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Peer Review File

sChemNET: A deep learning framework for predicting small 

molecules targeting microRNA function



Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The authors describe sChemNET, a two-layer neural network model that predicts bioactivity (while not 

distinguishing between up- or down-regulation) against specific, predetermined miRNAs. In general 

the paper is well-written, the experiments are well-executed, and the results are both understandable 

and well-supported. However, a number of specific areas for improvement exist: 

 

1. The authors state that only miRNA having 5 or more bioactive small molecules are selected for 

inclusion in the study, and these known activities are the source of training labels. What is not 

explicitly clear is whether those molecules also have known non-activity against other miRNA in the 

model (i.e. are true negatives, p(y_{iu}|x_i) == 0), or whether this model's labels are only the 

positive cases (i.e. true positives, p == 1). What is the extent of many-to-many molecule-to-miRNA 

label relationships in the training data? 

 

2. The authors use a loss function that incorporates miRNA sequence similarity as a downweighting 

factor to minimize the discrepancy in predicted labels from other miRNAs that are less similar. This 

seems to imply that sChemNET model is not a global model learned once and over all miRNAs, but 

learned independently, locally and separately for each miRNA u. Or, that for those sets of miRNAs that 

have bioactivity against the same molecule that each prediction is counted in the loss function multiple 

times. Some additional clarity here would be appreciated. 

 

3. The authors describe calculating "global similarity" using an alignment procedure from BioPython; 

this procedure should be described in greater detail (scoring matrix, gap penalty choices) and those 

parameter choices justified, given the very short sequences. Additionally, the "normalization" of these 

similarity scores between 0 and 1 seems to imply that a (randomly occurring) "worst" similarity would 

be rescaled to 0, but the procedure used for this normalization and rescaling was not provided. 

 

4. In figures 2b and 3b, performance metrics are shown as barplots with error bars of some sort -- 

these are not described in the figure legend. While sChemNET with sequence similarity performs 

better, on average, than without sequence similarity, the error bars seem to indicate this difference 

isn't meaningful. In fact, most methods are only marginally better than chemical similarity; not 

surprising given the sparsity of training data available. 

 

5. Figures 2b and 3b are easy to mis-interpret, given the authors choice of wording: among 100 "top" 

molecules, approx. 10% of bioactive molecules were identified by sChemNET -- thus, is 10% the recall 

(sensitivity), or the TPR of the top-100 selection? An ROC curve (with confidence intervals) would be a 

more informative and straightforward way to visualize performance. 

 

6. The authors use a loss function that incorporates a regularization technique that penalizes for 

promiscuous (and presumably false positive) predictions across the unlabelled portion of the training 

set. This is meant to represent the chemical "space" in which the miRNA bioactivity prediction is 

optimized -- and thus the model should be relearned for any new screening library to be surveyed. 

Thus it remains unknown whether the various performance and learning behaviors of sChemNET 

presented here are specific to this particular choice of chemical space or would generalize to other 

chemical libraries of interest. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This manuscript addresses a challenging topic, namely the interaction between small molecules and 

microRNA, by means of machine learning and validation. The authors are commended for doing 



experimental validation. 

 

However, the number of concerns outweighs the benefits of the merits of this paper, which preclude 

publication at this time. 

 

Here are some of the concerns: 

1. data - the SM2miR database has not been updated since 2015; one would assume that in decade 

that has passed since the original publication, a lot more such molecules have been published. Some 

of these should have been used as a temporal split (external) validation set. More molecules here? 

PMC6546413 

2. ML descriptors - sChemNet models are trained using the 127 features of the MACCS fingerprint. 

This is an unfortunate choice, given that MACCS keys in that set were built on the World Drug Index in 

the late 1980s, and are literally representative of "old chemistry". There is a significant number of 

more modern approaches to chemical features that can be used to address this question. 

3. Model imbalance - there is a serious concern about the 10:1 ratio between inactive and active 

compounds. It is unclear if the 2400 unlabelled molecules are indeed inactive. Perhaps a more clear 

description would have helped; true inactives should incorporate compounds known to permeate 

mitochondria (e.g., metformin). 

4. But the more serious problem is model validation. Calcitriol and its effect on miRNA has been 

disclosed in 2016 - PMC4714233. Given the extremely high similarity between calcediol and calcitriol, 

it is really difficult to imagine that a) this choice was accidental and b) that the authors had no 

knowledge of this result. 

 

Last but not least, docetaxel is an antineoplastic taxane; if it modulates glucocorticoid receptors, 

please provide evidence. 

 

 

Reviewer #3 (Remarks to the Author): 

 

In this work Galeano et al. have made an attempt to develop a method to target microRNAs with small 

molecules by using deep learning approaches. 

 

The key idea in this method is training a learning model by using the information of “unlabeled” 

structures. During the training phase each of these small molecules are assigned a prediction score to 

each miRNA. 

There are several fundamental questions that authors need to provide a more detailed explanation and 

rationalization. 

 

1. Authors claim that “Unlabeled small molecules have unknown biological activity against targeted 

miRNA” and then they use the Drug Repurposing Hub database for creating the unlabeled set of small 

molecules. It has been shown that there is a significant overlap between the chemical space of known 

approved drugs and RNA binders which bind to microRNA (J. Am. Chem. Soc. 2021, 143, 33, 13044–

13055). Authors need to calculate the physicochemical properties of their labeled and unlabeled 

libraries to show the similarities and differences and then they need to map the chemical space of 

6,433 small molecules to the bioactive molecules to show the unlabeled library is not already biased 

toward binding to microRNAs. 

 

2. In line 155 authors use the term “unique” to describe the unlabeled small molecules. They need to 

provide more information on what determined this “uniqueness”. 

 

3. What is the reason behind selecting the MACCS fingerprint as it has been shown that extended-

connectivity fingerprints of diameters 4 and 6 are among the best performing fingerprints in ranking 

diverse structures by similarity and fingerprints to avoid when measuring similarity include Daylight-

type path-based fingerprints and MACCS keys (J Cheminform. 2016; 8: 36). As the scoring of the test 



set is based on the extracted chemical similarity using this fingerprint it also raises another question 

whether the authors have benchmarked other fingerprints or not? This makes the whole scoring 

workflow highly questionable. Authors need to rationalize their choice of this fingerprint and then 

benchmark other fingerprints to validate their results. 



Dear Reviewers, 

We thank you for your thoughtful and productive comments, which have guided us to further 

improve the rigor and clarity of our manuscript. We believe the revised version of our 

manuscript is now much stronger due to the revisions we have done to address your 

comments.  

The original comments of the reviewers are listed in black; our responses are written in blue. 

On behalf of the authors, 

Diego Galeano, Ph.D. 

Responses to Reviewer #1

The authors describe sChemNET, a two-layer neural network model that 

predicts bioactivity (while not distinguishing between up- or down-regulation) 

against specific, predetermined miRNAs. In general, the paper is well-written, 

the experiments are well-executed, and the results are both understandable 

and well-supported. However, a number of specific areas for improvement 

exist: 

We thank the reviewer for praising that our paper is “well-written, the experiments 

are well-executed, and the results are both understandable and well-supported”. 

Nevertheless, we took very seriously the reviewers’ comments and aimed at 

addressing them to the best of our abilities.

 1. The authors state that only miRNA having 5 or more bioactive small 

molecules are selected for inclusion in the study, and these known activities 

are the source of training labels. What is not explicitly clear is whether those 

molecules also have known non-activity against other miRNA in the model (i.e. 

are true negatives, p(y_{iu}|x_i) == 0), or whether this model's labels are only 

the positive cases (i.e. true positives, p == 1). What is the extent of many-to-

many molecule-to-miRNA label relationships in the training data? 



The experimental small molecule - miRNA association data that we used in our study 

from the SM2miR database only contains associations that are true positive cases 

(i.e. small molecules that are known to experimentally alter the expression of 

miRNAs). Unfortunately, experimentally validated true negative associations (i.e. p 

== 0) are not reported on public datasets. Therefore, for instance, all the 1,102 

associations between 131 small molecules and 126 miRNAs from Homo sapiens are 

a source only for positive labels. Negative labels, as such, are not explicitly provided 

in the database.  

The problem of having databases containing only positive drug-target 

interactions is not unique to the SM2miR database, but it is a challenge for many 

researchers engaged in drug target predictions, drug side effect predictions, and 

protein-protein interactions.  In such studies, typically, “unknown” or “missing” 

associations in the dataset are represented with zero values1–3 ; this is also the 

representation we used in our modelling.  

To estimate the extent of the many-to-many molecule-to-miRNA label 

relationship in training labeled data, we analyzed the Homo sapiens labeled data, 

which consists of 1,102 associations between 131 small molecules and 126 

miRNAs. We first check the distribution of the number of shared bioactive small 

molecules (i.e., 𝑦𝑖𝑗 = 1) for pairs of miRNAs – see Figure R1a.  The average number 

of shared bioactive small molecules for the 7,875 pairs of miRNAs is 1.77+-1.51 

(mean and s.t.d.), indicating that most miRNAs in our dataset tend to share few 

bioactive small molecules. A similar trend is observed for the distribution of the 

number of shared miRNAs for each of the 8,515 pairs of bioactive small molecules 

(mean and s.t.d. of 0.63 +- 1.91) – see Figure R1b.  



Figure R1 - Histograms of labeled relationships in the training dataset for 126 miRNAs from 

Homo sapiens. (a) The number of bioactive small molecules shared between 7,875 pairs of miRNAs; 

(b) The number of miRNAs shared between 8,515 pairs of bioactive small molecules. 

Changes to the manuscript Changes to the Supplementary Materials 

New explanations in lines 147-149 and lines 

154-156. 

new Supplementary Fig. 3 (Fig. R1 in this 

document) 



 2. The authors use a loss function that incorporates miRNA sequence 

similarity as a down weighting factor to minimize the discrepancy in predicted 

labels from other miRNAs that are less similar. This seems to imply that 

sChemNET model is not a global model learned once and over all miRNAs, but 

learned independently, locally and separately for each miRNA u. Or, that for 

those sets of miRNAs that have bioactivity against the same molecule that 

each prediction is counted in the loss function multiple times. Some additional 

clarity here would be appreciated. 

We apologize for the lack of detail that in turn affects the clarity of the manuscript. To 

clarify how sChemNET works, we have now added a new paragraph in the Methods 

section describing “The sChemNET model training”. 

Briefly, sChemNET is not a global model, and prediction scores for a given 

miRNA 𝑢 are independently learned (or optimized). Still, sChemNET uses all the 

labeled information available from all other miRNAs in a way that their contribution to 

the learning is weighted according to how similar they are in sequence to miRNA 𝑢 – 

the miRNA for which we are learning the prediction scores.  

The down-weighting based on sequence similarities is indicated in our loss 

function shown in Eq. (1) in the main manuscript. The parameter 𝑠𝑢𝑣 allows us to 

downweigh each miRNA’s labeled information's contribution based on their 

similarities in sequence. Although sChemNET requires a separate training for each 

miRNA 𝑢 to incorporate sequence similarity information, we found that it only takes a 

few seconds to run sChemNET on a laptop, and thus does not represent an issue in 

practice.   

In the particular case in which sChemNET is trained without sequence 

information (i.e. 𝑠𝑢𝑣 = 1 for all miRNA pairs), sChemNET could be trained only once 

to generate prediction scores for all miRNAs.  

For the sets of miRNAs that have bioactivity against the same small molecule, 

their contribution would be counted multiple times but with different penalization 

weights depending on the similarity in sequence to miRNA 𝑢. This may add evidence 

during learning that improves the prediction score for a given small molecule. 



Changes to the manuscript Changes to the Supplementary Materials 

additional paragraph in Methods section 

“The sChemNET model training”. Lines 

651-655. 

- 

 3. The authors describe calculating "global similarity" using an alignment 

procedure from BioPython; this procedure should be described in greater 

detail (scoring matrix, gap penalty choices) and those parameter choices 

justified, given the very short sequences. Additionally, the "normalization" of 

these similarity scores between 0 and 1 seems to imply that a (randomly 

occurring) "worst" similarity would be rescaled to 0, but the procedure used 

for this normalization and rescaling was not provided. 

Please excuse this oversight. In the revised version of the manuscript, we have 

provided the details of the alignment procedure from BioPython in the Methods 

section “miRNA sequence similarity and linear re-scaling for sChemNET loss 

function”. Given that miRNA sequences are very short and of similar length, we 

followed previous computational modelling work4,5 and used global alignment to build 

a sequence similarity matrix using the Needleman-Wunsch algorithm (with a match 

score of 1, and mismatch and gap scores of zero). In miRNA mature sequences, we 

typically do not have gaps; therefore, using gap scores of 0 is the appropriate choice.  

In computational modeling in machine learning, it is common to re-scale 

similarity values when used as penalization factors in a loss function – such as the 

one we developed in Eq. (1) for sChemNET – see examples in drug target prediction 

machine learning models2. This is done for practicality; larger penalization values 

can lead to issues in the optimization algorithms used for learning. Our re-scaling 

does not alter the similarity information because, in our cost function, what matters is 

that the relative importance of the information is preserved – which is our case 

because we used a linear re-scaling of the values. That is, for a given miRNA u, let 

𝑧𝑢 = [𝑧𝑢1, 𝑧𝑢2, … , 𝑧𝑢𝑛] be the sequence similarity score to all other miRNAs. We 

performed the following linear re-scaling of the sequence similarity values: 

𝑠𝑢 =  𝑚 × 𝑧𝑢 + (1 − 𝑚 × 𝑚𝑎𝑥(𝑧𝑢))



where the 𝑚 =
1−𝑎

𝑚𝑎𝑥(𝑧𝑢)−𝑚𝑖𝑛(𝑧𝑢)
 is the slope and 𝑎 is a constant value that 

needs to be defined to set the minimum value of the re-scaling. For the Homo 

sapiens chemical RNA dataset, we found that 𝑎 = 0 works well (0 ≤ 𝑠𝑢 ≤ 1), but for 

the model organisms, we used 𝑎 = 0.7 (0.7 ≤ 𝑠𝑢 ≤ 1). This difference might be due 

to the fact that for the model organisms the datasets available were much sparser 

than for Homo sapiens, and the model needed to rely more on the other labeled 

information to achieve optimal prediction performance.  

As an example of the re-scaling performed on the sequence similarities, we 

showed in Figure R2 the re-scaling performed for miR-let-7-5p on the Homo sapiens

dataset.  

Figure R2. Example of re-scaling performed on the mature sequence similarities between 

miRNA hsa-let-7-5p and all other 125 miRNAs from Homo sapiens. The y-axis indicates the 

rescaled values that were used in the sChemNET loss function, and the x-axis indicates the sequence 

similarities scores obtained with the Needleman-Wunch alignment algorithm.

Changes to the manuscript Changes to the Supplementary Materials 

additional paragraph in Methods section 

“miRNA sequence similarity and linear 

re-scaling for sChemNET loss function” 

to explain the re-scaling procedure. 

new Supplementary Figure 4 (Fig. R2) 

We added details in the manuscript line 131  



 4. In figures 2b and 3b, performance metrics are shown as barplots with error 

bars of some sort -- these are not described in the figure legend. While 

sChemNET with sequence similarity performs better, on average, than without 

sequence similarity, the error bars seem to indicate this difference isn't 

meaningful. In fact, most methods are only marginally better than chemical 

similarity; not surprising given the sparsity of training data available. 

Prompted by the reviewer comment, in the revised version of the manuscript, we 

have improved the legend of Figure 2 to explain that the error bars shown in 

Figures 2b and 3b represent the variation in recall at different top-K values (100, 

300, 500 or 1000) across the 125 miRNAs from Homo sapiens.

Our evaluation to obtain the recall for each miRNA was as follows. For each 

miRNA, we removed one of its known bioactive small molecules from the training 

set, and we placed it on a test set together with other 3,999 randomly selected small 

molecules (see Fig. 2a in the main manuscript). Then, having trained each model 

using the available data in the training set, the goal now becomes to recover the 

bioactive small molecule from the pool of 4,000 previously unseen small molecules 

in the test set (see also Fig. 2a). To measure the prediction performance at 

recovering bioactive small molecules for a given miRNA 𝑖, we calculate the recall as 

follow: 

recall (miRNA 𝑖, top-𝑘) =  
number of bioactive small molecules recovered at top−k 

number of instances assessed for miRNA i

Figures 2b and 3b show this recall computed on different top-ks (100, 300, 

500, and 1000) - x-axis - for each of the 125 miRNAs in Homo sapiens that were 

assessed. In the figures, the height of each rectangle indicates the median value, 

and the error bar indicates the standard deviation (s.t.d.).  

The reviewer has also indicated that the differences in prediction performance 

between sChemNET with and without sequence similarity are not meaningful. To 

understand whether the differences in prediction performance between sChemNET 

with and without sequence similarity integration are statistically significant, we used 

the non-parametric one-sided Wilcoxon Sum Rank statistical test to assess whether 



the distribution of sChemNET recall across the different top-ks is significantly higher 

the distribution of recalls obtained by each of the other methods. We adjusted p-

values using the Benjamini–Hochberg correction for multiple testing to keep the 

overall significance level below 0.05. Figure R3 below shows the average recall 

improvement of sChemNET over each baseline method, including sChemNET 

without sequence information (or sChemNET with 𝑠𝑢𝑣 = 1).  

Fig. R3 (Left) shows that, when considering all the evaluation instances (i.e., 

1,097 associations between 131 small molecules and 125 miRNAs from Homo 

sapiens), sChemNET performs, on average, significantly better than sChemNET 

without sequence similarity by 2.73% (adjusted p < 0.042), XGBoost by 5.68% 

(adjusted p < 4.95e-05),  logistic regression by 6.64% (adjusted p < 1.38e-06), 

random forest by 13.74% (adjusted p< 3.94e-20), FNN by 21.14% (adjusted p < 

6.28e-48), chemical similarity baseline by 12.73% (adjusted p < 2.13e-17) and the 

random baseline by 23.07% (adjusted p < 1.17e-56).  These results suggest that the 

average improvements in prediction performance obtained by sChemNET are 

statistically significant. 

There are often chemically similar structures between the single bioactive 

small molecule in the test set and the set of bioactive small molecules in the training 

set. To understand whether sChemNET outperform the competitors at predicting 

bioactive small molecules chemically dissimilar from those available for training the 

model, we only kept the chemically dissimilar instances (i.e., 810 associations 

between 108 bioactive small molecules and 125 miRNAs from Homo sapiens ) using 

a Tanimoto chemical similarity threshold of 0.6.  Fig. R3 (Right) shows that, in the 

case of chemically dissimilar instances, sChemNET mean recall improvement is also 

significantly better than each of the baseline methods by: 5.56% (sChemNET without 

sequence similarity, adjusted p < 1.18e-03), 9.32% (XGBoost), 12.34% (logistic 

regression), 13.29% (random forest), 18.44% (FNN), 26.95% (chemical similarity 

baseline, adjusted p < 1.69e-67) and 19.65% (random baseline, adjusted p < 3.16e-

34).    



Figure R3. Mean recall improvement of sChemNET’s recall performance over each baseline 

method computed over different top-ks (100, 300, 500 and 1000). 

The reviewer pointed out that sChemNET’s recall performance is only 

marginally better than the chemical similarity baseline. However, our experiments 

show that in the case in which we consider all the instances, sChemNET’s mean 

improvement in recall over the chemical similarity baseline is 12.73%; an 

improvement that is statistically significant (adjusted p < 2.13e-17). In the more 

challenging evaluation of chemically dissimilar instances between training and 

testing sets, the overall improvement is even higher (by 26.95% in mean 

improvement in recall) with a statistically significant difference between the 

distribution of recall values (adjusted one-sided Wilcoxon Sum Rank Significance, p 

< 1.69e-67).   

Changes to the manuscript Changes to the Supplementary Materials 
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 5. Figures 2b and 3b are easy to mis-interpret, given the authors choice of 

wording: among 100 "top" molecules, approx. 10% of bioactive molecules 

were identified by sChemNET -- thus, is 10% the recall (sensitivity), or the TPR 

of the top-100 selection? An ROC curve (with confidence intervals) would be a 

more informative and straightforward way to visualize performance. 

Thank you for indicating this point of confusion. We have now improved the clarity of 

our message with a new analysis.  

Briefly, the percentages shown in Figures 2b and 3b are the recall (sensitivity). 

Recall is typically used in leave-one-out-cross-validation (LOOCV) when assessing 

computational prediction models that deal with sparse data and in which the negative 

label is not well-defined6. In our evaluation, we used a LOOCV procedure for two 

main reasons:  

1. Because LOOCV allows us to accurately measure the expected 

prediction performance (recall@top-k small molecules retrieved) for each 

miRNA separately, and when considering a realistic scenario in which a single 

bioactive small molecule needs to be found in a large pool of chemicals – 

which better reflects our practical application case, and,  

2. Because the sparsity in the dataset makes it difficult to generate a 

standard machine learning split (e.g., 70-30%) that could allow us to use 

the ROC curve to measure the prediction performance for each miRNA 

accurately. Consider, for instance, the miRNAs with only five known labels for 

which an ROC curve could be misleading. Another important point to consider 

is that ROC curves are usually more informative when both positive and 

negative labels are well-defined, which is not the case for our problem, as 

negative labels represent unknown small molecule-miRNA associations rather 

than true negative associations.  

To show how using a standard binary classification procedure becomes 

challenging in sparse and small datasets, we tried to run it for each miRNA. We used 

the Homo sapiens dataset which consisted of 1,102 associations between 6433 

labeled and unlabeled small molecules and 126 miRNAs. Our evaluation procedure 

is described below:  

For each miRNA, we split the labels as follows: 



● Positive labels (i.e. known bioactive small molecules) were randomly split 

70% into training and the remaining 30% into testing sets. 

● Negative labels (i.e. yet unknown to be bioactive small molecules) were 

randomly split 38% into training and 62% into testing sets. 

The reason for having different split ratios for negative and positive labels was to 

keep our original ratio between labels defined in our LOOCV so that each model’s 

hyperparameters do not need to be re-tuned.  

For the testing set obtained from the procedure described above, we 

calculated the Tanimoto 2D chemical similarity between “positive” small molecules 

between training and testing sets in order to remove from the testing set all the 

bioactive small molecules that were chemically similar (i.e. Tanimoto similarity > 0.6) 

to the bioactive small molecules in training. This step is crucial so that there is no 

bias and information leakage in our evaluation of the prediction performance.  

Finally, we only kept instances in which we found at least five positive labels 

in the testing sets so that the AUROC measure is somewhat meaningful. The whole 

procedure for each miRNA was repeated five times to ensure different random splits. 

We then framed a binary classification problem in which we aimed to classify positive 

from negative labels and used the Area Under the Receiver Operating Characteristic 

Curve (AUROC) as a measure of the prediction performance.  

We found that, out of the 126 miRNAs, only 3 miRNAs met the criteria to 

calculate the AUROC: (i) hsa-miR-21-5p with 35 known positive labels (the largest); 

(ii) hsa-miR-16-5p with 21 known positive labels; and (iii) hsa-let-7a-5p with 17 

known positive labels. Figure R4 below shows the summary distribution of the 

AUROCs obtained. We found that sChemNET outperforms the other approaches in 

terms of median AUROC (0.681 +- 0.05, median and s.t.d), Random Forest (0.592 

+- 0.09), XGBoost (0.594 +- 0.06), Logistic Regression (0.655 +- 0.08) and FNN 

(0.56 +- 0.109). 



Figure R4. Boxplots of the area under the receiver operating characteristic (AUROC) obtained 

for each method at predicting small molecules that are bioactive against three miRNAs from 

Homo sapiens: (i) hsa-miR-21-5p with 35 known positive labels (the largest); (ii) hsa-miR-16-5p with 

21 known positive labels; and (iii) hsa-let-7a-5p with 17 known positive labels. A total of 6,433 small 

molecules were used.  

Changes to the manuscript Changes to the Supplementary Materials 

Improved explanation of Fig. 2 on lines 185-
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New AUROC analyses are explained in 

lines 203-205. 

new Supplementary Figure 7 (Fig. R4) 

 6. The authors use a loss function that incorporates a regularization technique 

that penalizes for promiscuous (and presumably false positive) predictions 

across the unlabelled portion of the training set. This is meant to represent the 

chemical "space" in which the miRNA bioactivity prediction is optimized -- and 

thus the model should be relearned for any new screening library to be 

surveyed. Thus it remains unknown whether the various performance and 



learning behaviors of sChemNET presented here are specific to this particular 

choice of chemical space or would generalize to other chemical libraries of 

interest. 

The reviewer makes a valid point. In our study, we focused on the chemical space 

defined by the Drug Repurposing Hub database. We believe using this dataset offers 

several advantages: (1) Most of the compounds were experimentally confirmed in 

purity and identified and annotated with literature-reported protein targets, 

indications, and disease areas and even provided with vendor information; (2) The 

chemical library contains FDA-approved drugs or small molecules that have reached 

clinical development and hence are easy to acquire for experimental testing on 

bioactivity against miRNAs; (3) Corsello et al.7 showed that the Drug Repositioning 

Hub Library contains small molecules that are chemically and therapeutically diverse 

thus covering an important part of the chemical space for drug repositioning 

purposes.    

It is out of the scope of our current study to test sChemNET on chemical 

libraries that are chemically distant from the drug repurposing hub. But it is an 

opportunity for future studies.  

Changes to the manuscript Changes to the Supplementary Materials 

we have incorporated a sentence in the 

Discussion about this potential future work 

(line 486-487). 



Responses to Reviewer #2 

This manuscript addresses a challenging topic, namely the interaction 

between small molecules and microRNA, by means of machine learning and 

validation. The authors are commended for doing experimental validation. 

We thank the reviewer for the positive feedback on our manuscript, especially for 

praising our efforts to combine computational predictions with experimental 

validations. 

 However, the number of concerns outweighs the benefits of the merits of this 

paper, which preclude publication at this time. 

 Here are some of the concerns: 

 1. data - the SM2miR database has not been updated since 2015; one would 

assume that in decade that has passed since the original publication, a lot 

more such molecules have been published. Some of these should have been 

used as a temporal split (external) validation set. More molecules here? 

PMC6546413 

The reviewer makes a good point. Unfortunately, we cannot use the small molecules 

from the paper mentioned by the reviewer8 because the paper does not provide the 

SMILES information for their chemical structures. 

However, we searched and found another recently published dataset called 

RNAInter9 (http://www.rnainter.org/) that also contains associations between small 

molecules and microRNAs for Homo sapiens. We checked whether there were 

prospective associations in this dataset from 2022 that were not present in our 

dataset from 2015. We found 1,180 novel prospective associations between 123 

miRNAs and 120 small molecules.  

We used these prospective associations as a test set for each miRNA. That 

is, for each miRNA, we used our 2015 dataset (SM2miR database) to train the 

http://www.rnainter.org/


models, and the 2022 dataset (RNAInter database) as a test set. To avoid 

information leakage from similar chemical structures, we only kept in the test set 

chemically dissimilar compounds from those in training (Tanimoto chemical similarity 

< 0.6). We only considered cases in which we had at least five associations in the 

test set. In the test set, we also incorporated 4,000 randomly selected small 

molecules that were unknown to be bioactive against the miRNA under evaluation. 

The remaining unlabeled small molecules were used for training. We then framed a 

binary classification performance and used the area under the receiver operating 

characteristic curve (AUROC) to calculate the model’s prediction performance for 

each miRNA.  

Figure R5 shows that sChemNET outperforms all the baseline methods, with 

an average AUROC of 0.582 +- 0.096. The average prediction performance of the 

other methods was 0.562+-0.104 (sChemNET without sequence information), 0.541 

+- 0.106 (FNN), 0.533+-0.07 (XGBoost), 0.475+-0.087 (Logistic Regression), 

0.457+- 0.095 (Random Forest). Overall, these results indicate that sChemNET can 

also be helpful at predicting novel small molecules without known bioactivity against 

miRNAs.

Figure R5. Prospective evaluation. Violin plots of the area under the receiver operating 

characteristic (AUROC) were obtained for 123 miRNAs from Homo sapiens. The positive labels in the 

training set consisted of associations obtained from the SM2miR 2015 database version. The positive 

labels in the test set consisted of associations obtained from the RNAInter 2022 database. Unlabeled 

small molecules were obtained from the Drug Repositioning Hub database. 



Changes to the manuscript Changes to the Supplementary Materials 

We incorporated information about the new 

dataset in the Methods section “Chemical 

Datasets” 

We incorporated a new section in Methods 

“Prospective evaluation” to explain the 

new procedure 

new paragraph in lines 221-226 to explain 

the new results 

new Supplementary Figure 9 (same as Fig. 

R5) 

 2. ML descriptors - sChemNet models are trained using the 127 features of the 

MACCS fingerprint. This is an unfortunate choice, given that MACCS keys in 

that set were built on the World Drug Index in the late 1980s, and are literally 

representative of "old chemistry". There is a significant number of more 

modern approaches to chemical features that can be used to address this 

question. 

Our use of MACCS chemical fingerprints was motivated by the low dimensionality of 

this chemical fingerprint, which makes it suitable for building a machine-learning 

model with very sparse datasets, such as ours. In machine learning literature, it is 

well known that as the number of input feature sizes increases, the number of 

samples needs to increase to prevent the curse of dimensionality10. Other chemical 

fingerprints, such as Daylight-type or Morgan fingerprints, require much larger 

dimensionality (> 1,000), which in turn, are likely to cause overfitting and poor 

generalization of the model to new structures. 

To understand whether other fingerprints perform better than MACCS, we 

assessed the prediction performance of sChemNET and all the competitors using 

the RDKit, ECFP4, and ECFP6 chemical fingerprints. The RDKit-specific fingerprint 

is inspired by public descriptions of the well-known Daylight fingerprint. The RDKit-

specific algorithm is based on hashing molecular subgraphs. To compute the 

chemical fingerprint of each small molecule, we used the default set of parameters: 

minimum path size: 1 bond, maximum path size: 7 bonds, fingerprint size: 2,048 bits, 



number of bits set per hash: 2, minimum fingerprint size: 64 bits, target on-bit density 

0.0. The Extended-Connectivity Fingerprints (ECFPs) of diameters 4 and 6 are 

topological fingerprints that have been shown to outperform other fingerprints in 

ranking diverse structures11. We also used the RDKit python library to calculate 

ECFP4 and ECFP6 from the SMILES representation of the small molecules. For 

ECFP4, we used maximum radius of 4 for the substructure and fingerprint length: 

1,024 bits, standard Daylight atom features, and we ignore chirality. For ECFP6, we 

used the same parameters, but the maximum radius was set to 6. We then 

benchmarked the RDKit, ECFP4, and ECFP6 fingerprints using the LOOCV 

procedure we presented in our manuscript. Notice that while MACCS has only 127 

dimensions, RDKit has 2,048 dimensions and ECFP4 and ECFP6, 1,024 

dimensions. 

Figure R6 below shows the average recall of the methods across different 

tops when considering all the associations (Fig. R6 left panel) and when 

considering only the chemically dissimilar associations between training and testing 

(Fig. R6 right panel). The results show that, on average, the MACCS fingerprint 

outperforms all the other fingerprints when used with sChemNET. Our result 

indicates that although MACCS has limitations in the chemical representation, it 

works well with our sparse dataset of small molecule-miRNA associations. 



Figure R6. Prediction performance of different methods using different chemical fingerprints 

(MACCS, RDKit, ECFP4, and ECFP6). The x-axis shows the average recall across top-K 

(100,300,500, and 1000) predictions in a Leave-one-Out cross-validation procedure in which a single 

bioactive small molecule known to affect a miRNA is placed on a test set together with other 3,999 

randomly selected small molecules yet unknown to affect the miRNA. Each method ranks 4,000 small 

molecules on the test set, and the recall was calculated for all the 1,102 associations between 

bioactive small molecules and 125 miRNAs from Homo sapiens. (Left panel) All the associations; 

(Right panel). Only chemically dissimilar associations between training and testing are considered 

(Tanimoto chemical similarity < 0.6).   

Changes to the manuscript Changes to the Supplementary Materials 

New paragraph in the Discussion, lines 

493-501.  

new Supplementary Fig. 10 (same as Fig. 

R6) 

 3. Model imbalance - there is a serious concern about the 10:1 ratio between 

inactive and active compounds. It is unclear if the 2400 unlabelled molecules 

are indeed inactive. Perhaps a more clear description would have helped; true 

inactives should incorporate compounds known to permeate mitochondria 

(e.g., metformin). 



We agree with the reviewer that model imbalance is a common problem in the drug 

target prediction research2. This is because, on one side, small molecule are known 

to affect a small number of biological targets. On the other, there is a long-tailed 

distribution in the number of biological targets targeted by small molecules12, which 

we have shown also prevails for the distribution of small molecule-miRNA 

associations  (see Supplementary Figure 2).  

In our manuscript, we do not claim that our set of unlabeled small molecules 

is inactive against miRNAs. In fact, our hypothesis is that their activity against 

miRNAs is yet unknown. We believe that sChemNET can assist in the discovery of 

the true bioactive small molecules from the set of unlabeled small molecules. We 

have shown that sChemNET is able to achieve this goal both with in-silico

simulations (see Figures 2 and 3), and with different wet-lab experiments and 

publicly available experimental data that confirmed sChemNET’s predictions 

(Figures 5 and 6).  

Including experimentally assessed inactive small molecules against miRNAs 

in our dataset, i.e. true negatives, would require extensive experimental validation 

that is beyond the scope of the current manuscript and would be better suited for 

future work.  

Changes to the manuscript Changes to the Supplementary Materials 

Sentence in the Discussion about potential 

future work, lines 497-500.  

 4. But the more serious problem is model validation. Calcitriol and its effect 

on miRNA has been disclosed in 2016 - PMC4714233. Given the extremely high 

similarity between calcediol and calcitriol, it is really difficult to imagine that a) 

this choice was accidental and b) that the authors had no knowledge of this 

result. 

Thank you for identifying an excellent reference demonstrating that calcitriol 

upregulates miRNA, which we have added to our references. We were unaware of 

this study because the keyword “miRNA-Seq” was not mentioned in the abstract. 

This information adds to our rationale for the validation of the model. We want to 

emphasize that the first step of our process was that the sChemNET model 



predicted this relationship (see heatmap generated with sChemNET’s predictions in 

Figure 4) using small molecule-miRNA associations from the SM2miR database 

release 2015 that incorporates information from scientific publications up to the year 

2015. Therefore, it is not possible for our sChemNET model to have used the 

information mentioned by the reviewer which was published in 2016.   

For the experimental validations we performed for the manuscript, we 

generated each hypothesis based on sChemNET predictions in an agnostic manner. 

Either by using direct ranking of small molecules for each miRNA or by using the 

heatmap in Figure 4b-c that contains statistically significant associations between 

sChemNET’s predicted drug mode of action and drug indications and miRNAs from 

Homo sapiens. The purpose of these heatmaps was to condense the predictions of 

sChemNET for generating biological hypotheses that could be more meaningful to 

pursue for experimental validation. For instance, the statistically significant 

association between miR-451 and vitamin D receptor agonists inspired us to 

experimentally test α-Calcidol on the zebrafish embryos (see Figure 5); whose effect 

we have confirmed experimentally in our manuscript. 

We then explored the literature and found that calcitriol regulation of multiple 

miRNAs was established, so we tested our predictive hypothesis in a cell model to 

see if the specific miRNA predicted by the sChemNET model was regulated by 

calcitriol.  

In our manuscript, we do not claim that we are the first to demonstrate that 

calcitriol affects miRNAs, but rather to show a new ML model, sChemNET, that can 

use small-size bioactive compounds from available RNA chemical datasets, to 

predict bioactive compounds in a larger chemical library such as the Drug 

Repositioning Hub chemical database.   

Changes to the manuscript Changes to the Supplementary Materials 

We included the reference mentioned by 

the reviewer 

In the Discussion, lines 459-461, we have 

added a sentence describing that α-calcidiol 

is converted to calcitriol, and thus functions 

in this system equivalently to calcitriol. 



 5. Last but not least, docetaxel is an antineoplastic taxane; if it modulates 

glucocorticoid receptors, please provide evidence. 

We thank the reviewer for pointing this out. Docetaxel, predicted in top- 3 by 

sChemNET when ranking over 6,400 small molecules for miR-451, is a tubulin 

polymerization inhibitor, and it is known to target BCL2 (also targeted by miR-451) 

according to the Drug Repositioning Hub database. We have corrected the known 

mode of action of docetaxel in the revised version of our manuscript.  

Changes to the manuscript Changes to the Supplementary Materials 

In lines 279-281, we have corrected the 

known mode of action of docetaxel in the 

main manuscript. 

Responses to Reviewer #3

 In this work Galeano et al. have made an attempt to develop a method to 

target microRNAs with small molecules by using deep learning approaches. 

The key idea in this method is training a learning model by using the 

information of “unlabeled” structures. During the training phase each of these 

small molecules are assigned a prediction score to each miRNA. 

 There are several fundamental questions that authors need to provide a more 

detailed explanation and rationalization. 

 1. Authors claim that “Unlabeled small molecules have unknown biological 

activity against targeted miRNA” and then they use the Drug Repurposing Hub 

database for creating the unlabeled set of small molecules. It has been shown 

that there is a significant overlap between the chemical space of known 

approved drugs and RNA binders which bind to microRNA (J. Am. Chem. Soc. 

2021, 143, 33, 13044–13055). Authors need to calculate the physicochemical 

properties of their labeled and unlabeled libraries to show the similarities and 

differences and then they need to map the chemical space of 6,433 small 



molecules to the bioactive molecules to show the unlabeled library is not 

already biased toward binding to microRNAs. 

We thank the reviewer for the comment. We want to insist that the SM2miR dataset 

that we used in our study is not based on direct interactions, i.e. binding between 

small molecules and microRNAs. Our dataset indicates whether a small molecule 

elicits a transcriptional response that mimics the miRNA-mediated regulation, but the 

exact mechanism of action is not provided in the database. 

The analysis by Zhang et al.13 mentioned by the reviewer, is a different 

dataset and represents a different application problem that focuses entirely on 

binding interactions between RNA folds and small molecules.  

Nevertheless, to understand the similarities/differences between the labeled 

and unlabeled libraries in terms of their physicochemical properties, we calculated 46 

different physicochemical properties for each of the 6,300 small molecules in our 

dataset using SwissADME14. To compare small molecules’ properties, we used the 

Euclidian distance between their physicochemical property vectors, in which each 

element of the vector corresponds to a specific property. We then calculated the 

Welch’s t-test Significance between the vector of distances among the labeled small 

molecules (intra-group) and between the labeled and unlabeled small molecules 

(inter-group) to see whether there two distributions have equal mean. We found that 

the mean of the distribution of physicochemical distances underlying the inter-group 

of small molecules is significantly greater than the mean of the distribution of the 

intra-group (One-sided p-value < 1.10e-30). This suggests that, in terms of 

physicochemical properties distances, there are statistically significant differences 

between the labeled and unlabeled small molecules. 

Changes to the manuscript Changes to the Supplementary Materials 

We added the reference mentioned by the 

reviewer 

We added the new analysis in a paragraph 

in the Discussion (lines 413-426).

In the Discussion, we have mentioned that 

combining datasets/knowledge about direct 

binding and regulation between miRNAs 



and small molecules is an important avenue 

of future research (Lines 500-501). 

 2. In line 155 authors use the term “unique” to describe the unlabeled small 

molecules. They need to provide more information on what determined this 

“uniqueness”. 

The word unique in this context simply refers to small molecules with unique 

PubChem Identifiers (provided as CIDs).  

Changes to the manuscript Changes to the Supplementary Materials 

We have clarified that “unique” refers to 

unique PubChem IDs in the manuscript in 

line 160.   

 3. What is the reason behind selecting the MACCS fingerprint as it has been 

shown that extended-connectivity fingerprints of diameters 4 and 6 are among 

the best performing fingerprints in ranking diverse structures by similarity and 

fingerprints to avoid when measuring similarity include Daylight-type path-

based fingerprints and MACCS keys (J Cheminform. 2016; 8: 36). As the 

scoring of the test set is based on the extracted chemical similarity using this 

fingerprint it also raises another question whether the authors have 

benchmarked other fingerprints or not? This makes the whole scoring 

workflow highly questionable. Authors need to rationalize their choice of this 

fingerprint and then benchmark other fingerprints to validate their results. 

We thank the reviewer for this comment.REV#2 had a similar concern, and we have 

addressed it with further analysis. It is presented in in our response to REV#2 

question 2, but we also placed it below for your convenience. 

Our use of MACCS chemical fingerprints was motivated by the low 

dimensionality of this chemical fingerprint, which makes it suitable for building a 

machine-learning model with very sparse datasets, such as ours. In machine 

learning literature, it is well known that as the number of input feature sizes 

increases, the number of samples needs to increase to avoid the curse of 



dimensionality. Other chemical fingerprints, such as Daylight-type or Morgan 

fingerprints, require much larger dimensionality (> 1000), which in turn, causes 

overfitting and poor generalization of the model to new samples. 

To understand whether other fingerprints perform better than MACCS, we 

assessed the prediction performance of sChemNET and all the competitors using 

the RDKit, ECFP4, and ECFP6 chemical fingerprints. The RDKit-specific fingerprint 

is inspired by public descriptions of the well-known Daylight fingerprint. The RDKit-

specific algorithm is based on hashing molecular subgraphs. To compute the 

chemical fingerprint of each small molecule, we used the default set of parameters: 

minimum path size: 1 bond, maximum path size: 7 bonds, fingerprint size: 2,048 bits, 

number of bits set per hash: 2, minimum fingerprint size: 64 bits, target on-bit density 

0.0. The Extended-Connectivity Fingerprints (ECFPs) of diameters 4 and 6 are 

topological fingerprints that have been shown to outperform other fingerprints in 

ranking diverse structures11. We also used the RDKit python library to calculate 

ECFP4 and ECFP6 from the SMILES representation of the small molecules. For 

ECFP4, we used maximum radius of 4 for the substructure and fingerprint length: 

1,024 bits, standard Daylight atom features, and we ignore chirality. For ECFP6, we 

used the same parameters, but the maximum radius was set to 6. We then 

benchmarked the RDKit, ECFP4, and ECFP6 fingerprints using the LOOCV 

procedure we presented in our manuscript. 

Figure R6 below shows the average recall of the methods across different 

tops when considering all the associations (Fig. R6 left panel) and when 

considering only the chemically dissimilar associations between training and testing 

(Fig. R6 right panel). The results show that, on average, the MACCS fingerprint 

outperforms all the other fingerprints when used with sChemNET. Our result 

indicates that although MACCS has limitations in the chemical representation, it 

works well with our sparse dataset of small molecule-miRNA associations. 



Figure R6. Prediction performance of different methods using different chemical fingerprints 

(MACCS, RDKit, ECFP4, and ECFP6). The x-axis shows the average recall across top-K 

(100,300,500, and 1000) predictions in a Leave-one-Out cross-validation procedure in which a single 

bioactive small molecule known to affect a miRNA is placed on a test set together with other 3,999 

randomly selected small molecules yet unknown to affect the miRNA. Each method ranks 4,000 small 

molecules on the test set, and the recall was calculated for all the 1,102 associations between 

bioactive small molecules and 125 miRNAs from Homo sapiens. (Left panel) All the associations; 

(Right panel). Only chemically dissimilar associations between training and testing are considered 

(Tanimoto chemical similarity < 0.6).   

Changes to the manuscript Changes to the Supplementary Materials 

New paragraph in the Discussion, lines 

493-501. 

new Supplementary Figure 10 (same as 

Fig. R6) 



References  

1. Galeano, D., Li, S., Gerstein, M. & Paccanaro, A. Predicting the frequencies of 

drug side effects. Nat. Commun. 11, 4575 (2020). 

2. Luo, Y. et al. A network integration approach for drug-target interaction prediction 

and computational drug repositioning from heterogeneous information. Nat. 

Commun. 8, 1–13 (2017). 

3. Santos, S. de S. et al. Machine learning and network medicine approaches for 

drug repositioning for COVID-19. Patterns 100396 (2021) 

doi:10.1016/j.patter.2021.100396. 

4. Jiang, L., Ding, Y., Tang, J. & Guo, F. MDA-SKF: Similarity Kernel Fusion for 

Accurately Discovering miRNA-Disease Association. Front. Genet. 9, 618 (2018). 

5. Li, L. et al. SCMFMDA: Predicting microRNA-disease associations based on 

similarity constrained matrix factorization. PLoS Comput. Biol. 17, e1009165 

(2021). 

6. Cáceres, J. J. & Paccanaro, A. Disease gene prediction for molecularly 

uncharacterized diseases. PLoS Comput. Biol. 15, e1007078 (2019). 

7. Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library 

and information resource. Nat. Med. 23, 405–408 (2017). 

8. Fan, R. et al. Small molecules with big roles in microRNA chemical biology and 

microRNA-targeted therapeutics. RNA Biol. 16, 707 (2019). 

9. RNAInter v4.0: RNA interactome repository with redefined confidence scoring 

system and improved accessibility | Nucleic Acids Research | Oxford Academic. 

https://academic.oup.com/nar/article/50/D1/D326/6414580?login=false. 

10. Bishop, C. M. Pattern Recognition and Machine Learning. (Springer, New 

York, 2006). 



11. O’Boyle, N. M. & Sayle, R. A. Comparing structural fingerprints using a 

literature-based similarity benchmark. J. Cheminformatics 8, 36 (2016). 

12. Yildirim, M. A., Goh, K.-I., Cusick, M. E., Barabási, A.-L. & Vidal, M. Drug-

target network. Nat. Biotechnol. 25, 1119–1126 (2007). 

13. Zhang, P. et al. Reprogramming of Protein-Targeted Small-Molecule 

Medicines to RNA by Ribonuclease Recruitment. J. Am. Chem. Soc. 143, 13044–

13055 (2021). 

14. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and 

medicinal chemistry friendliness of small molecules | Scientific Reports. 

https://www.nature.com/articles/srep42717. 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

No further comments; my concerns have been adequately addressed, for the most part. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have convincingly addressed most points raised (as Reviewer #2). They are indeed 

commended for using the 2015 data to predict 2022 data (temporal validation as it should be done). 

 

The only one that remains somewhat contentious is the inference that MACCS fingerprints are superior 

to other chemical descriptors such as Morgan fingerprints ECFP path 6. From an ML perspective, the 

authors are correct. What's really happening is that "lower dimensional" FPs compress information, 

which is further compressed by the 2-layer NN that is sChemNet. This is not a technical disagreement 

per se, but the authors are strongly encouraged to point this out. Again: 

200 chemical features == data compression of chemical structures 

2000 chemical features, learned from the data set == better chemical representation 

in the long run, the 2000-feature model becomes more explainable and usable for predicting 

bioactivity against miRNAs. 

 

 

Reviewer #2 (Remarks on code availability): 

 

I did not run the code. 



Reply to the Reviewers 

Reviewer #1 (Remarks to the Author):

No further comments; my concerns have been adequately addressed, for the most 

part. 

Reviewer #2 (Remarks to the Author):

The authors have convincingly addressed most points raised (as Reviewer #2). They 

are indeed commended for using the 2015 data to predict 2022 data (temporal 

validation as it should be done). 

We thank the reviewer for the positive feedback on our revisions.

The only one that remains somewhat contentious is the inference that MACCS 

fingerprints are superior to other chemical descriptors such as Morgan fingerprints 

ECFP path 6. From an ML perspective, the authors are correct. What's really 

happening is that "lower dimensional" FPs compress information, which is further 

compressed by the 2-layer NN that is sChemNet. This is not a technical disagreement 

per se, but the authors are strongly encouraged to point this out. Again: 

200 chemical features == data compression of chemical structures 

2000 chemical features, learned from the data set == better chemical representation 

in the long run, the 2000-feature model becomes more explainable and usable for 

predicting bioactivity against miRNAs.

As suggested by the reviewer, we will point this out in the Discussion of the revised version 

of our manuscript. (lines 500-501). The sentences that we 
have incorporated are copied below. 
 
Although ECFP-based offers better chemical representation, it is likely that MACCS 
outperform it due to overfitting in the presence of our small and sparse labeled dataset. 
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