vant for the model. In detail, these are the rates for the RNA and protein dynamics and the

information on the energetics. As introduced subsequently, we make use of the following rates

during library creation of S. cerevisiae. The transcription rate is µ1 = 6.6̄ 10−3 s−1, the trans-

lation rate is µ2 = 55.5̄ 10−3 s−1, and the corresponding degradation rates are δ1 = 0.5810−3 s−1

and δ2 = 0.2910−3 s−1. Furthermore, we derive from the DNA sequences encoding the pro-

teins the RNA and protein lengths lr and lp. For the RNA length lr, we additionally take

the provided UTR into account, as it is part of the transcript but not of the protein the

DNA sequence encodes for. The protein length lp in amino acids is then the sequence length

divided by the codon size (i.e. three). In combination with the parameters er = 16, ēr = 0,

ep = 42, and ēp = 52, this provides all the information relevant to determine the energetic

cost of a single RNA and protein molecule.

As the previous rates are host dependent, they are only applicable for S. cerevisae and need

to be adapted for other organisms such as E. coli.
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S5.2 Parameter Estimation

The parameter estimation approach for our particular promoter model instantiation has to

identify the values of the 22 parameters matching best to the provided data. The first step

is to reimplement the experimental setting used to characterize the parts in (14 , 15 ) in

silico. This setup is shown in Figure S4 and consists of two genes, whereby the genetic gate

is realized by the transcription factor encoded by the first gene and the promoter on the

second gene. In comparison to (14 ), we omit the gene constitutively expressing lacl, the

transcription factor binding to the inducer IPTG and allowing for induction, by replacing it

in silico with a degenerate promoter directly translating inducer levels to promoter activities.

The required information is not included in the UCF but is provided as supplementary data

to the work of Chen et al. (14 ). Adding the reporter protein to the end of the gene cascade,

we follow the setting of (14 ). Next, the inducer levels are associated to the corresponding

cytometry measurements, respectively to the associated mean and variance.

The parameter matching is achieved by minimizing the error function measuring the differ-

ence between the distribution resulting from the model setup and the data provided. As the

cytometry data is given in terms of RPU, we rescale the reporter output to promoter activity

levels, yielding the model’s output in RPU. This is described by SI Equation (S21). The

error function measures the logarithmic distance between the model’s mean and standard

deviation to the reference data. To account for precisely matching the saturated regions,

we weight the errors at the smallest and largest input conditions accordingly. In addition,

a penalization is added in case the current response characteristic is not monotonous, which

ensures well behaving models in domains not covered by the experimental data.

To ease optimization, the reaction rate constants for the reactions between to transcriptional

activity levels are initialized to feature an inverter characteristic, while the others are chosen

randomly. Furthermore, we constrain all rate constants to the range [10−5,105] and the

activity level of the active levels to be at least the maximum mean value encountered in the

S49



cytometry data and exceeding it by factor two at most. The inactive level is upper bounded

by the smallest mean value and is allowed to undercut it by half. For each genetic gate, the

best parameter set out of ten optimizations is chosen and included in the respective promoter

entry in the gate library.

S6 Relative Promoter Units, Relative Expression Units,

and the Characterization of Genetic Logic Gates in

Cello

Relative Promoter Units (RPU) are commonly used in synthetic biology as they enable the

comparison of promoters in different contexts and contribute to the standardization of the

field (18 , 19 ). Nielsen et al. (15 ) and Chen et al. (14 ) use relative promoter units (RPU)

to characterize their gates and sensors. The RPUs are derived from the flow cytometry

measurements of the constructs and by normalizing with respect to previously obtained

values. The formula is

RPU =
Y FP − Y FP0

Y FPRPU − Y FP0

where the median fluorescence of the construct Y FP , the RPU standard plasmid Y FPRPU ,

and the autofluorescence Y FP0 are set in relation. Within (17 ), a predecessor of (15 ) already

introducing the genetic gates, the concept relative expression units (REU) is used to refer

to the values later concidered as RPU.

Figure S4 visualizes an exemplary plasmid for the characterization of a gate’s reponse char-

acteristic in RPU, following the description of Nielsen et al. (20 ) which extends on Stanton

et al. (17 ) and matches Chen et al. (14 ). Both, the input and output of a gate are character-

ized in relative promoter units (RPU). The output RPU are derived from the flow cytometry
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measurements of YFP given distinct ligand concentrations and the conversion to RPU de-

scribed previously. To complete the gate description, the ligand concentration needs to be

replaced by the input promoter activity. This is done by expressing YFP directly by the

promoter sensitive to the transcription factor capable of binding to the ligand. The result

is the expression level depending on the ligand concentration, from which one can derive

the respective input RPU. By associating the input RPU to the output RPU of the gate,

the complete gate description is obtained. Figure (21 ) in the supplement of Nielsen et al.

showcases this visually.

S7 Gene Expression Kinetics in S. cerevisiae

In this section, we present key rate constants for transcription, translation, and degradation

processes in S. cerevisiae. Most values are derived from a combination of mechanistic un-

derstanding of biochemical reactions on one hand (22 ), and experimental estimates on the

other (23 ).

Table S1: Transcription, translation, and degradation rate constants for S. cerevisiae.

Rate constant C Unit Value
Cell volume k µm3 0.4 − 2.5 (23 )

Transcription rate λ̃1 nt.s−1 40 (24 )

Translation rate λ̃2 aa.s−1 3 − 10 (23 )
Transcription rate λ1 mRNA.h−1 2 − 30 (25 )
Translation efficiency λ2 protein.mRNA−1.h−1 20 − 2000 (26 )
mRNA half life tm1/2 min 20 (23 )

Protein tp1/2 min 40 (23 )

mRNA degradation rate δm s−1 5.8⋅10−4 (23 , 27 )
protein degradation rate δp s−1 2.9 ⋅ 10−4 (23 )

S7.1 Transcription Rates and Energy Dependence

Transcription is catalyzed by a single enzyme, RNA polymerase, which derives its energy

from the hydrolysis of nucleoside triphosphates (NTPs), the substrates for RNA synthesis.
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NTP +RNAn → PPi +RNAn+1

Although the initiation and termination phases require additional energy, the overall cost

of transcription is predominantly governed by the elongation phase, where each nucleotide

addition consumes one NTP.

Transcription Rates For our gene expression model, the transcription rate in mRNA per

hour (mRNA ⋅ h−1) is relevant as it directly indicates the gene expression levels. According

to (25 ), the mRNA transcription rate in S. cerevisiae is approximately 2 to 30 mRNA ⋅h−1.

For our simulations, we chose a translation rate value of 200 protein ⋅mRNA−1 ⋅ h−1

S7.2 Translation Rates and Energy Dependence

Energy Dependence Elongation is the step that consumes the most energy during the

entire protein synthesis process. The process is well-studied, allowing each reaction to be

enumerated for an accurate estimation of the cost (22 , 28 ).

• Aminoacyl-tRNA charging:

AA +ATP→ AA-AMP +PPi

AA-AMP + tRNA→ AA-tRNA +AMP

• EF-Tu hydrolyzes one GTP molecule into a GDP and is used to load the aminoacyl-

tRNA in the A site of the ribosome.

• Then, the translocation of tRNAs and mRNA hydrolyzes one GTP into a GDP.

Initiation and termination processes in translation also require energy. The search for the
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first AUG codon involves ATP hydrolysis into ADP and inorganic phosphate (Pi) (1 to 4

ATP molecules per initiation event). During initiation, an initiation factor hydrolyzes one

GTP molecule into GDP and Pi. In termination, release factors hydrolyze one GTP molecule

into GDP and Pi (22 ).

Translation Rates For our gene expression model, the translation rate in proteins per

hour (protein ⋅mRNA−1 ⋅h−1) is relevant as it directly indicates the protein synthesis levels.

Reported values for S. cerevisiae range from approximately 20 to 2000 protein ⋅mRNA−1 ⋅h−1

(26 ), with a maximum around 4000 protein ⋅mRNA−1 ⋅ h−1 (29 ). For our simulations, we

chose a translation rate value of 200 protein ⋅mRNA−1 ⋅ h−1.

S7.3 Degradation and Dilution Rates

RNA Degradation A few enzymes that participate in RNA degradation require ATP,

but most do not, and this energy requirement can often be neglected (30 ).

RNA Degradation Rate Degradation rates are often represented with half-life times,

using the conversion: δ1 = ln(2)/t1/2. For RNA degradation rates in S. cerevisiae, t1/2 ≈

20 min so δ1 ≈ 5.8 ⋅ 10−4 s−1 (23 , 27 ).

Protein Degradation In contrast to RNA degradation, protein degradation requires ex-

ternal energy in the form of ATP. Specifically, the process of polyubiquitylation and subse-

quent degradation by the proteasome involve ATP-dependent reactions. Estimates suggest

that the degradation of a single protein can require the hydrolysis of over 100 to a few hun-

dred molecules of ATP (31 ). Since it depends on the protein, and that dilution mostly make

the protein decay, we approximate the cost to zero.

Protein Degradation Rate For protein degradation in S. cerevisiae we have t1/2 ≈ 40 min

therefore δ2 ≈ 2.9 ⋅ 10−4 s−1 (23 ).
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Dilution Rates The previous decay rate, include both active degradation, and dilution.

The most important effect of the decrease of concentration of a protein, is the dilution,

caused by the growth of the microorganism. We have, either for mRNA, or protein

δ = δdegradation + δdilution

For the dilution rate, it is directly linked with the doubling time:

δdilution = 1/τ

with δ being the dilution rate, and τ being the time interval of the cell cycle. For S. cerevisiae,

the doubling time is about 90 minutes, so δdilution = 1.85 × 10−4 s−1 (23 ).
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S8 Extended Figures and Tables
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Figure S5: Characteristics of benchmark circuits. A: The gate count distribution of the
circuits within the benchmark set. B: Comparison of Boolean activity for energy efficiency
and functionally optimized circuits.
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Figure S6: Circuit structures. A: 0x2F. B: 0xDF. C: 0x20. D: 0x81. Each gate is labelled
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Figure S8: Pareto fronts of structural variants of circuit 0xF7. The structure IDs
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Table S2: Energy per gate for all Boolean assignments for circuit 0x2F (Energy opt.) and
mean values in italic. Figure S6A presents the corresponding structure.

A B C NOR2 2 NOT 0 NOT 1 OR2 3

0.00 0.00 0.00 12544.80 63.67 18.02 8375.74
0.00 0.00 0.00 60.62 63.67 10833.12 20563.13
0.00 0.00 0.00 25810.57 63.67 18.02 8374.46
0.00 0.00 0.00 13326.38 63.67 10833.12 8375.43
0.00 0.00 0.00 12544.80 7506.98 18.02 40.17
0.00 0.00 0.00 60.62 7506.98 10833.12 12227.56
0.00 0.00 0.00 25810.57 7506.98 18.02 38.89
0.00 0.00 0.00 13326.38 7506.98 10833.12 39.86
0.00 0.00 0.00 12935.59 3785.32 5425.57 7254.41

Table S3: Energy per gate for all Boolean assignments for circuit 0x2F (Func. opt.) and
mean values in italic. Figure S6A presents the corresponding structure.

A B C NOR2 2 NOT 0 NOT 1 OR2 3

0.00 0.00 0.00 22249.87 11.47 66.06 18288.26
0.00 0.00 0.00 135.04 11.47 7788.78 42972.25
0.00 0.00 0.00 32185.15 11.47 66.06 18288.22
0.00 0.00 0.00 10070.33 11.47 7788.78 18289.74
0.00 0.00 0.00 22249.87 14076.13 66.06 24.27
0.00 0.00 0.00 135.04 14076.13 7788.78 24708.26
0.00 0.00 0.00 32185.15 14076.13 66.06 24.23
0.00 0.00 0.00 10070.33 14076.13 7788.78 25.74
0.00 0.00 0.00 16160.10 7043.80 3927.42 15327.62

Table S4: Gate output values for all Boolean assignments for circuit 0x2F (Energy opt.) and
mean values in italic. Figure S6A presents the corresponding structure.

A B C NOR2 2 NOT 0 NOT 1 OR2 3

0.01 0.00 0.00 0.00 1.63 2.32 1.64
0.01 0.00 1.80 2.39 1.63 0.01 4.02
0.01 2.46 0.00 0.00 1.63 2.32 1.64
0.01 2.46 1.80 0.00 1.63 0.01 1.64
1.30 0.00 0.00 0.00 0.00 2.32 0.01
1.30 0.00 1.80 2.39 0.00 0.01 2.39
1.30 2.46 0.00 0.00 0.00 2.32 0.01
1.30 2.46 1.80 0.00 0.00 0.01 0.01
0.65 1.23 0.90 0.60 0.82 1.16 1.42
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Table S5: Gate output values for all Boolean assignments for circuit 0x2F (Func. opt.) and
mean values in italic. Figure S6A presents the corresponding structure.

A B C NOR2 2 NOT 0 NOT 1 OR2 3

0.00 0.00 0.01 0.00 3.58 4.03 3.58
0.00 0.00 1.30 4.83 3.58 0.02 8.41
0.00 1.80 0.01 0.00 3.58 4.03 3.58
0.00 1.80 1.30 0.00 3.58 0.02 3.58
2.46 0.00 0.01 0.00 0.00 4.03 0.00
2.46 0.00 1.30 4.83 0.00 0.02 4.83
2.46 1.80 0.01 0.00 0.00 4.03 0.00
2.46 1.80 1.30 0.00 0.00 0.02 0.01
1.23 0.90 0.65 1.21 1.79 2.03 3.00

Table S6: Energy per gate for all Boolean assignments for circuit 0xDF (Energy opt.) and
mean values in italic. Figure S6B presents the corresponding structure.

A B C NOR2 2 NOT 1 NOT 3 NOT 4 OR2 0

0.00 0.00 0.00 23940.44 66.96 74.12 16.22 8296.52
0.00 0.00 0.00 12854.61 72.30 8739.06 16.22 8182.20
0.00 0.00 0.00 23940.44 66.96 74.12 16.22 20837.56
0.00 0.00 0.00 12854.61 72.30 8739.06 16.22 20723.24
0.00 0.00 0.00 11183.42 75.99 74.12 9755.99 8105.47
0.00 0.00 0.00 97.58 17852.22 8739.06 9755.99 25.41
0.00 0.00 0.00 11183.42 75.99 74.12 9755.99 20646.51
0.00 0.00 0.00 97.58 17852.22 8739.06 9755.99 12566.45
0.00 0.00 0.00 12019.01 4516.87 4406.59 4886.11 12422.92

Table S7: Energy per gate for all Boolean assignments for circuit 0xDF (Func. opt.) and
mean values in italic. Figure S6B presents the corresponding structure.

A B C NOR2 2 NOT 1 NOT 3 NOT 4 OR2 0

0.00 0.00 0.00 25030.36 58.76 20.05 63.67 24892.68
0.00 0.00 0.00 9907.19 82.43 12057.13 63.67 24840.65
0.00 0.00 0.00 25030.36 58.76 20.05 63.67 37433.72
0.00 0.00 0.00 9907.19 82.43 12057.13 63.67 37381.69
0.00 0.00 0.00 15239.64 62.91 20.05 7506.98 24883.91
0.00 0.00 0.00 116.26 22235.24 12057.13 7506.98 17.54
0.00 0.00 0.00 15239.64 62.91 20.05 7506.98 37424.95
0.00 0.00 0.00 116.26 22235.24 12057.13 7506.98 12558.58
0.00 0.00 0.00 12573.36 5609.84 6038.59 3785.32 24929.22

Table S8: Gate output values for all Boolean assignments for circuit 0xDF (Energy opt.)
and mean values in italic. Figure S6B presents the corresponding structure.

A B C NOR2 2 NOT 1 NOT 3 NOT 4 OR2 0

0.00 0.00 0.01 0.01 1.62 2.09 2.39 1.62
0.00 0.00 1.30 0.01 1.60 0.01 2.39 1.60
0.00 2.46 0.01 0.01 1.62 2.09 2.39 4.08
0.00 2.46 1.30 0.01 1.60 0.01 2.39 4.05
1.80 0.00 0.01 0.01 1.58 2.09 0.00 1.59
1.80 0.00 1.30 3.08 0.00 0.01 0.00 0.00
1.80 2.46 0.01 0.01 1.58 2.09 0.00 4.04
1.80 2.46 1.30 3.08 0.00 0.01 0.00 2.46
0.90 1.23 0.65 0.78 1.20 1.05 1.20 2.43
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Table S9: Gate output values for all Boolean assignments for circuit 0xDF (Func. opt.) and
mean values in italic. Figure S6B presents the corresponding structure.

A B C NOR2 2 NOT 1 NOT 3 NOT 4 OR2 0

0.01 0.00 0.00 0.01 4.87 2.53 1.63 4.87
0.01 0.00 1.80 0.01 4.86 0.01 1.63 4.86
0.01 2.46 0.00 0.01 4.87 2.53 1.63 7.32
0.01 2.46 1.80 0.01 4.86 0.01 1.63 7.31
1.30 0.00 0.00 0.01 4.87 2.53 0.00 4.87
1.30 0.00 1.80 4.03 0.00 0.01 0.00 0.00
1.30 2.46 0.00 0.01 4.87 2.53 0.00 7.32
1.30 2.46 1.80 4.03 0.00 0.01 0.00 2.46
0.65 1.23 0.90 1.02 3.65 1.27 0.82 4.88

Table S10: Energy per gate for all Boolean assignments for circuit 0x20 (Energy opt.) and
mean values in italic. Figure S6C presents the corresponding structure.

A B C NOR2 2 NOR2 4 NOT 0 NOT 1 NOT 3 O

0.00 0.00 0.00 21096.40 11173.56 76.02 18.02 74.12 15.70
0.00 0.00 0.00 8612.22 11173.56 76.02 10833.12 74.12 22.72
0.00 0.00 0.00 21299.99 24306.17 66.93 18.02 74.12 15.70
0.00 0.00 0.00 8815.80 24306.17 66.93 10833.12 74.12 22.01
0.00 0.00 0.00 12550.05 87.71 17937.86 18.02 8739.06 16.90
0.00 0.00 0.00 65.86 87.71 17937.86 10833.12 8739.06 12204.56
0.00 0.00 0.00 21190.53 13220.34 71.75 18.02 8739.06 15.70
0.00 0.00 0.00 8706.35 13220.34 71.75 10833.12 8739.06 22.38

0.00 0.00 0.00 12792.15 12196.94 4538.14 5425.57 4406.59 1541.96

Table S11: Energy per gate for all Boolean assignments for circuit 0x20 (Func. opt.) and
mean values in italic. Figure S6C presents the corresponding structure.

A B C NOR2 2 NOR2 4 NOT 0 NOT 1 NOT 3 O

0.00 0.00 0.00 41960.48 11036.64 97.42 11.47 63.67 7.26
0.00 0.00 0.00 22253.22 11036.64 97.42 14076.13 63.67 7.31
0.00 0.00 0.00 41959.73 23171.35 79.74 11.47 63.67 7.26
0.00 0.00 0.00 22252.46 23171.35 79.74 14076.13 63.67 7.31
0.00 0.00 0.00 19784.58 50.88 23181.99 11.47 7506.98 7.35
0.00 0.00 0.00 77.32 50.88 23181.99 14076.13 7506.98 24842.10
0.00 0.00 0.00 41960.31 12185.96 92.39 11.47 7506.98 7.26
0.00 0.00 0.00 22253.05 12185.96 92.39 14076.13 7506.98 7.31
0.00 0.00 0.00 26562.64 11611.21 5862.89 7043.80 3785.32 3111.65

Table S12: Gate output values for all Boolean assignments for circuit 0x20 (Energy opt.)
and mean values in italic. Figure S6C presents the corresponding structure.

A B C NOR2 2 NOR2 4 NOT 0 NOT 1 NOT 3 O

0.01 0.00 0.00 0.00 0.01 1.58 2.32 2.09 0.00
0.01 0.00 1.80 0.00 0.01 1.58 0.01 2.09 0.00
0.01 2.46 0.00 0.00 0.01 1.62 2.32 2.09 0.00
0.01 2.46 1.80 0.00 0.01 1.62 0.01 2.09 0.00
1.30 0.00 0.00 0.00 3.10 0.00 2.32 0.01 0.00
1.30 0.00 1.80 2.39 3.10 0.00 0.01 0.01 2.39
1.30 2.46 0.00 0.00 0.01 1.60 2.32 0.01 0.00
1.30 2.46 1.80 0.00 0.01 1.60 0.01 0.01 0.00
0.65 1.23 0.90 0.30 0.78 1.20 1.16 1.05 0.30
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Table S13: Gate output values for all Boolean assignments for circuit 0x20 (Func. opt.) and
mean values in italic. Figure S6C presents the corresponding structure.

A B C NOR2 2 NOR2 4 NOT 0 NOT 1 NOT 3 O

0.01 0.00 0.00 0.00 0.02 4.03 3.58 1.63 0.00
0.01 0.00 2.46 0.00 0.02 4.03 0.00 1.63 0.00
0.01 1.80 0.00 0.00 0.01 4.03 3.58 1.63 0.00
0.01 1.80 2.46 0.00 0.01 4.03 0.00 1.63 0.00
1.30 0.00 0.00 0.00 3.86 0.01 3.58 0.00 0.00
1.30 0.00 2.46 4.86 3.86 0.01 0.00 0.00 4.86
1.30 1.80 0.00 0.00 0.02 4.03 3.58 0.00 0.00
1.30 1.80 2.46 0.00 0.02 4.03 0.00 0.00 0.00
0.65 0.90 1.23 0.61 0.98 3.03 1.79 0.82 0.61

Table S14: Energy per gate for all Boolean assignments for circuit 0x81 (Energy opt.) and
mean values in italic. Figure S6D presents the corresponding structure.

A B C NOR2 1 NOR2 2 NOR2 3 NOR2 4 NOR2 6 NOT 0 NOT 5 O

0.00 0.00 0.00 14539.62 12551.63 93.57 40.61 23572.42 74.12 12.01 13868.55
0.00 0.00 0.00 152.39 22291.39 12130.65 8504.09 23572.42 74.12 12.01 57.61
0.00 0.00 0.00 190.56 12551.63 8688.63 7891.38 12486.60 8739.06 12.01 68.74
0.00 0.00 0.00 145.62 22291.39 20725.70 8623.54 12486.60 8739.06 12.01 55.91
0.00 0.00 0.00 14548.54 60.11 93.57 15229.01 11206.30 74.12 14742.41 30.89
0.00 0.00 0.00 161.31 9799.88 12130.65 8356.92 11206.30 74.12 14742.41 59.89
0.00 0.00 0.00 17771.60 60.11 8688.63 15228.40 120.46 8739.06 14742.41 30.89
0.00 0.00 0.00 17726.66 9799.88 20725.70 43.33 120.46 8739.06 14742.41 13869.01
0.00 0.00 0.00 8154.54 11175.75 10409.64 7989.66 11846.44 4406.59 7377.21 3505.19

Table S15: Energy per gate for all Boolean assignments for circuit 0x81 (Func. opt.) and
mean values in italic. Figure S6D presents the corresponding structure.

A B C NOR2 1 NOR2 2 NOR2 3 NOR2 4 NOR2 6 NOT 0 NOT 5 O

0.00 0.00 0.00 22720.66 13695.91 87.59 77.53 21530.74 63.67 16.22 24841.61
0.00 0.00 0.00 153.39 27760.57 16615.68 22251.32 21530.74 63.67 16.22 7.31
0.00 0.00 0.00 192.48 13695.91 8752.76 22248.23 12801.98 7506.98 16.22 7.31
0.00 0.00 0.00 154.29 27760.57 25280.48 22251.26 12801.98 7506.98 16.22 7.31
0.00 0.00 0.00 22742.76 33.50 87.59 19707.91 8773.73 63.67 9755.99 7.35
0.00 0.00 0.00 175.49 14098.16 16615.68 22250.39 8773.73 63.67 9755.99 7.31
0.00 0.00 0.00 19114.14 33.50 8752.76 19708.93 44.94 7506.98 9755.99 7.35
0.00 0.00 0.00 19075.95 14098.16 25280.48 78.42 44.94 7506.98 9755.99 24839.61
0.00 0.00 0.00 10541.15 13897.03 12684.13 16071.75 10787.85 3785.32 4886.11 6215.65

Table S16: Gate output values for all Boolean assignments for circuit 0x81 (Energy opt.)
and mean values in italic. Figure S6D presents the corresponding structure.

A B C NOR2 1 NOR2 2 NOR2 3 NOR2 4 NOR2 6 NOT 0 NOT 5 O

0.00 0.01 0.00 0.00 0.00 2.50 2.71 0.01 2.09 2.32 2.71
0.00 0.01 1.80 1.33 0.00 0.01 0.01 0.01 2.09 2.32 0.01
0.00 1.30 0.00 1.24 0.00 0.02 0.01 0.01 0.01 2.32 0.01
0.00 1.30 1.80 1.35 0.00 0.01 0.01 0.01 0.01 2.32 0.01
2.46 0.01 0.00 0.00 2.39 2.50 0.01 0.01 2.09 0.01 0.01
2.46 0.01 1.80 1.31 0.00 0.01 0.01 0.01 2.09 0.01 0.01
2.46 1.30 0.00 0.00 2.39 0.02 0.01 3.05 0.01 0.01 0.01
2.46 1.30 1.80 0.00 0.00 0.01 2.71 3.05 0.01 0.01 2.71
1.23 0.65 0.90 0.65 0.60 0.64 0.69 0.77 1.05 1.16 0.69
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Table S17: Gate output values for all Boolean assignments for circuit 0x81 (Func. opt.) and
mean values in italic. Figure S6D presents the corresponding structure.

A B C NOR2 1 NOR2 2 NOR2 3 NOR2 4 NOR2 6 NOT 0 NOT 5 O

0.00 0.01 0.00 0.01 0.00 3.77 4.86 0.01 1.63 2.39 4.86
0.00 0.01 2.46 4.03 0.00 0.01 0.00 0.01 1.63 2.39 0.00
0.00 1.30 0.00 4.03 0.00 0.02 0.00 0.01 0.00 2.39 0.00
0.00 1.30 2.46 4.03 0.00 0.01 0.00 0.01 0.00 2.39 0.00
1.80 0.01 0.00 0.01 3.56 3.77 0.00 0.02 1.63 0.00 0.00
1.80 0.01 2.46 4.03 0.00 0.01 0.00 0.02 1.63 0.00 0.00
1.80 1.30 0.00 0.01 3.56 0.02 0.00 3.16 0.00 0.00 0.00
1.80 1.30 2.46 0.01 0.00 0.01 4.86 3.16 0.00 0.00 4.86
0.90 0.65 1.23 2.02 0.89 0.95 1.22 0.80 0.82 1.20 1.22
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