Supplemental Tables and Figures

Supplemental Table S1: Molecular characteristics of the CLL cell lines.

CLL cell line | Key characteristics (IGHV mutational status & karyotype)

HG-3! Mutated IGHV; Non-complex karyotype; t12, t19

OSU-CLL? Unmutated IGHV; Non-complex karyotype; del 13q

IGHV: immunoglobulin heavy-chain variable region gene.
1 The HG-3 cell line originated from a CLL patient with un-mutated IGHV and demonstrates non-complex karyotype

with biallelic 13q14 deletions. [1]

2 The OSU-CLL cell line originated from a CLL patient with mutated IGHV and non-complex karyotype that is

defined as having less than three chromosomal aberrations. [2]

Supplemental Table S2: Primary antibodies for immunoblotting.

Primary Antibodies | Catalog number
Cell Signaling Technology
BFL1 14093
p-BTK (Tyr223) 87457
BTK 8547
p-ERK1/2 (Thr202/Tyr204) 4377
ERK1/2 4695
GAPDH 5174
GPX4 52455
HMOX1 43966
KEAP1 8047
MCL1 5453
c-MYC 5605
NCOA4 66849
PARP 9542
p-PRAS (Thr246) 13175
PRAS 2691
SLC3A2 47213
Santa Cruz Biotechnology
p65 sc-8008




Supplemental Figure S1: Ibrutinib modifies transcriptional profiles in wild-type and ibrutinib-
resistant CLL cells.
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Supplemental Figure S1: Ibrutinib modifies transcriptional profiles in wild-type and ibrutinib-resistant
CLL cells. (A-D): RNA-sequencing of parental wild-type (WT) HG-3 and ibrutinib-resistant (IR) HG-3 cells
treated with ibrutinib (1 uM) or equivalent DMSO vehicle (VEH; n = 3 independent experiments). (A)
Volcano plot of ibrutinib-treated WT-HG3 cells compared to VEH-treated WT-HGS3 cells with select CLL-
relevant genes labeled. Genes meeting both the statistical significance (FDR < 0.05) and fold-change (|Log:
FCI > 1) parameters (red) were used for downstream analysis. Genes meeting only statistical significance
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(blue), only fold-change (green), or neither threshold (grey) are shown for comparison. (B) Gene set
enrichment analysis (GSEA) of the statistically significant differentially expressed genes (DEGs) in
ibrutinib-treated WT-HGS3 cells compared to VEH-treated WT-HG3 cells. (C) Volcano plot of ibrutinib-
treated IR-HGS3 cells compared to VEH-treated IR-HGS3 cells with select CLL-relevant genes labeled. Genes
meeting both the statistical significance (FDR < 0.05) and fold-change (1Logz FC| > 1) parameters (red) were
used for downstream analysis (red). Genes meeting only statistical significance (blue), only fold-change
(green), or neither threshold (grey) are shown for comparison. (D) GSEA of the statistically significant
DEGs in ibrutinib-treated IR-HG3 cells compared to VEH-treated IR-HG3 cells.



Supplemental Figure S2: SpiD3 decreases viability while modulating ferroptosis in ibrutinib-resistant
CLL cells.
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Supplemental Figure S2: SpiD3 decreases viability while modulating ferroptosis in ibrutinib-resistant
CLL cells. (A) Wild-type (WT) and ibrutinib (IR) HG-3 cells were pre-treated with 5 mM N-acetylcysteine
(NAC, 1 h) followed by SpiD3 (0.5, 1, 2 uM), ibrutinib (IBR; 1 uM), or equivalent DMSO vehicle (VEH) for
24 h. Pyocyanin (PYO, 1 mM) served as a control ROS inducer (n = 3 independent experiments/cell line).
Percent viability per condition is shown. Data are represented as mean + SEM. Asterisks denote significance
vs. corresponding VEH: * p <0.05, ** p <0.01, *** p <0.001. Hashtags denote significance between non-NAC
pre-treated samples and NAC pre-treated samples: #p < 0.05, #p <0.01, #*p <0.001. (B,C): WT-HG3 (B) and
IR-HG3 (C) cells were pre-treated with ferrostatin (10 uM) for 1 h followed by SpiD3 (0.5, 1, 2 uM), IBR (1
puM), or VEH for 48 h. FeCl2 (160 uM) served as a control ferroptosis inducer. Percent viability per condition
is shown. Data are represented as mean + SEM. Asterisks denote significance vs. corresponding VEH: * p <
0.05, ** p <0.01, *** p <0.001.



Supplemental Figure S3: Venetoclax modifies transcriptional profiles in wild-type and venetoclax-

resistant cells.
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Supplemental Figure S3: Venetoclax modifies transcriptional profiles in wild-type and venetoclax-
resistant cells. (A-D): RNA-sequencing of parental wild-type (WT) OSU-CLL and venetoclax-resistant (VR)
OSU-CLL cells treated with venetoclax (1 uM) or equivalent DMSO vehicle (VEH; n = 3 independent
experiments). (A,B): The transcriptional profiles from vehicle-treated WT-OSUCLL samples from the
previous study (GSE236239) [3] were analyzed and incorporated into the volcano and gene set enrichment
analysis (GSEA). (A) Volcano plot of venetoclax-treated WT-OSUCLL cells compared to VEH-treated WT-
OSUCLL cells with select CLL-relevant genes labeled. Genes meeting both the statistical significance (FDR
< 0.05) and fold-change (ILogz FC| > 1) parameters (red) were used for downstream analysis. Genes
meeting only statistical significance (blue), only fold-change (green), or neither threshold (grey) are shown
for comparison. (B) GSEA of the statistically significant differentially expressed genes (DEGs) in
venetoclax-treated WT-OSUCLL cells compared to VEH-treated WT-OSUCLL cells. (C) Volcano plot of
venetoclax-treated VR-OSUCLL cells compared to VEH-treated VR-OSUCLL cells with select CLL-relevant
genes labeled. Genes meeting both the statistical significance (FDR < 0.05) and fold-change (|Log2 FC| > 1)
parameters (red) were used for downstream analysis. Genes meeting only statistical significance (blue),
only fold-change (green), or neither threshold (grey) are shown for comparison. (D) GSEA of the
statistically significant DEGs in venetoclax-treated VR-OSUCLL cells compared to VEH-treated VR-
OSUCLL cells.



Supplemental Figure S4: SpiD3 decreases viability while modulating ferroptosis in venetoclax-resistant

CLL cells.
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Supplemental Figure S4: SpiD3 decreases viability while modulating ferroptosis in venetoclax-resistant
CLL cells. (A) Wild-type (WT) and venetoclax-resistant (VR) OSU-CLL cells were pre-treated with 5 mM
N-acetylcysteine (NAC, 1 h) followed by SpiD3 (0.5, 1, 2 uM), venetoclax (VEN; 1 uM), or equivalent DMSO
vehicle (VEH) for 24 h. Pyocyanin (PYO, 1 mM) served as a control ROS inducer (n = 3 independent
experiments/cell line). Percent viability per condition is shown. Data are represented as mean + SEM.
Asterisks denote significance vs. corresponding VEH: ** p <0.01, *** p <0.001. Hashtags denote significance
between non-NAC pre-treated samples and NAC pre-treated samples: *p < 0.05, #p < 0.01, #*p < 0.001.
(B,C): WT-OSUCLL (B) and VR-OSUCLL (C) cells were pre-treated with ferrostatin (10 uM) for 1 h
followed by SpiD3 (0.5, 1, 2 uM), VEN (1 pM), or VEH for 48 h. FeCl: (160 uM) served as a control
ferroptosis inducer. Percent viability per condition is shown. Data are represented as mean + SEM. Asterisks
denote significance vs. corresponding VEH: * p <0.05, ** p <0.01, *** p <0.001.



Supplemental Figure S5: Protein quantification of SLC3A2.
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Supplemental Figure S5: Protein quantification of SLC3A2. (A) Representative immunoblot analysis of
SLC3A2 in WT-HG3 and IR-HG3 cells treated with SpiD3 (1, 2 uM), ibrutinib (1 uM), or FeCl2 (160 pM) for
4 h (n = 3 independent experiments). GAPDH served as the loading control. (B) Protein quantification of
the immunoblot analysis of SLC3A2. Data are represented as mean + SEM. (C) Representative immunoblot
analysis of SLC3A2 in WT-OSUCLL and VR-OSUCLL cells treated with SpiD3 (0.5, 1, 2 uM), VEN (1 uM),
or FeCl2 (160 pM) for 24 h (n = 3 independent experiments/cell line). GAPDH served as the loading control.
(D) Protein quantification of the immunoblot analysis of SLC3A2. Data are represented as mean + SEM.
Asterisks denote significance vs. corresponding VEH: * p < 0.05.
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