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This supplementary material describes the solution method of a nonlinear two-particle system and 

an inverse design method for the positions of particles and provides additional figures supporting 

the examples in the main text. 

 

Quasi-Newton method  

Here, we introduce a quasi-Newton method to find the dipole moments for given positions and 

material properties of particles. Once the dipole moments are computed, the computations of 

scattered field and scattering cross-section are straightforward. We rewrite the Eq. (2) of the main 

text as 
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We take the Taylor expansion of the above equation about a trial solution 1 2( , )c cp p : 
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where 
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Let ( )1 2c c c=x p p  and ( ) ( )c c = −K x x r x ; then, we update the trial solution as 

 new .c= +x x x  (S4) 

In the above, we inexactly evaluate the gradient by setting 1 /i j −  =p 0 , and iterate until the 

solution is converged. 
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Design method 

Parametric studies may be intractable and require a numerical approach for designing a system 

with particles more than two. Here, we introduce an inverse problem for designing positions of 

particles to maximize the scattering contrast. We define a minimization problem: 

Given material properties and radii of particles and frequency, find x such that 
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In the above, the forward scattering (0)f  is a function of positions 1 1 2 2, , , , , , ][ N Nx y x yx x y= , 

where ,i ix y , 2 ,1, , Ni =  are the coordinates of each i -th particle and N  is the number of 

particles. Any gradient-based algorithm can be incorporated to solve the above minimization 

problem when the gradient at a trial solution ( )nx  is obtained either by automatic differentiation or 

finite difference method, i.e., 
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Here,   is a small number and  0, ,0,1,0, ,0i =    is a vector of zeros except at i -th entry. 

 

Other supplementary figures 

Figure S1 shows scattered and total electric fields for left-to-right and right-to-left excitation cases 

in x - z  plane. The calculations of scattered fields are based on equation 3 of the main text with 
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the matrix 
ij  generalized for arbitrary positions. We used the same parameter choice used in the 

main text, i.e., 0 1.8E = GV/m, lin
03.97i = , 18(3) 2.8 10i

−=   m2/V2, 1 200a = nm, 2 230a = nm, and 

1 2| | 975r r− = nm. We consider two directions of the incident plane waves: 1) left-to-right case 

(positive z -direction) and 2) right-to-left case (negative z -direction). We observe a negligible 

scattering of the two-particle system when the incident wave propagates from left to right, while 

the right-to-left case shows significant scattering. On the other hand, we observe a similar amount 

of scattering for both cases in the direction perpendicular to the incident wave (Figure S2.) as 

expected by the differential SCS plot (Figure 3 of the main text). 

Figure S3 shows how the total SCS changes as we change the angle of the incident field. The 

highest scattering contrast appears when the incident directions are in z -directions with some 

angular tolerance. 

Figure 4S. repeats the parametric studies of the Figure 4 in the main text with added losses: 

5I { } 0m 0.n =  for (a) and (b) and { } 0.1Im n =  for (c) and (d), where n  is the refractive index. The 

“landscape”s of the contrast remain similar to the cases without losses; however, the strengths of 

the contrast are decreased with losses. 



5 

 

Figures 

 

Figure S1. Scattered and total electric fields in x - z  plane. (a), (b) scattered and total electric fields 

for the left-to-right case. (c), (d) scattered and total electric fields for the right-to-left case. 
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Figure S2. Scattered and total electric fields in x - y , y - z , and z - x  planes. (a), (b) scattered and 

total electric fields for the left-to-right case. (c), (d) scattered and total electric fields for the right-

to-left case. 
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Figure S3. Total scattering cross-section (SCS) versus incident angle. The left-to-right case 

corresponds to 0 , while the right-to-left case corresponds to 180 . We observe some angular 

tolerance for maximum and minimum scattering. 
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Figure S4. Scattering cross-section contrast, scat scat geo/lr rl  −  versus (a),(c) incident field strength 

and frequency and (b),(d) particle distance and frequency. Small losses are applied by complex-

valued refractive indices. 5I { } 0m 0.n =  for (a),(b) and { } 0.1Im n =  for (c),(d)  The parameter 

choices for Figures 2 and 3 of the main text are marked by red “”. 

 


