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Figure  S1. Ancestral area reconstruction within Poales based on seven regions, obtained using the 

DIVA model in BioGeoBEARS.  
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Figure S2. The number of species of Poales missing from the phylogenetic dataset compared to the 

number listed in the World Checklist of Vascular Plants (WCVP) as of 28 February 2022, mapped per 

botanical region. 
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Figure S3. Phylogenetic diversity (PD) of the six largest Poales families categorised into open and 

closed habitats.  
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Figure S4. Phylogenetic endemicity (PE) mapped per botanical region for Poales and eight families 

with the highest number of species in the dataset. 
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Figure S5. Poales botanical regions grouped into three ‘floristic kingdoms’ based on phylogenetic beta 

diversity, indicated by different colours and numbers  
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Table S2. Calibrations used in the treePL (Smith & O’Meara, 2012) configuration file. 

 
 
References 
Gallaher TJ, Peterson PM, Soreng RJ, Zuloaga FO, Li DZ, Clark LG, Tyrrell CD, Welker AD, Kellogg EA, Teisher JK. 2022. 
Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of 
Systematics and Evolution 60: 522–569. 
Givnish TJ, Zuluaga A, Spalink D, Soto Gomez M, Lam VK, Saarela JM, Sass C, Iles WJ, De Sousa DJ, Leebens-Mack J, et al. 
2018. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and 
a functional model for the origin of monocots. American Journal of Botany 105: 1888-1910. 
Jim´enez-Mej´ıas P, Martinetto E, Momohara A, Popova S, Smith SY, Roalson EH. 2016. A commented synopsis of the 
pre-Pleistocene fossil record of Carex (Cyperaceae). The Botanical Review 82: 258–345. 
Smith SY, Collinson ME, Rudall PJ, Simpson DA. 2010. Cretaceous and Paleogene fossil record of Poales: review and 
current research. Diversity, phylogeny, and evolution in the monocotyledons (ed. by Seberg O, Peterson G, Barford AS, 
Davis JI), pp. 333–356. Aarhus University Press, Lancaster. 
Spalink D, Drew BT, Pace MC, Zaborsky JG, Starr JR, Cameron KM, Givnish TJ, Sytsma KJ. 2016. Biogeography of the 
cosmopolitan sedges (Cyperaceae) and the area-richness correlation in plants. Journal of Biogeography 43: 1893–1904. 
 

  

Clade min max Backbone tip_subclade1 tip_subclade2 Reference Note

Poales 120,1 120,1 yes (all) (all) Givnish et al. 2018 secondary; crown age used

Bromeliaceae 19,9 19,9 yes Brocchinia_prismatica Portea_fosteriana Givnish et al. 2018 secondary; crown age used

Typhaceae 70,4 70,4 yes Typha Sparganium Givnish et al. 2018 secondary; crown age used

Rapateaceae 44,6 44,6 yes Stegolepis_hitchcockii Rapatea_paludosa Givnish et al. 2018

secondary; crown age used; 

Potarophytum-Rapatea-Stegolepis

Thurniaceae 33,9 33,9 no Thurnia_sphaerocephala Prionium_serratum Givnish et al. 2018

secondary; crown age used; not 

constrained in backbone - only 1 

Juncaceae 67,8 67,8 yes Juncus_pauciflorus Luzula_elegans Givnish et al. 2018 secondary; crown age used

Juncaceae_Cyperaceae

_Thurniaceae 107,4 107,4 yes Thurnia_sphaerocephala Cyperus_diffusus Givnish et al. 2018 secondary; crown age used

Juncaceae_Cyperaceae 90,8 90,8 yes Juncus_pauciflorus Cyperus_diffusus Givnish et al. 2018 secondary; crown age used

Xyridaceae 92,5 92,5 yes Xyris_jupicai Abolboda_grandis Givnish et al. 2018 secondary; crown age used

Eriocaulaceae 66,6 66,6 yes Comanthera_kegeliana Eriocaulon_australe Givnish et al. 2018 secondary; crown age used

Restionaceae 104,6 104,6 yes Hopkinsia_anoectocolea Restio_wittebergensis Givnish et al. 2018 secondary; crown age used

graminids 106,6 106,6 yes Flagellaria_neocaledonica Andropogon_tracyi Givnish et al. 2018 secondary; crown age used

Ecdeiocoleaceae 70,1 70,1 yes Ecdeiocolea_monostachya Georgeantha_hexandra Givnish et al. 2018 secondary; crown age used

Cyperaceae 75 88 yes Hypolytrum_longifolium Schoenus_exilis

inclusive of Spalink et al., 

2016, Givnish et al., 2018 Secondary

Carex 34 38 no Carex_moupinensis Carex_longii Jiménez-Mejías et al. (2016) Fossil: Carex colwellensis

Carex_Vignea_clade 16 23 no Carex_gibba Carex_tribuloides Jiménez-Mejías et al. (2016) Fossil: Carex marchica

Cyperus 24 32 no Cyperus_prolifer Cyperus_nipponicus Spalink et al., 2016 Secondary

Eleocharis 31 41 no Eleocharis_robbinsii Eleocharis_spiralis Spalink et al., 2016 Secondary

Fimbristylis 30 40 no Fimbristylis_compacta Fimbristylis_densa Spalink et al., 2016 Secondary

Rhynchospora 40 50 no Rhynchospora_corniculata Rhynchospora_megalocarpa Spalink et al., 2016 Secondary

Scleria 38 48 no Scleria_brownii Scleria_virgata Smith et al., 2010 Fossil

Poaceae 75 95 yes Anomochloa_marantoidea Andropogon_tracyi Gallaher et al. 2021 secondary

BOP 65 85 no Agrostis_lenis Streptogyna_americana Gallaher et al. 2021 secondary

PACMAD 45 70 no Sartidia_jucunda Andropogon_tracyi Gallaher et al. 2021 secondary
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Table S4. Comparison of six ancestral area reconstruction models based on BioGeoBEARS analyses 

for Poales. 

 

 

Table S5. Results from corHMM ancestral state reconstructions. 

 
 
corHMM: Hidden Markov Models of Character Evolution; AIC: Akaike information criterion; ARD: all-rates-different; SYM: symmetrical model; 1: state 1; 
2: state 2; R1: rate regime 1; R2; rate regime 2 
The evolutionary history of important traits for Poales was reconstructed using Generalized Hidden Markov models, as implemented in the function 
corHMM of R package corHMM v.2.8 (Boyko & Beaulieu, 2021), to estimate the transition rates and ancestral state of several binary characters across 
the Poales tree phylogeny. 
 
For each open / closed habitat binary trait, we ran the following Markov models: 
• symmetric rate (SYM: one transition rate category; one parameter): transition rate (1 parameter); no hidden states 
• all rates differ (ARD: one transition rate category; two parameters): transition rate for each regime (2 parameters); no hidden states 
• symmetric rate (SYM: two transition rate categories; four parameters): transition rate for each regime (2 parameters); backward rate connecting two 
transition rate categories (1 parameter); forward rate connecting two transition rate categories (1 parameter); 2 hidden states; and 
• all rates differ ARD: two transition rate categories; six parameters): two transition rates for each transition rate regime (4 parameters); two rates 
connecting the two transition rate categories (2 parameters); 2 hidden states. 
 

  

Model Log-likelihood Number of parametersRate of dispersalRate of extinctionJump dispersal at speciationAICc

DEC -21114 2 0,026 0,15 0 42233

DEC + J -21879 3 0,013 1,00E-12 0,0058 43765

DIVALIKE + J -23148 3 0,014 3,30E-09 0,007 46303

DIVALIKE -23831 2 0,017 0,0037 0 47666

AICc: corrected Akaike's information criterion; dispersal-extinction-cladogenesis (DEC); DIVALIKE (Dispersal-Vicariance Analysis).

Table S5a. Models (2 rates vs. 1 rate and ARD vs. SYM), AIC of the best model, deltaAIC in comparison with the best fit model are indicated.
Trait Model AIC deltaAIC
Open / Closed 2 Rates ARD 8814,2 NA

1 Rate ARD 9740,6 926,4

2 Rates SYM 9707,8 893,6

1 Rate SYM 10906,1 2091,9

Table S5b. Model parameters associated with the 2 Rates ARD model.
Trait Model 1R1 to 2R11R1 to 1R22R1 to 1R12R1 to 2R21R2 to 1R11R2 to 2R22R2 to 2R12R2 to 1R2
Open / Closed 2 Rates 0,31 0,07 0,51 0,07 0,005 1E-09 0,005 0,01

corHMM: Hidden Markov Models of Character Evolution; AIC: Akaike information criterion; ARD: all-rates-different; SYM: symmetrical model; 1: state 1; 2: state 2; R1: rate regime 1; R2; rate regime 2
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Notes S1. Additional details on the phylogenomic backbone reconstruction. 

We produced a family-level phylogenomic backbone using nuclear data from 353 loci 

(Angiosperms353; Johnson et al., 2019). The sampling for the backbone aimed towards 50% of the 

currently accepted genera and involved new data produced and samples mined from public repositories. 

The genomic data production was conducted following Baker et al. (2022), with DNA extractions 

(mostly from herbarium materials) using CTAB (Doyle & Doyle, 1987). We used the NEBNext Ultra II 

DNA Library Prep kit (New England Biolabs) for standard pair-ended library preparation and libraries 

were hybridised with myBaits Angiosperms353 v1 probe kit (Arbor Biosciences). 

The sequence recovery from raw data (target enrichment and mined reads) started with reads 

being trimmed for short and/or low-quality sequences using Trimmomatic (Bolger et al., 2014) and 

then assembled with a de novo approach implemented in HybPiper v.1.3.1 (Johnson et al., 2016). In 

HybPiper, trimmed reads were initially binned into genes using BLASTN, which were assembled into 

scaffolds using SPADES (Bankevich et al., 2012), and the coding regions later extracted with 

Exonerate (Slater & Birney, 2005). For assembled datasets (i.e., whole genomes and transcriptomes) 

sequence recovery followed Baker et al. (2022). 

We inferred the phylogenomic backbone using a multi-species coalescent framework (MSC) 

based on individual gene trees. Sequences were aligned in MAFFT (Katoh & Standley, 2013) in einsi-

mode, with gappy sites (> 90% missing data) removed using Phyutility (Smith & Dunn, 2008). Gene 

trees were inferred using IQ-TREE 2 (Minh et al., 2020), with support assessed via UltraFast bootstrap 

(UFBS; Hoang et al., 2018). TreeShrink (Mai & Mirarab, 2018) was used to identify outliers that 

significantly increased tree space. Alignment and tree building was repeated for those genes with 

outlier trees. All gene trees were subsequently trimmed for poorly supported branches (UFBS < 30%) 

and used as input for the MSC analysis in ASTRAL-III (Zhang et al., 2018). To obtain a species tree 

with branch lengths proportional to the genetic distance, we first ranked the genes according to the 

congruence of their resulting trees to the species tree using SortaDate (Smith et al., 2018) and then 

concatenated the alignments of the 25 most congruent genes. Using the MSC species tree as topological 

constraint and this concatenated alignment, a new phylogram was inferred in IQ-Tree 2. For more 

details on library preparation and data analyses, please refer to Baker et al. (2022). 
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Notes S2. Justification for selecting dispersal-extinction-cladogeneis (DEC) model of ancestral 

estimation. 

 Because phyloregions are determined by spatial patterns of lineage turnover, they reflect – but do not 

necessarily conform to –  discrete geologic boundaries typically used in ancestral area estimations (e.g., 

Martín-Bravo et al., 2019). However, these phyloregions present a data-driven hypothesis for the 

spatial relationship of areas as they relate to the biogeographical processes of dispersal and vicariance 

in Poales, and are thus well-suited for ancestral estimations. We a priori selected the dispersal-

extinction-cladogeneis (DEC) model of ancestral estimation (Ree et al., 2005; Ree & Smith, 2008) 

instead of other available models (e.g., DIVA, Ronquist et al., 1997; BayArea, Landis et al., 2013), 

because our expectation is that the parameters of this model are best suited to the particular biology and 

distribution of Poales. For example, we expect both cladogenetic sympatry and vicariance to be 

important processes in Poales, particularly when descendent lineages diverge within only a portion of 

the ancestral range (i.e., subset sympatry) and when vicariant events unevenly split an ancestral range 

between two descendent ranges (i.e., narrow vicariance). The former scenario is not modelled by 

DIVA, while the latter is not modeled by BayArea. Given that the BayArea model does not 

parameterize vicariant speciation but instead allows widespread sympatric speciation, we do not 

consider it a reasonable model for the global analysis of a clade that spans 120 millions years of 

evolution. Indeed, the BayAreaLIKE model places the Poales in a nearly cosmopolitan range for the 

first 40 million years of its evolution, which is neither supported by fossil data nor biologically 

plausible. Many Poalean lineages are exceptionally good dispersers and able to migrate across typical 

migration barriers (e.g., oceans; Linder et al., 2018; Martín-Bravo et al., 2019, Spalink et al., 2019; 

Larridon et al., 2021, Benítez-Benítez et al., 2021), while lineages with species with poor dispersal 

ability tend to be restricted to single or physically adjacent phyloregions (e.g., Rapateaceae, 

Bromeliaceae). Highly parameterized models – with time-stratification or with geographic dispersal 

multipliers – are unlikely to be a good fit for all clades in the exceptionally diverse Poales. Thus 

subsequent analyses are based on the DEC model.  
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