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I. MODEL DERIVATION

In the main paper, the reduced equations describing the gain are stated to be derived from the Bloch equations [1].
This section gives an overview of the derivation.

A. Bloch equations

Starting point are the Bloch equations of a two-level system, considering coherence η±21, inversion w, and inversion
grating w+:
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with w− = (w+)
∗. The remaining parameter, not yet mentioned in the main paper, is the detuning between the center

frequency of the model and the resonance frequency of the two-level system ∆ = ωc−ω21. In the here discussed case,
∆ = 0; however, it is taken into account for the sake of completeness.

B. Adiabatic Elimination

In a QCL, quantum mechanical dephasing of the coherent laser levels typically is the fastest process in the system.
In the present model, this is captured by the fact that γ2 is about one order of magnitude larger than γ1. By
assuming the dephasing to be instantaneous, we can perform an adiabatic elimination [2], which is formally obtained
by integrating Eq. (1):

η±21(t) = η±21(0) exp[(i∆− γ2)t]
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Considering that ∆ = 0, and assuming that w and E± vary slowly on a timescale of 1/γ2, we obtain for times t � 1/γ2

η±21(t) = − i

2~γ2
d21

[
w(t)E±(t) + w±(t)E∓(t)

]
. (5)

According to the main text, η±21 is directly proportional to the polarization used in the propagation equation of the
electric field.

In the following, the equations of motion for the inversion components w and w+ are derived, with w− = (w+)∗.
By plugging Eq. (5) into Eqs. (2) and (3), we eliminate the coherence term and remain with a set of two coupled
differential equations. With the application of some calculation rules, these equations read
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It is straightforward to see that each inversion contribution consists of a term proportional to the intensity I ∝(
|E+|2 + |E−|2

)
, an interference term containing E+(E−)∗ and/or E−(E+)∗ and finally a recovery term containing

the gain recovery rate γ1.
Aiming for the simplest model that allows for stable pulses with τa ≈ τg, we find by numerical evaluation, that

in equations (6) and (7) terms containing a product of w+ with intensity or interference have minor influence on
the dynamics and can be disregarded since for reasonable intensities |w+| � w holds. The simplest set of equations
holding sufficient information about the quantum system then results in
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as presented in the main paper.

C. Analytical considerations of directive gain

In the main paper, we discuss a directive gain of the QCL active region, which results from our simulation approach
[see Eq. (10) of the main paper]. We further present analytical results of saturation intensities and gain components for
two distinct scenarios [I− = I+; main paper Eq. (14), I∓ � I±; main paper Eq. (15)]. Here, we give a more detailed
analytical derivation. In order to create a rather simple and intuitive scenario, we assume right- and left-traveling
electric fields to have time-constant amplitudes E±(x). Setting ∂t = 0 in Eqs. (6) and (7) and calculating in terms of
Rabi-frequencies Ω± = d21E

±/~ yields
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Inserting Eq. (8) of the main text into Eq. (1) of the main text, we obtain
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Expressing the polarization term by means of a gain coefficient, we obtain
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Inserting Eqs. (5), (10), and (11), we obtain the power gain
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Thus, the gain of the stronger field component is higher than for the weaker counterpropagating field. Obviously, in
Eq. (14), only squared absolute values of the Rabi frequencies appear. Thus, we can make the transition to intensity
as follows:
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Inserting Eq. (18) into Eq. (14) yields Eq. (13) from the main paper.
As the prefactor in Eq. (14) is the same for both directions, but we are interested in the difference between the

directions, we can arbitrarily set the prefactor to unity and obtain a normalized gain g±norm, which can, with the use
of Eq. (11), be rewritten as follows:
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Now, we consider a pulse with a long duration compared to the gain recovery dynamics, such that the above solutions
are still approximately valid. First, we investigate the case with the pulse being located close to a facet. Assuming
full reflectance, we have |Ω−| = |Ω+| in the region close to the facet. Inserting this condition into Eq. (19), we obtain
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Here, we also made the transition from Rabi frequencies to intensities by using Eq. (18). By comparison of coefficients,
the saturation intensity deviates from its original definition by the factor 2γ′

1/(2γ
′
1 + γ1), as presented in Eq. (14) of

the main paper. This yields a reduction of the saturation intensity to 2/3 of its original value in presence of full SHB
(γ′

1 = γ1) and equally strong fields I+ = I−.
Now, let us consider the case with highly asymmetric field amplitudes of the counterpropagating components. Such

a scenario appears when the pulse peak is located in the middle of the cavity. Inserting the condition |Ω−| � |Ω+|
into Eq. (19) yields

g±norm =
γ1γ2

(
2γ′

1γ2 ± |Ω+|2
)

2γ′
1γ1γ

2
2 + (2γ′

1γ2 + γ1γ2)|Ω+|2 + |Ω+|4
weq

=
1

1 + |Ω+|2
γ1γ2

weq
2γ′

1γ2 ± |Ω+|2

2γ′
1γ2 + |Ω+|2

=
1

1 + I+

Is,g

weq
2γ′

1/γ1 ± I+/Is,g
2γ′

1/γ1 + I+/Is,g
.

(21)

Here, the saturation intensity remains at its initial value, as without SHB since basically no interference effects arise.
But Ω− sees a gain reduction by a factor
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corresponding to Eq. (15) of the main paper. For strong |Ω+|2, this can even become a loss.
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D. Absence of population grating

As stated in the main paper, if the absorber recovery is significantly faster than the gain recovery, τa < τg, then
pulse formation is explainable without the effects of optical interference. If the inversion grating w+ is disregarded,
the overall inversion is independent of interference terms and exclusively governed by the intensity-dependent term
of Eqs. (8) and (9), yielding

w+ = 0 , (23)
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− γ1(w − weq) , (24)
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In this case, the equations can be re-written in the form of the absorber equations, such that the gain results as an
incoherent saturable absorber with negative loss, here described by the coefficient ag > 0, according to
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The following equalities are used in this case
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II. MICROSCOPIC PARAMETERS

This section intends to give an overview of the microscopic parameters used for the two-level system, in Tab. I.

Table I. Parameters describing the two-level quantum system consisting of upper (ULL) and lower laser level (LLL).

Parameter Abbreviation Value
Resonance frequency ω21 2π · 3THz
Dipole moment d21 6.02 nm× e
Scattering rate ULL → LLL r21 1.5× 1011 s−1

Scattering rate LLL → ULL r12 2.3× 1011 s−1

Dephasing rate γ2 6× 1012 s−1

From the scattering rates, the gain recovery rate γ1 and the equilibrium inversion can be calculated according to

γ1 = r21 + r12 , (32)

weq =
r12 − r21

γ1
. (33)

To complete the description of the system, the remaining parameters of the used cavity are stated in Tab. II. The
value of background group velocity dispersion was increased slightly to 7.5× 10−23 s2 m−1 in the simulation for Fig. 2
of the main paper, as it yielded the best match for the temporal pulse width.
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Table II. Parameters describing the cavity.

Parameter Abbreviation Value
Length 2.37mm
Mirror reflectivity 1
Overlap Factor Γ 0.97
Doping density n3D 3.8× 1021 m−3

Background group velocity dispersion β2 5× 10−23 s2 m−1

Background refractive index n0 3.6

III. ADDITIONAL RESULTS

A. Electric field without graphene saturable absorber

As a reference to the pulsed operation of the QCL presented in the main paper, this section presents the results
without graphene saturable absorber. In the simulation, this scenario is realized by setting the saturable loss to
a1 = 0. It is clearly visible in Fig. 1 that the experiment and simulation yield chaotic outputs without background
suppression.
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Figure 1. Comparison of (a) simulation results to (b) experiment in absence of a saturable absorber realized by graphene.

B. Influence of waveguide dispersion

As mentioned in the discussion of Fig. 5 of the main paper, chromatic dispersion has a significant influence on
the width and peak intensity of a pulse. Figure 2 shows simulation results with different group velocity dispersion
parameters β2.

C. Simulation with long gain recovery

This section intends to give an overview of the parameters used for the simulations with gain recovery time τg =
10.5 ps. The values used for the gain medium are listed in Tab. III, and for the absorber in Tab. IV. According to
Eq. (31) the saturation intensity of the gain reduces when the recovery time gets increased. Therefore, the absorber
saturation intensity must be adapted. Furthermore, we change the dephasing rate γ2 in order to show the stability
of the model against this parameter. In order to keep the peak gain constant, the dipole moment is reduced to
4.26 nm× e.
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Figure 2. Comparison of simulation results with different chromatic dispersion.

Table III. Alternative parameters of gain

1/γ1 1/γ2 g0 Is,g

10.53 ps 0.333 ps 22.5 cm−1 3.26× 107 Wm−2

Table IV. Alternative parameters of absorber

τa a0 a1 Is,a

3 ps 11.0 cm−1 10.5 cm−1 2.5× 107 Wm−2

The resulting formation and propagation behavior of the pulse is shown in Fig. 3. Compared to the case of similar
recovery times of absorber and gain that is discussed in the main paper, here, the pulse starts up faster, and the net
gain has stronger deviations from zero.

D. Pulse stability at varying recovery

In the main text it was briefly mentioned, that for longer gain recovery times, pulses are stable at higher pumping
levels. In Fig. 4 the maximum ratio between gain and loss that still yields stable pulses is plotted, for the presence
and absence of w+ (spatial hole burning). It is visible, that with increasing gain recovery time and constant absorber
recovery time, the range for stable pulses significantly increases. When τg approaches the round-trip time the model
does not require any effects beyond the standard passive mode-locking description. However, when both recovery
times are similar, the spatial hole burning becomes crucial, and only a small range of unsaturated gain values above
the lasing threshold yields single pulses before breakup to multi-pulsing. We note that the cavity length was reduced
to 2mm in order to increase the numerical speed for the evaluation.
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Figure 3. Visualization of (a) intra-cavity intensity and (b) net gain during the formation process for a gain recovery time
τg = 10.5 ps.
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Figure 4. Maximum ratio of gain and loss that still yields stable pulses for different gain recovery times.
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