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1732  Supplementary Figure 1. SON expression is reduced during aging in mice and humans. (a)
1733  Normalized counts of Son mRNA in different mouse tissues with different ages (WBC; White blood
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cells) according to Tabula Muris Senis database (n=3~6) 32 133, (b) gPCR of Son level in liver of
mice with different ages (n=3~7). (¢, d) Western blot (¢) and quantification (d) of SON level in
liver of mice with different ages (n=5~6). (e, f) Representative immunofluorescence images of
SRRM2 and DAPI in the liver of 3 and 22 months old male mice (e) and quantification of the
sphericity of nuclear speckles (f). n=25 for both age groups. (g) Single cell RNA-seq data of SON
mRNA level in different cell types in lung tissues of young and aging humans, reported from 2.
(h) Counts per million normalized expressions of SON in brains of human AD compiled from RNA-
seq data from the AMP-AD consortium. (i) Heat map showing relative expression of SRSF2 and
SON in different cell types in the cortex of human AD subjects '34. Blue color indicates lower level
in AD subjects compared to controls. Data: Mean £ S.E.M. Statistical tests used: two-way ANOVA
and Turkey multiple comparison for h, unpaired one-tailed Student's t-test for a, b, d, and f.
Wilcoxon test for g.
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1747  Supplementary Figure 2. Genetic rejuvenation of nuclear speckles by SON. (a) Relative
1748  expression (R.E.) of representative proteostasis genes (top) and YAP1 target genes (bottom) in
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1749  response to Tu in the presence of SON OE/KD (n=4 for SON KD and n=3 for SON OE). (b)
1750  Scatter plot showing relative fold change by Son KD versus SON OE for both Tu-induced and Tu-
1751  repressed genes. (c¢) Top predicted transcription regulators of 461 and 901 genes by the LISA
1752  Cistrome DB TR ChIP-Seq models. (d, e) Selected genes aligned for SC35 and XBP1s ChIP-seq
1753  signal from CT12 in XBP1F* mice ¢ (d) and ChIP-qgPCR of XBP1s and SC35 on selected regions
1754  (indicated by red bars) (n=2) (e). Data: Mean + S.E.M. Statistical tests used: unpaired one-tailed
1755  Student's t-test for a and e. Linear regression for b.
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1767  Supplementary Figure 3. YAP1 transcriptional output is repressed during ER stress. (a)
1768  TEAD luciferase reporter assay in control and SON OE MEFs in response to Tu (n=12 for all
1769  groups). (b) Heatmap showing transcriptomes that are significantly downregulated (log 2-fold
1770  change smaller than -0.5) with a p value less than 0.05) either under Tu or Thap treatment at 6h.
1771  (c) GO analysis of genes that are significantly downregulated either under Tu or Thap treatment
1772 at 6h. (d) Heatmap of representative YAP1 target genes as in b. Data: Mean + S.E.M. Statistical
1773  tests used: unpaired one-tailed Student's t-test for a.
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Supplementary Figure 4. SON regulates mRNA splicing rates under both basal and ER
stress conditions (a) PCA analysis of global transcriptional response to Tu in the presence of
SON OE/KD. Both pre-mRNA (top) and mature mRNA (bottom) are shown. (b, ¢) Volcano plot of
MRNA splicing rates changes in SON KD (b) or OE (¢) MEFs under basal condition (DMSO). (d)
Heat map of fold change of RNA splicing rate, pre and mature mRNA level in SON OE/KD MEFs
compared to control MEFs under vehicle (DMSO) condition. Four clusters of genes are shown.
(e) GO analysis of genes in four clusters showing enriched KEGG pathways.
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Supplementary Figure 5. SON knockdown increases intron retention of proteostasis and
mRNA metabolism genes. Heat map (a) and quantification (b) of intron retention events in MEFs
with control or SON KD under basal (DMSO) and Tu conditions. Four clusters are shown. (¢) The
Integrative Genome Viewer representation of intron retention in selected genes. (d) GO analysis
of genes in four clusters showing enriched KEGG pathways. Data: box and whiskers with
minimum to maximum. Statistical tests used: unpaired one-tailed Student's t-test for b.
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1811

1812  Supplementary Figure 6. SON overexpression decreases intron retention of protein
1813  processing and mRNA metabolism genes. Heat map (a) and quantification (b) of intron
1814  retention events in MEFs with control or SON overexpression under basal (DMSO) and Tu
1815  conditions. Three clusters are shown. (c) The Integrative Genome Viewer representation of intron
1816  retention in selected genes. (d) GO analysis of genes in three clusters showing enriched KEGG
1817  pathways. Data: box and whiskers with minimum to maximum. Statistical tests used: unpaired
1818  one-tailed Student's t-test for b.
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Supplementary Figure 7. SON reprograms opposing proteostasis and YAP1 transcriptional
output under basal conditions. (a) Heat map of fold change of mature mRNA level in Son
OE/KD MEFs compared to control MEFs under vehicle (DMSO) condition. All mature mRNAs in
this heatmap are statistically differentially expressed (P<0.05) in both SON OE/KD conditions,
compared to their respective controls. (b) GO analysis of these 481 and 501 genes. (c)
Representative mature mRNA expression of proteostasis and YAP1 target genes (n=4 for Ctrl
and Son siRNA and n=3 for Ctrl and Son sgRNA). Data: Mean + S.E.M. Statistical tests used:
unpaired one-tailed Student's t-test for c.
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Supplementary Figure 8. Nuclear speckle LLPS dictates opposing proteostasis and YAP1
signaling. (a) Two models explaining the relationship among nuclear speckles LLPS dynamics,
proteostasis and YAP1 transcriptional output. Our results support model 1. (b) Heatmap
demonstrates relative fold change of gene expression relative to DMSO control in IXA4, or Thap
treated HEK293T cells. All genes induced or repressed by at least 1.41-fold with p value smaller
than 0.05 in Thap condition (left), and representative YAP1-related genes (right). (¢, d) GO
analysis of all upregulated (¢) or downregulated (d) genes in either IXA4 or Thap treatment by at
least 1.41-fold with a p-value smaller than 0.05. (e) An expanded model of how the LLPS of
nuclear speckles can dictate proteostasis and YAP1 transcriptional output. Please see the main
text for details. (f, g) Diagram showing temporal changes of NS’ LLPS (black), proteostasis (red)
and YAP1 transcriptional output (blue) signal during ER stress (f).
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1855  Supplementary Figure 9. HTS identifies compounds that alter nuclear speckle morphology
1856  and the UPR. (a) Compounds in the FDA-approved library ranked from lowest to highest on their
1857  ability to reduce NS sphericity. (b) Five drugs are shown to have a dose-dependent effect on
1858 increasing sphericity of NS (n=16). (c) Dose-dependent effects of drugs on decreasing NS
1859  sphericity (n=16). (d, e) GFP/cell (d) or cell number (e) measured in Perk promoter-driven dGFP
1860 reporter MEFs in the presence of Tu for four or eight hours after pre-treatment of different
1861  concentrations of drugs or DMSO for 24 hours (n=4). Data: Mean + S.E.M.
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1866  Supplementary Figure 10. PP is a bona fide nuclear speckle rejuvenator. (a) MEFs were
1867  treated with 3 uM NB, 1 uM PB, 3 uM PH, and 1 uM PP for 24 hours and RNA-seq was performed.
1868  PCA of global transcriptional response to drug treatments. (b) For each of the GSEA analysis,
1869  genes further activated by SON OE or further repressed by SON OE are compared to the
1870 transcriptome signatures of MEFs under different drug treatments. (¢, d) Gene expression of
1871  select protein quality control (c) and YAP1 target genes (d) genes determined through mRNA-
1872  Seq (n=3). (e) LISA analysis listing log transformed p values for top predicted transcription
1873  regulators for genes upregulated (x-axis) and downregulated (y-axis) by PP. (f) Gene expression
1874  of select UPR genes determined through mRNA-Seq under different drugs treatment (n=3). (g-i)
1875  Western blot and quantification of UPR TFs (g), YAP1 nuclear and cytosol (h) and SON (i) level
1876  in response to 1 uM PP for 24 hours (n=3). Data: Mean + S.E.M. Statistical tests used: unpaired
1877  one-tailed Student's t-test for g-i.
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Supplementary Figure 11. Comparison of upregulated genes by PP and SON OE. (a) Scatter
plot comparing the fold change of gene expression by PP (x-axis) and by Tu (y-axis) under SON
OE or SON KD condition. Correlation coefficient and p value are shown for each plot. Chow test
indicates statistically significant coefficients between the two linear regressions with p=0.00195.
(b, ¢) Venn diagram showing (b) and GO analysis of (¢) specific and commonly upregulated
genes by PP and Tu in SON OE MEFs. (d) Venn diagram showing specific and common
upregulated genes by PP and SON in MEFs. (e) GO analysis of common 101 genes. (f) GSEA
analysis comparing genes upregulated by SON with those regulated by PP.
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Supplementary Figure 13. Comparison of intron retention (IR) events among PP, SON OE
and SON KD. (a) Quantification of IR under DMSO and PP condition (n=3). (b) Heatmap showing
RPKM normalized level of retained introns in DMSO and PP condition. (¢, d) Venn diagram
comparing genes with specific or common IRs between different conditions. (e) Genome browser
view of selective genes with reduced IR by PP. (f) GO analysis of genes with increased or reduced
IR by PP. Data: Mean + S.E.M. Statistical tests used: unpaired one-tailed Student's t-test for a.
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1903  Supplementary Figure 14. PP directly targets SON to modulate nuclear speckle LLPS
1904 dynamics. (a) Western blots of SON with siRNA-mediated knockdown and SON OE. (b) CETSA
1905  of ATF4 with 3uM PP. Both representative blot and quantification from independent replicates are
1906  shown (n=2 for DMSO and n=3 for PP). (¢c) Computational prediction of IDR in mouse SRSF2
1907 (SC35) protein. (d) Diagram illustrating the constructs for droplet formation assay (e)
1908 Representative images of droplet formation assay with different concentrations of recombinant
1909 protein at 125mM NaCl. (f) Representative images of droplet formation assay with different salt
1910 concentrations with 20uM recombinant proteins. (g, h) Representative images of droplet
1911  formation assay with different recombinant proteins (g) and quantification (h) of area-normalized
1912  perimeter changes in the time span of 20 minutes with 50mM NaCl (n=3). (i) Alignment of protein
1913  sequences of SON orthologs in seven different species. SON IDR2 is located within the most
1914  conserved region (highlighted by light yellow). Data: Mean + S.E.M. Statistical tests used: Two-
1915  way ANOVA for b and one-way ANOVA for h.
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1937

1938  Supplementary Figure 15. PP modulates nuclear speckle LLPS dynamics in a cell-free
1939 system. (a) Diagram showing NE-supplemented SON IDR2 condensates are expected to
1940 compartmentalize splicing factors and exhibit less spherical morphology. (b) NE-supplemented
1941  SON IDR2 condensates are spun down and subject to mass spectrometry. Top 15 proteins mostly
1942  enriched in SON IDR2-compartmentzlied condensates with p value<0.05, and the status of
1943  whether these proteins have been identified in nuclear speckles in cells in two datasets 52 %3 (c)
1944 GO of top enriched biological pathways of proteins depleted or enriched in SON IDR2-
1945 compartmentzlied condensates. (d, e) Representative images of droplet formation assay with
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increasing concentration of SON IDR2 with or without NE supplementation (e) and quantification
(e) of the number, sphericity and total areas of droplets (n=6). (f) Representative images and
quantification of spatial distribution of mCherry::SON IDR2 and GFP::SRSF2. (g) Representative
images and quantification of spatial distribution of mCherry::SON IDR2, GFP::SRSF2 and mouse
genomic DNA. Data: Mean = S.E.M. Statistical tests used: unpaired one-tailed Student's t-test for
e.
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Supplementary Figure 16. PP alters the sensitivity of different condensates to 1,6
hexanediol. (a) 1,6 hexanediol sensitivity assay with representative images and quantification
(n=20~95) of the ratio of cytosol over nuclear intensity of GFP::SRSF2 signal. (b) 1,6 hexanediol
sensitivity assay with representative images and quantification of sphericity (n=24~50) of
GFP::SRSF2 signal and Manders’ coefficient (n=10~14) of signals of GFP and Hoechst. (c) 1,6
hexanediol sensitivity assay with representative images and quantification of ratio of cytosol to
nuclear MED1 signal (n=19~29) and sphericity of MED1 signal (n=31~75). (d) 1,6 hexanediol
sensitivity assay with representative images and quantification of ratio of cytosol to nuclear
GW182 signal (n=16~54) and sphericity (n=19~97) of GW182 signal. Data: Mean + S.E.M.
Statistical tests used: unpaired one-tailed Student's t-test for all data.
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1977

1978  Supplementary Figure 17. Nanomolar concentration of PP promotes UPS and ALP without
1979  inducing cellular stress. (a, b) MEFs were treated with DMSO or 100nM PP for 24 hours.
1980 Representative western blot (a) and quantification (b) of different proteins (n=3). (¢) MEFs were
1981 transiently transfected with scrambled or Son siRNA for 24 hours before treated with DMSO or
1982  100nM PP for another 24 hours. 20S proteasome activity assay was then performed (n=10~13).
1983  (d, e) MEFs were treated with vehicle control or 1uM PP for ~22 hours and then co-treated with
1984  or without Baf A (100nM for 22 hours) (n=2~4). Representative western blot image (d) and
1985  quantification (e) of LC3Il and LC3II/LC3I ratio. Data: Mean + S.E.M. Statistical tests used:
1986  unpaired one-tailed Student's t-test for all data.
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Supplementary Figure 18. Micromolar PP promotes autophagy and UPS activity and
represses translation. MEFs were treated with vehicle control or 1uM PP for ~24 hours (22
hours for e and f) and then co-treated with or without puromycin (10 pg/mL for 30 minutes),
MG132 (10uM for 110 minutes) or Baf A (100nM for 22 hours) (n=3 for all samples). Western blot
and quantification of puromycin-incorporated proteins (a, b), poly-ubiquitinated protein (¢, d) and
LC3Il and LC3II/LC3I ratio (e, f). Data: Mean + S.E.M. Statistical tests used: unpaired one-tailed
Student's t-test for all data.
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1995

1996  Supplementary Figure 19. Pyrvinium pamoate reduces pathological Tau and Rhodopsin
1997 level by boosting autophagy and UPS activity. (a, b) NIH3T3 RHOPH cells were transfected
1998  with scrambled or Son siRNA for 24 hours before treated with DMSO or 0.1uM PP for another 24
1999  hours. Western blot (a) and quantification (b) of RHOP?3H level (n=4). (¢, d) NIH3T3 RHOP?3" cells


https://doi.org/10.1101/2024.04.18.590103
http://creativecommons.org/licenses/by-nc-nd/4.0/

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023

2024

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.18.590103; this version posted October 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

72

were treated with 0.1uM PP and co-treated with or without BafA (100nM) for 24 hours. Western
blot (¢) and quantification (d) of RHOP?% |evel (n=3). (e, f) NIH3T3 RHOP?*" cells were co-treated
with or without MG132 (10uM for 120 minutes). Western blot (e) and quantification (f) of RHOP23H
level (n=3). (g) Representative images of primary mouse neurons treated with DMSO or 0.5 yM
PP for 24 hours. (h, i) Representative images showing an increase of the number of mCherry
positive puncta in primary neurons cultured in the presence of 0.1uM PP for 12 hours, with
zoomed in images of regions marked with white rectangles (h). Quantification of the number of
total vacuoles, autophagosome and autolysosomes (n=7~12) (i). (j, k) Tau P301S-expressing
primary neurons were co-treated with vehicle or 0.1uM PP in the presence or absence of MG132
(10uM) for 12 hours and western blot (j) and quantification (k) of different proteins (n=3~5). All
data mean = S.E.M. Statistical tests used: unpaired one-tailed Student's t-test for all data.
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Supplementary Figure 20. Pyrvinium pamoate reduces pathological Rhodopsin level in a
manner that depends on reduced YAP1 activity. (a, b) NIH3T3 RHOPZH cells were treated
with 0.1uM PP for 24 hours and co-treated with or without XMU-MP-1 (1uM). Western blot (a)
and quantification (b) of RHOP?3H |evel (n=3). (c, d) NIH3T3 RHOP23H cells were treated with 0.1uM
PP for 24 hours and co-treated with or without TRULI (1uM). Western blot (¢) and quantification
(d) of RHOP?3H level (n=3). (e, f) NIH3T3 RHOP3H cells were transiently transfected with
scrambled or Mst1/Mst2 siRNAs for 24 hours and then treated with DMSO or 0.1uM PP for
another 24 hours. Western blot (e) and quantification (f) of MST1/2 and RHOP?3" |evel (n=3). (g,
h) Tau P301S-expressing primary neurons were co-treated with vehicle or 0.1uM PP in the
presence or absence of YAP1 activator TRULI (10uM) for 12 hours and western blot (g) and
quantification (h) of different proteins (n=4). All data: mean + S.E.M. Statistical tests used:
unpaired one-tailed Student's t-test for all data.
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Supplementary Figure 21. Gene signatures in human AD subjects are opposite from those
regulated by PP revealed by bulk RNA-Seq. Relative gene expressions in different brain
regions of human AD subjects normalized to control subjects as reported in &7,
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2060 Supplementary Figure 22. Gene signatures in late-stage human AD subjects with severe
2061 tauopathy are opposite from those regulated by PP. (a) Log » transformed values of fold
2062  change of gene expression of different individual or combined brain regions of AD versus control
2063  human subjects for top genes that were either upregulated or downregulated by PP (with a log-
2064  fold change > 1.5) in MEFs. (b) Phenotypic clustering of 48 individuals (columns) using seven
2065 clinicopathological variables as reported and adapted from . (c-f) Log 2 transformed values of
2066 fold change of mean gene expression of different cell types of early or late AD versus no pathology
2067 human subjects for top genes that were either upregulated (c¢) or downregulated by PP in MEFs
2068 (e). Log 2 transformed values of fold change of mean gene expression of different cell types of
2069 late AD versus early AD human subjects for top genes that were either upregulated (d) or
2070  downregulated by PP in MEFs (f). Data: Mean + S.E.M. Statistical tests used: unpaired one-tailed
2071  Student's t-test for a. One sample t-test (one-tailed). * p<0.05, ** p<0.01, *** p<0.001, ****
2072  p<0.0001 for c-f.
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Supplementary Figure. 23. Nanomolar PP rejuvenates nuclear speckles and alleviates tau
burden in human iPSC-neurons expressing mutant Tau in a SON-dependent manner
without causing cellular stress. (a-b) WT and V337M Tau-expressing iPSC neurons were
treated with 500 nM PP for 24 hours and LDH release assay were performed. LDH enzyme activity
(a) and normalized cytotoxicity (b) were shown. (¢) WT and V337M Tau-expressing iPSC neurons
were treated with increasing concentration of PP for 12 hours and western blot of elF2a and p-
elF2a were performed. The ratio of p-elF2a to total elF2a were calculated. (d) Wild-type and
V337M Tau-expressing iPSC-neurons were infected with scrambled shRNA or SON shRNA-
encoding lentivirus and treated with DMSO or PP (100nM) for 12 hours, and IF against nuclear
speckle (Ab11826 against SRRM2), p-Tau (Ser422) and chromatin (DAPI) were performed.
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Supplemental Movie legends:

Movie S1. Time lapse imaging of droplet formation with 20pm SON IDR1 in 125mM NaCl.
Movie S2. Time lapse imaging of droplet formation with 20um SON IDR2 in 125mM NacCl.
Movie S3. Time lapse imaging of droplet formation with 20pm SRSF2 in 125mM NaCl.

Movie S4. Time lapse imaging of droplet formation with 10um SON IDR2 supplemented with
0.6mg/ml GFP::SRSF2 MEF NE.
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