
Supplementary Materials

1. Comparison between hyperalignment algorithms

The INT model is based on the new hyperalignment algorithm—warp hyperalignment. Different

from the classic hyperalignment (Guntupalli et al., 2016; Haxby et al., 2020, 2011), warp

hyperalignment uses ridge regression in place of the orthogonal Procrustes transformation, and

it incorporates ensemble learning into the model. Therefore, it is of interest to compare the

performance of the INT model with different hyperalignment algorithms.

In the INT model, the neural tuning of each individual is modeled as an individualized

transformation applied to a common functional template. We systematically evaluated its

performance in five different ways to derive the transformation:

- (a) warp hyperalignment with ensemble averaging (same as the manuscript),

- (b) warp hyperalignment without ensemble averaging (i.e., single model),

- (c) Procrustes hyperalignment with ensemble averaging,

- (d) Procrustes hyperalignment without ensemble averaging,

- (e) no hyperalignment (i.e., identity transformation from template to subject).

These comparisons were performed on the same data, and different conditions only differed in

the hyperalignment algorithm used.

Specifically, we assessed the performance of each model using six different

benchmarks, repeated for each individual (i.e., leave-one-participant-out cross-validation):

1. The correlation between the measured and model-predicted time series of each cortical

vertex;
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2. The correlation between measured and predicted representational dissimilarity matrix

(RDM) in each searchlight (10 mm radius);

3. The correlation between measured and predicted object category selectivity maps;

4. The correlation between measured and predicted retinotopic maps;

5. The correlation of measured and predicted brain response pattern for each time point of

the movie;

6. The multiclass movie time point classification accuracy based on the entire cortex.

The better-performing algorithm is expected to yield higher similarities between

measured and predicted time series, RDMs, category-selectivity and retinotopic maps, and

response pattern to the movies, as well as higher classification accuracy.

We found very consistent results across different benchmarking indices. Specifically,

warp hyperalignment models, both with and without ensemble averaging, perform the best

among all models. Warp hyperalignment with ensemble averaging worked slightly better than

without ensemble averaging, yet the difference was often small, which suggests that ensemble

averaging can be skipped for warp hyperalignment when computational resources are limited.

All four hyperalignment models perform much better than the control model without

hyperalignment, reiterating the importance of resolving idiosyncrasies in functional–anatomical

correspondence with hyperalignment algorithms. The performance for Procrustes

hyperalignment algorithms was not as good as warp hyperalignment, but still much better than

the control model. Interestingly, Procrustes hyperalignment with ensemble averaging worked

better than Procrustes hyperalignment without ensemble averaging. Mathematically, the

average of multiple orthogonal matrices is not necessarily an orthogonal matrix. Therefore, the

transformation matrices based on ensemble Procrustes hyperalignment, each of which is an

average transformation, might be less constrained by orthogonality and more similar to the



transformation matrices based on warp hyperalignment. In short, the model performance can

be summarized as:

WHA ensemble > WHA single >> ProcrHA ensemble >> ProcrHA single >> No HA

where WHA is short for warp hyperalignment, ProcrHA is short for Procrustes hyperalignment,

and ensemble and single refer to models with and without ensemble averaging, respectively.

In the figures below, we use green colors for warp hyperalignment, blue colors for

Procrustes hyperalignment, and orange for the control condition (no hyperalignment). Within

each hyperalignment algorithm, the ensemble model is denoted using darker color, and the

single model is denoted using lighter color.



Figure S1. Comparison of model performance based on time series correlation. In this
analysis, we correlated the measured and model-predicted response time series to the movie
for each vertex, each subject, and each model. If a model performs better than others, we
expect its predicted time series will have higher correlation with the measured time series. (A



and B) The distribution of correlation coefficients based on five different methods for the Forrest
dataset and the Raiders dataset, respectively. (C) Scatter plots comparing warp hyperalignment
and Procrustes hyperalignment (left), Procrustes hyperalignment with and without ensemble
averaging (middle), and Procrustes hyperalignment and no hyperalignment (right), which allows
accessing the effects of warping representational geometry, using ensemble averaging, and
using hyperalignment, respectively. (D and E) The distribution of correlation coefficients on the
cortical surface based on warp hyperalignment with ensemble averaging for the Forrest dataset
and the Raiders dataset, respectively. The correlation was high for both early and association
visual and auditory cortices, as well as high-level cognitive areas.



Figure S2. Comparison of model performance based on RDM correlation. In this analysis,
for each 10 mm searchlight, we correlated the RDMs computed using measured and
model-predicted response patterns, which was repeated for each subject and each model. If a
model performs better than others, we expect the RDM based on its prediction to be more



similar to the measured RDM. The analysis differs from the one above in that it compares
RDMs based on a searchlight instead of time series based on a vertex. (A and B) The
distribution of searchlight RDM correlations based on five different methods for the Forrest
dataset and the Raiders dataset, respectively. (C) Scatter plots comparing warp hyperalignment
and Procrustes hyperalignment (left), Procrustes hyperalignment with and without ensemble
averaging (middle), and Procrustes hyperalignment and no hyperalignment (right), which allows
accessing the effects of warping representational geometry, using ensemble averaging, and
using hyperalignment, respectively. (D and E) The distribution of RDM correlations on the
cortical surface based on warp hyperalignment with ensemble averaging for the Forrest dataset
and the Raiders dataset, respectively.



Figure S3. Comparison of model performance based on predicting category-selectivity
maps. In this analysis, for each model and each subject, we trained the model using the movie
data and used the obtained tuning matrices and other subjects' category-selectivity maps to
predict the test subject's category-selectivity maps. If a model performs better than others, we
expect the correlation between the measured maps (based on localizer scans) and the
mode-predicted maps to be high. (A) Average correlation of category-selectivity maps for the
Forrest dataset. The six panels are the correlations for the selectivity maps of bodies, faces,
houses, objects, scenes, and scrambled objects, respectively. (B) Average correlation of
category-selectivity maps for the Raiders dataset. The five panels are the correlations for the
selectivity maps of bodies, faces, objects, scenes, and scrambled objects, respectively. Note
that the localizers for the Forrest dataset were based on static images, and those for the
Raiders dataset were based on dynamic video clips. Error bars denote standard error of the
mean.



Figure S4. Comparison of model performance based on predicting retinotopic maps. In
this analysis, for each model and each subject, we trained the model using the movie data and
used the obtained tuning matrices and other subjects' retinotopic maps to predict the test
subject's retinotopic maps. If a model performs better than others, we expect the correlation
between the measured amplitude maps (based on retinotopic scans) and the mode-predicted
amplitude maps to be high (Panel A), and the difference between measured and predicted
phase maps to be low (Panel B). Error bars denote standard error of the mean.



Figure S5. Comparison of model performance based on pattern similarity. In this analysis,
we trained the INT model based on the first half of the movie and used it to predict the response
patterns to the second half of the movie. For each subject and each time point, we computed
the correlation between the measured and predicted response patterns. If a model performs
better than others, we expect the pattern correlations based on the model to be higher. The
dotted vertical line was the average correlation for each model. Similar to the main manuscript,
we also computed the correlation between response patterns to different time points as a control
analysis (lines in faded color), and these correlations always centered around 0.



Figure S6. Comparison of model performance based on movie time point classification.
In this analysis, we used the similarity between measured and predicted response patterns to
predict which time point of the movie the subject was watching. Specifically, we compared the
measured response pattern to a given time point of the movie to all predicted patterns of the
subject (> 1000) to see whether the correlation between the measured and predicted patterns of
the same time point was the highest among all predicted patterns. If a model performs better
than others, we expect the classification accuracy based on the model to be higher. To facilitate
the comparisons, the analysis slightly differs from the one in the main text. Specifically, the
k-fold bagging method enables estimating model performance based on training data using
out-of-bag cross-validation. In other words, we were able to estimate which vertices can be
better predicted by the ensemble model. Weighting the vertices based on out-of-bag
performance could increase classification accuracy. However, this option is only available for
the ensemble models. Therefore, for a fair comparison between ensemble models, single
models, and the control model, we removed vertex-weighting of the ensemble models, so that
the differences in performance were only caused by differences between models.



2. Template quality as a function of the number of training participants

In the figure below, we show that the quality of the functional template continuously improves

with more training participants used to build the template.

Figure S7. Template quality as a function of the number of training participants. The first
step of our INT model re-represents each individual’s neural response data matrix as a
functional template linearly transformed with an idiosyncratic transformation, and thus the
quality of the functional template may affect the performance of our INT model. We
systematically manipulated the number of the participants used to create the functional template
(i.e., training participants) and evaluated the performance of our INT model as a function of the
number of training participants. We found that the performance of our INT model consistently
increased with more training participants used to create the functional template. We observed
the performance increase for the distinctiveness index (A), the prediction of retinotopic maps (B)
and category selectivity maps (C–D), and the prediction of response patterns to movie time
points (E–F). This suggests that future development of the INT model may benefit from building
the functional template based on more training participants than the current study (Forrest: N =
15; Raiders: N = 23). Error bars denote the standard error of the mean.



3. Measured and model-predicted face selectivity and retinotopic maps for all

participants

Figure S8. Face selectivity maps for all Forrest participants. For each participant, the
estimated face selectivity map based on localizer scans is shown on the left, and the estimated
map based on the INT model is shown on the right. Similar to Figure 3, the zoomed-in view of
the right ventral temporal cortex is shown. α is Cronbach’s alpha coefficient for the
localizer-based maps, and r is the Pearson correlation between localizer-based and
model-predicted maps. Both α and r are based on whole-brain face selectivity maps.



Figure S9. Face selectivity maps for all Raiders participants. For each participant, the
estimated face selectivity map based on localizer scans is shown on the left, and the estimated
map based on the INT model is shown on the right. Similar to Figure 3, the zoomed-in view of
the right ventral temporal cortex is shown. α is Cronbach’s alpha coefficient for the



localizer-based maps, and r is the Pearson correlation between localizer-based and
model-predicted maps. Both α and r are based on whole-brain face selectivity maps.



Figure S10. Estimated retinotopic maps for all participants. For each participant, the
localizer-based map is shown in the top row, and the model-predicted map is shown in the
bottom row. The retinotopic eccentricity maps are on the left side, and the polar angle maps are
on the right side.


