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THEORETICAL MODEL

Model overview

In the context of optical interactions, we model the
nitrogen-vacancy (NV) centre in diamond as a multi-level
atom with n + 1 ground states {|gk⟩}, k ∈ {0, . . . , n},
and two excited states |e0⟩ and |e1⟩. The number of
phononic transitions from |gk⟩ to the zero phonon level
|g0⟩ is k. The lowest energy excited level is denoted by
|e0⟩, while we represent the higher vibronic levels above
it by a phenomenologically defined single upper excited
level |e1⟩ resonant with the frequency of incoming ra-
diation. We consider excitation energies well above the
zero-phonon transition energy of the NV centre through-
out this work. We assume that the NV centre under-
goes coherent transitions |ei⟩ ↔ |gk⟩ (i ∈ {0, 1} and
k ∈ {0, ..., n}) upon the incidence of such coherent exter-
nal radiation. A fast nonradiative (phononic) decay rate
γe is defined between the two excited states, and dephas-
ing is assumed to occur from both excited states to all
ground states at rate γ∗. The incoherent optical emission
transition corresponding to the zero phonon line (ZPL) is
|e0⟩ → |g0⟩, whereas the incoherent emission transitions
|e0⟩ → |gk⟩ (k ̸= 0) contribute to the phononic side-bands
of the NV optical emission spectrum. The nonradiative
transitions between adjacent ground states |gk⟩ → |gk−1⟩
are characterized by the phononic decay rates γk,k−1 for
k ∈ {1, ..., n}. The schematic diagram of the NV centre
can be found in Fig. 1(A) of the main text.

We assume that the NV centre undergoes optical
dipole interactions with a spherical metal nanoparti-
cle (MNP) of radius rm placed at a nanoscale centre-
separation R, upon the incidence of an external coherent
electric field, E = E0(e

−iωdt + eiωdt)ê. The unit vector
along the field polarization direction is denoted by ê, ωd

is the optical frequency, and t is time. Bold fonts denote
vector quantities throughout the document. The total
effective electric field experienced by the NV centre is
altered due to the presence of the MNP. We denote the
projection of this total effective field on the NV dipolar
plane (introduced in the main text) by Etot. Both the di-
amond nanoparticle hosting the NV centre and the MNP
are submerged in a medium of relative permittivity ϵb.
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Hamiltonian in the laboratory reference frame

Setting the energy of the zero-phonon ground state |g0⟩
to be zero, we can obtain the unperturbed Hamiltonian
of the NV centre as follows:

Ĥ0 =

(
n∑

k=0

ℏωk|gk⟩⟨gk|

)
+ℏωz|e0⟩⟨e0|+ℏωd|e1⟩⟨e1|, (1)

where ℏωk is the energy of the kth ground state phononic
level and ℏωz is the ZPL energy. The perturbation Hamil-
tonian component arising due to the coherent dipolar in-
teraction between the NV centre and the total effective
field incident on it is obtainable by extending the treat-
ment for two-level emitter-field interaction [1–4] as,

Ĥint = −
n∑

k=0

1∑
j=0

(|gk⟩⟨ej |+ |ej⟩⟨gk|)µk ·Etot. (2)

The dipole moment operator element corresponding to
the transitions |ej⟩ ↔ |gk⟩ is denoted by µk. Assuming
that µk aligns along Etot we obtain,

Ĥint = −Etot

n∑
k=0

1∑
j=0

(|gk⟩⟨ej |+ |ej⟩⟨gk|)µk. (3)

The complete form of Etot will be elaborated in a later
section, for two special cases of interest. The total lab-
oratory frame Hamiltonian of the NV centre under the
influence of the externally incident field and the MNP
can be obtained as,

Ĥtot = Ĥ0 + Ĥint. (4)

Transformation into a rotating reference frame

To transform the laboratory (static) frame Hamilto-
nian into a rotating reference frame for the ease of com-
putations, we define a unitary transformation operator,

Û = eiĤ1t/ℏ. (5)

The Hamiltonian Ĥ1 ≈ ℏωd (|e0⟩⟨e0|+ |e1⟩⟨e1|) is de-

fined in the same eigenbasis as Ĥ0 with the ground
states {|g0⟩, . . . , |gn⟩} possessing eigenenergies ≈ 0 and
the excited states {|e0⟩, |e1⟩} possessing eigenenergies
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≈ ℏωd. Considering the exponential operator expansion

of eiĤ1t/ℏ and its adjoint where |a⟩ represents any eigen-

state of Ĥ1, we can obtain the following expressions,

e±iĤ1t/ℏ|a⟩ = e±iωat|a⟩, (6a)

⟨a|e∓iĤ1t/ℏ = e∓iωat⟨a|, (6b)

where ωa is the angular frequency of the eigenvalue cor-
responding to |a⟩.
The laboratory reference frame Hamiltonian (4) can

be transformed into the rotating reference frame with
the following expression which can be derived using the
Schrödinger equation [5],

ĤRF = Û
(
Ĥ0 + Ĥint

)
Û† + iℏ ˙̂

UÛ†. (7)

Simplifying (7) using (6a) and (6b), and applying the ro-
tating wave approximation [6] (where we discard the fast
oscillating terms that average out to zero in the popula-
tion oscillation timescales of our concern) we obtain,

ĤRF ≈

(
n∑

k=0

ℏωk|gk⟩⟨gk|

)
+ ℏ(ωz − ωd)|e0⟩⟨e0|

−
n∑

k=0

1∑
j=0

(
ℏΩr

k|ej⟩⟨gk|+ ℏΩr*
k |gk⟩⟨ej |

)
, (8)

where Ωr
k is the effective Rabi frequency at which the

NV centre’s |ej⟩ ↔ |gk⟩ transition is driven, and Ωr*
k is

its complex conjugate. The kth Rabi frequency is related
to the field incident on the NV dipolar plane such that
ℏΩr

k = µkẼ
+
tot, where Ẽ+

tot denotes the slowly varying

positive frequency amplitude of Etot = Ẽ+
tote

−iωdt + c.c..

Density matrix in the rotating reference frame

We first consider the density matrix of the NV cen-
tre in the laboratory reference frame, which represents
a statistical ensemble of pure states {|ψl⟩} (in the same
reference frame) occurring with probabilities {pl},

ρ̂L =
∑
l

pl|ψl⟩⟨ψl| =


ρg0g0 . . . ρ∗gng0 ρ∗e0g0 ρ∗e1g0
ρg1g0 . . . ρ∗gng1 ρ∗e0g1 ρ∗e1g1
...

...
...

...
...

ρe0g0 . . . ρe0gn ρe0e0 ρ∗e1e0
ρe1g0 . . . ρe1gn ρe1e0 ρe1e1

 ,

where (∗) denotes the complex conjugate. Expanding the
above density matrix using the outer products of the NV
eigenbasis, we can write,

ρ̂L = ρ̂diag + ρ̂off, (9)

with

ρ̂diag =

(
n∑

k=0

ρgkgk |gk⟩⟨gk|

)
+ ρe0e0 |e0⟩⟨e0|+ ρe1e1 |e1⟩⟨e1|,

ρ̂off =

(
n∑

k=0

ρe0gk |e0⟩⟨gk|+ ρe1gk |e1⟩⟨gk|

)
+ ρe1e0 |e1⟩⟨e0|

+

(
n∑

k=1

k−1∑
h=0

ρgkgh |gk⟩⟨gh|

)
+ h.c.,

where h.c. denotes the Hermitian conjugate of the entire
matrix expression that precedes it.

We define a generic state vector transformed into the
rotating reference frame |ψ̃l⟩ using the unitary operator

(5) such that |ψ̃l⟩ = Û |ψl⟩, where |ψl⟩ is the correspond-
ing state vector in the laboratory (static) reference frame.
This enables us to write the density matrix in the rotat-
ing reference frame as [6, 7],

ρ̂RF =
∑
l

pl|ψ̃l⟩⟨ψ̃| =
∑
l

plÛ |ψl⟩⟨ψ|Û† = Û ρ̂LÛ
†. (10)

The above equation can be simplified using (6a) and (6a)
to obtain,

ρ̂RF =



ρg0g0 . . . ρ∗gkg0 . . . ρ∗gng0 ρ̃∗e0g0 ρ̃∗e1g0
...

. . .
...

...
...

...
...

ρgkg0 . . . ρgkgk . . . ρ∗gngk ρ̃∗e0gk ρ̃∗e1gk
...

...
...

. . .
...

...
...

ρgng0 . . . ρgngk . . . ρgngn ρ̃∗e0gn ρ̃∗e1gn
ρ̃e0g0 . . . ρ̃e0gk . . . ρ̃e0gn ρe0e0 ρ∗e1e0
ρ̃e1g0 . . . ρ̃e1gk . . . ρ̃e1gn ρe1e0 ρe1e1


,

(11)
where the elements ρ̃ejgk = ρ̃∗gkej arise when factoring
out the high-frequency time dependence of the coherences
between the ground and excited states in the laboratory
reference frame density matrix as,

ρejgk = ρ̃ejgke
−iωdt for k ∈ {0, . . . , n}, j ∈ {0, 1}. (12)

All other elements in (11) remain the same as those of
the laboratory reference frame density matrix ρL.

Total effective field experienced by the NV centre

Due to each |ej⟩ ↔ |gk⟩ transition in the NV centre,
a classically expected oscillating dipole moment of the
following form is assumed to be induced (extending the
two-level atom based procedure in references [2, 4, 8, 9]),

⟨d̂jk⟩ = djk = µk

(
ρgkej + ρejgk

)
, (13)

where d̂jk is the respective NV dipole moment opera-
tor. The positive frequency components of the dipole
moments induced in the MNP in response to each of
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these oscillating dipole moments in the NV centre can
be obtained as [9],

dm+
jk =

sαα(ωd)µkρ̃ejgke
−iωdt

ϵeffDR3
, (14)

where α(ωd) is the polarizability of the MNP at angular
frequency ωd, the complete form of which will be pre-
sented later. The orientation parameter sα = 2 when
both NV and MNP dipoles are aligned along the NV-
MNP hybrid axis with the NV dipoles (djk) aligned per-
pendicular to the MNP surface (NV⊥MNP). The param-
eter sα = −1 when both NV and MNP dipoles are aligned
perpendicular to the NV-MNP hybrid axis with the NV
dipoles aligned parallel to the MNP surface (NV∥MNP).
The optical field screening experienced by the NV centre
due to the emitter material (diamond) with relative per-
mittivity ϵD is incorporated using the following screening
factor [2];

ϵeffD = (2ϵb + ϵD)
/
(3ϵb). (15)

The positive frequency component of the dipole mo-
ment directly induced in the MNP due to the external
field, along the same direction, is given by [10],

dm+
E = (4πϵ0ϵb)α(ωd)E0e

−iωdt, (16)

where ϵ0 is the absolute permittivity of free-space. The
positive frequency component of the total dipole moment
induced in the MNP due to the external field and the NV
transition dipoles can be obtained using (14) and (16) as,

dm+
tot = dm+

E +

n∑
k=0

1∑
j=0

dm+
jk . (17)

We can obtain the positive frequency component of the
total effective field incident on the NV centre as the sum
of the externally incident field and the total dipole re-
sponse field of the MNP screened by the diamond lattice
(extending the procedure for a two-level emitter imple-
mented in [3] and [9]) as,

E+
tot =

1

ϵeffD

{
E0 +

sαd
m+
tot

(4πϵ0ϵb)R3

}
e−iωdt. (18)

Expanding the above equation, we can obtain the com-
plete form of the electric field experienced by an NV cen-
tre in NV⊥MNP or NV∥MNP orientation as,

Etot =
1

ϵeffD

E0 +
sαα(ωd)E0

R3
+

s2αα(ωd)

(4πϵ0ϵb)ϵeffDR6

1∑
j=0

n∑
k=0

(
µkρ̃ejgk

) e−iωdt + c.c., (19)

where c.c. denotes the complex conjugate of the entire
preceding expression.

We can express the positive frequency amplitude of
the above field in terms of the Rabi frequency (or its
decomposition) for any |ej⟩ ↔ |gk⟩ transition as follows,

Ẽ+
tot =

ℏ
µk

Ωr
k =

ℏ
µk

Ωk + ηk

1∑
j=0

n∑
l=0

(
µlρ̃ejgl

) , (20)

where the Ωk denotes the Rabi frequency in the absence
of coherences (when all ρ̃ejgk = 0) and ηk is the NV self-
interaction coefficient obtainable as,

Ωk =
µkE0

ℏϵeffD

{
1 +

sαα(ωd)

R3

}
. (21a)

ηk =
µks

2
αα(ωd)

(4πϵ0ϵb)ℏϵ2effDR6
. (21b)

In the absence of the MNP (when rm → 0 or R→ ∞),

Ωk → Ω0
k =

µkE0

ℏϵeffD
, (22a)

ηk → η0k = 0. (22b)

The above approach was inspired by a formalism es-
tablished in the literature in the context of quantum dot-
MNP interaction [3, 9, 11–13]. Here, we have adapted
and extended it to the context of NV-MNP optical inter-
action, for the first time.

MNP polarization

We now focus on the optical response of the metal
nanoparticle, incorporated into our model using its dipo-
lar polarizability at angular frequency ωd, α(ωd). The
extensively used format of the MNP polarizability in the
literature arises from the solution of Laplace equation
for the electric potential (∇2ϕ = 0) for a homogenous,
isotropic sphere embedded in an isotropic, non-absorbing
submerging medium upon the incidence of a spatially
static (temporally oscillating) electric field [10]. The re-
sulting polarizability is given by,

αL(ωd) = r3m
ϵm(ωd)− ϵb
ϵm(ωd) + 2ϵb

, (23)
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where ϵm(ωd) is the spatially constant relative permit-
tivity of the metal at frequency ωd. It has been shown
that this lowest-order (dipolar) full scattering problem
under the quasi-static and local response approximations
(LRA) [14] describes the optical properties of nanopar-
ticles of dimensions below 100 nm adequately for many
purposes [10]. The quasi-static local dipolar polarizabil-
ity in equation (23) has been further improved in the
contexts of large and small MNPs as follows;

Large MNPs

For large MNPs (for example, with diameters ∼ 80 nm
[15]), equation (23) which models the MNP as an ideal
dipole does not satisfy the optical theorem (energy con-
servation) [15, 16]. This apparent paradox has been over-
come by taking the finite-size effects into account, which
leads to an effective dipolar polarizability [16–18],

αeff(ωd) =
αL(ωd)[

1− 2ik3
b

3 αL(ωd)
] . (24)

Wavenumber of the non-absorbing submerging medium
is kb = nbk, where nb =

√
ϵb is the refractive index of the

(non-magnetic) medium and k = ωd/c is the free-space
wavenumber (c is the speed of light). The effective polar-
izability αeff accounts for the radiative reaction (impact
of finite size) of the MNP which microscopically origi-
nates from radiation emitted by the charge oscillations
induced inside the nanoparticle by the external field [16].

Small MNPs

Size dependent plasmon resonance shifts and linewidth
broadening phenomena that cannot be captured using
the local optical polarizability (23) has been observed
in recent plasmonic experiments involving MNPs of di-
ameter ≲ 20 nm [14]. These effects arise due to a
nanoscale physical mechanism beyond classical electro-
dynamics known as the nonlocal response [19]. The gen-
eralized nonlocal optical response (GNOR) theory that
accounts for both electron pressure and electron diffu-
sion effects in such small MNPs was recently introduced
by Mortensen and Raza et al [14, 20]. The GNOR theory
introduces a nonlocal correction (δNL) to the LRA based

dipolar polarizability in (23) as follows [14],

αNL(ωd) = r3m
ϵm(ωd)− ϵb [1 + δNL(ωd)]

ϵm(ωd) + 2ϵb [1 + δNL(ωd)]
. (25)

The nonlocal correction is given by,

δNL(ωd) =
[ϵm(ωd)− ϵcore(ωd)] j1(kNL(ωd)rm)

ϵcore(ωd)kNL(ωd)rmj′1(kNL(ωd)rm)
, (26)

where kNL is the longitudinal wavenumber in the GNOR
model obtainable as [14],

k2NL(ωd) =
ωd(ωd + iΓm)ϵm(ωd)

ϵcore(ωd) [β2 +Dm(Γm − iωd)]
. (27)

In the above equations, the response of bound electrons,
bulk plasmon damping rate, and electron diffusion con-
stant of the MNP are denoted by ϵcore(ωd), Γm, and Dm,
respectively. In the high-frequency limit where ωd ≫ Γm,
β2 = (3/5)v2F where vF denotes the Fermi velocity of the
MNP.
We use α(ωd) = αeff(ωd) for large nanoparticles, and

α(ωd) = αNL(ωd) for small nanoparticles when generat-
ing our results using the equations presented in earlier
sections.

MNP-induced NV decay rate modifications

It has been shown that the rate of radiative emission
is not an inherent property of emitters such as quan-
tum dots and NV centres [21, 22]. This rate is rather
determined by the interaction between the emitter and
its local electromagnetic environment [22], which in this
case comprises the metal nanoparticle. To capture such
modifications we incorporate the equations outlined in
the following sections into our model.

Large MNPs

To estimate the decay rate modification experienced
by the kth NV emission transition for the cases of nor-
mal (⊥) and tangential (∥) emitter dipole orientations
with respect to the surface of an adjacent large MNP, we
use the following equations derived by Carminati et al.
where the MNP is treated within the dipole approxima-
tion, while accounting for the finite size effects [18],

γ⊥k
γfk

≈ nb

{
1 + 6k3bIm

[
αeff(ω)e

2ikbR

(
−1

(kbR)4
+

2

i(kbR)5
+

1

(kbR)6

)]}
, (28a)

γ
∥
k

γfk
≈ nb

{
1 +

3

2
k3bIm

[
αeff(ω)e

2ikbR

(
1

(kbR)2
− 2

i(kbR)3
− 3

(kbR)4
+

2

i(kbR)5
+

1

(kbR)6

)]}
. (28b)

The above equations consider an emitter in a medium with refractive index nb. The free-space decay rate of
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the emission transition considered is denoted by γfk, and
ω is the angular frequency of the same transition.

Small MNPs

For small MNPs submerged in low refractive index me-
dia αeff ≈ αL. Using equations (23) and (24) together
with (interpolated) MNP permittivity data from John-
son and Christy’s tabulations [23], we verified this claim
for small gold nanoparticles with radii rm ≲ 7 nm in me-
dia with refractive index nb ≲ 1.5, and for small silver
nanoparticles with rm ≲ 7 nm in air. By incorporat-
ing the GNOR based nonlocal correction to the decay
rate modification equations derived by des Francs et al.
[16, 17] for kbR≪ 1 we obtain,

γ⊥k
γfk

≈ 6nbIm [αNL(ω)]

k3bR
6

, (29a)

γ
∥
k

γfk
≈ 3nbIm [αNL(ω)]

2k3bR
6

. (29b)

We recently used the above equations to successfully de-
scribe the decay rate modification of quantum dots near
small MNPs, at ∼10 nm surface separations [24].

NV centre as an open quantum system

The Hamiltonian of the NV centre optically coupled
to the externally incident field and the MNP dipole re-
sponse field represents a closed quantum system where
the impact of the environment (bath) is yet to be taken
into account. It couples with the environment resulting
in an open quantum system with irreversible dynamics.
We estimate the evolution of the density matrix of an
open quantum system weakly coupled to a Markovian
(memoryless) bath using the following master equation
[25],

˙̂ρRF = − i

ℏ
[ĤRF, ρ̂RF]

+
∑
x

Γx[L̂xρ̂RFL̂
†
x − 1

2
{L̂†

xL̂x, ρ̂RF}], (30)

where L̂x is the Lindblad or collapse operator correspond-
ing to the xth decoherence channel with characteristic
decoherence rate Γx. The mathematical operators [·, ·]
and {·, ·} denote the commutator and anti-commutator
of the operands. The decoherence channels and the cor-
responding rates considered in our extended NV centre
model schematically depicted in Fig. 1(A) of the main
text are as follows:

For each optical decay transition |e0⟩ → |gk⟩:
Γx = γk, for k ∈ {0, . . . , n}
L̂x = σ̂k = |gk⟩⟨e0|

For each phononic decay transition |gk⟩ → |gk−1⟩:
Γx = γk,k−1, for k ∈ {1, . . . , n}
L̂x = |gk−1⟩⟨gk|

Nonradiative decay in the excited state |e1⟩ → |e0⟩:
Γx = γe
L̂x = |e0⟩⟨e1|

Dephasing from excited to ground states:
Γx = γ∗
L̂x = |e0⟩⟨e0|+ |e1⟩⟨e1|

Emission intensity spectrum

This section outlines how we can utilize the steady
state density matrix obtainable by solving (30) to esti-
mate the emission intensity spectrum of the NV centre.
The free-space fluorescence or emitted power spectrum
Sf (ω) of a generic two-level emitter in a stationary state
can be calculated using its emission correlation function
in the following form [25–28],

Sf (ω) = f(r)

∫ ∞

−∞
dτe−iωτ ⟨σ̂†(τ)σ̂(0)⟩ss, (31)

employing the homogeneity in time of the stationary cor-
relation function. In the above equation, σ̂ = |g⟩⟨e| de-
notes the emission operator from an excited state |e⟩ to
a ground state |g⟩, ω denotes angular frequency, and ⟨·⟩ss
is the expectation calculated using the steady state den-
sity matrix. The coefficient f(r) is a geometrical factor
defined such that f(r) ∝ ωegγ, where ωeg and γ denote
the emitter resonance frequency and the free-space decay
rate, respectively. The vector r measures positions with
respect to an origin at the location of the emitter [26]. We
can estimate the photon emission intensity by normaliz-
ing the power spectrum in (31) by the emitted photon
energy ≈ ℏωeg. Assuming emission behaviour analogous
to the above generic two-level case for each |e0⟩ → |gk⟩
transition, and summing up the intensity spectra result-
ing from all such transitions, we estimate the total photon
emission intensity spectrum of the NV centre as,

Itot(ω) ∝
n∑

k=0

γk

∫ ∞

−∞
dτe−iωτ ⟨σ̂†

k(τ)σ̂k(0)⟩ss, (32)

where σ̂k = |gk⟩⟨e0|. This expression is validated by com-
parison against the experimentally observed NV emission
intensity spectra in Fig. 1(C) in the main text.

NUMERICAL IMPLEMENTATION

The piecewise superoperator method

To numerically simulate the NV centre’s emission be-
haviour, we first need to solve the master equation (30)
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for its steady state density matrix. The common proce-
dure used in the literature [2, 29] when numerically solv-
ing similar emitter-MNP systems is the element-wise de-
composition of the master equation into a set of coupled
differential equations followed by the use of differential
equation solvers such as Runge-Kutta [30] implementa-
tions readily available in Matlab and Python. Due to
the evolution timescales involved in our problem, such
procedures take extremely long computational times to
reach the steady state. To solve the problem in hand
within much shorter computational times, we propose
the following piecewise superoperator method.

We first decompose the Hamiltonian ĤRF in (8) ex-
periencing the Rabi frequencies in (20) into linear and

nonlinear components as ĤRF ≈ Ĥlin + Ĥnl, where the
linear part is,

Hlin =

(
n∑

k=0

ℏωk|gk⟩⟨gk|

)
+ ℏ(ωz − ωd)|e0⟩⟨e0|

−
n∑

k=0

1∑
j=0

ℏΩk|ej⟩⟨gk|+ ℏΩ∗
k|gk⟩⟨ej |. (33)

The nonlinear part is,

Hnl = −
n∑

k=0

1∑
j=0

ℏnlcoeffk |ej⟩⟨gk|+ ℏnlcoeff*k |gk⟩⟨ej |, (34)

where (∗) denotes the complex conjugate and,

nlcoeffk = ηk

1∑
j=0

n∑
l=0

(
µlρ̃ejgl

)
. (35)

Then we judiciously insert the identity operator Î into
the master equation (30) as,

Î ˙̂ρÎ = − i

ℏ
(ĤRFρ̂RFÎ − Î ρ̂RFĤRF)

+
∑
x

Γx[Lxρ̂RFL
†
x − 1

2
(L†

xLxρ̂RFÎ + Î ρ̂RFL
†
xLx)], (36)

Using the following vector identity in the column-ordered
form [31, 32],

vec(ÂX̂B̂) = (B̂T ⊗ Â)vec(X̂), (37)

we can obtain the following superoperator form of the
master equation,

˙⃗ρRF = L̂ρ⃗RF. (38)

The vectorised density matrix in the column-ordered
form is given by ρ⃗RF = vec(ρRF), and L̂ = L̂lin + L̂nl is
the superoperator (Liouvillian) decomposed into its lin-
ear and nonlinear components, where the linear part is,

L̂lin = − i

ℏ

[
Î ⊗ Ĥlin − ĤT

lin ⊗ Î
]
+ (39)∑

x

Γx

{
(L∗

x ⊗ Lx)−
1

2

[
(L†

xLx)
T ⊗ Î + (Î ⊗ L†

xLx)
]}

,

and the nonlinear part (that depends on elements of ρ̂RF)
is given by,

L̂nl(ρ̂RF) = − i

ℏ

[
Î ⊗ Ĥnl − ĤT

nl ⊗ Î
]
. (40)

In the absence of non-linearities (when L̂ = L̂lin is inde-
pendent of both density matrix elements and time), the
solution to (38) takes the form,

ρ⃗RF(t) = eL̂lintρ⃗RF(0). (41)

That is, eL̂lint propagates a linear system from the ini-
tial state to the state at time t. To solve the nonlin-
ear problem in hand, we subdivide the total propagation
timescale into small (adaptive) time-steps δt within each
of which the system is assumed to exhibit piecewise linear
behaviour of the form,

ρ⃗RF(t+ δt) ≈ eL̂(t)δtρ⃗RF(t), (42)

where, L̂(t) = L̂lin + L̂nl(ρ̂RF(t)).

The nonlinear piecewise evolution can be implemented
using the liouvillian() function of the Quantum Toolbox
in Python (QuTiP) [33] as outlined in Algorithm 1.

Algorithm 1: Piecewise superoperator evolution

input:
Final times for evolution regions, tflist = [T1, T2, T3]
Adaptive time-steps, δtlist = [δt1, δt2, δt3]

Linear Hamiltonian, Ĥlin

List of collapse operators with rates, cops = {
√
ΓxL̂x}

List of ηk values, ηlist = [η0, . . . , ηn]
List of µl values, µlist = [µ0, . . . , µn]
Initial state, ρ̂0 = ρ̂RF(0)
Initial time, t0 = 0

output:
List of evolution times, tlist
List of evolved states, ρ̂list

begin:
Initialize empty lists tlist, ρ̂list
Initialize current state and time ρ̂RF = ρ̂0, t = t0
tlist.append(t)
ρ̂list.append(ρ̂RF)

L̂lin = liouvillian(Ĥlin, cops)

for each Ti in tflist:
while t < tflist[i]:

t = t+ δti
Build Ĥnl using ηlist, µlist and current ρ̂RF

L̂ = L̂lin + liouvillian(Ĥnl, [ ])

P̂i = eL̂δti

vectorized(ρ̂RF) = P̂i × vectorized(ρ̂RF)
ρ̂RF = vector to operator (vectorized(ρ̂RF))
tlist.append(t)
ρ̂list.append(ρ̂RF)

end
end
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k
Ak

(arb.u)
ℏωk

(meV)
γf
k

(MHz)
γk,k−1

(THz)
0 1520 0 0.69 -
1 5260 31.8 2.42 85
2 18600 70.3 8.57 82
3 16400 124 7.57 79
4 14000 168 6.46 88
5 9180 221 4.23 65
6 6570 275 3.03 71
7 3270 319 1.51 86

TABLE I. Room temperature NV parameters from [34].

When implementing the algorithm presented above, we
decomposed the total evolution time (≈300 ns) into three
regions with final times [T1 = 10−4T, T2 = 10−3T, T3 =
103T ], and time steps [δt1 = 10−6T, δt2 = 10−5T, δt3 =
5T ] for the three regions, respectively. A characteristic
time T = 2π/|Ωf

0| was defined, where Ωf
0 = µ0E0/(ℏϵeffD)

in air, obtained using parameters outlined in the next
section.

The density matrix evolution resulting from the
proposed piecewise superoperator method was verified
against the results of (4-5th order) Runge Kutta imple-
mentation in Python for the parameter region of our
concern. The newly proposed method together with the
carefully chosen adaptive time-steps reduces the compu-
tational time taken by a single evolution of (30) to reach
the steady state from several days on a supercomputer
(for the conventional Runge-Kutta solving) to a few sec-
onds on a generic computer.

Metal ℏΓm(eV) ℏωp(eV) vF(10
6ms−1)

Dm

(10−4m2 s−1)
Au 0.071 9.02 1.39 8.62
Ag 0.025 8.99 1.39 9.62

TABLE II. Metal parameters from [14].

Common parameters used

Throughout this work, we use the set of NV parameters
obtained by Albrecht et al. in [34] for a single NV centre
in a nanodiamond at room temperature. This has been
done by fitting the NV emission intensity spectrum in air
with 8 Lorentzian lines (n = 7) with scaled amplitudes.
These amplitudes Ak, phonon energies ℏωk, free-space
decay rates γfk, and phonon decay rates γk,k−1 are pre-
sented in Table I. We modify the free-space decay rates
using equations (28) or (29) to obtain γk of the NV cen-
tre in the presence of an MNP, as discussed earlier. The
energy of the NV zero-phonon line ℏωz = 1.941 eV [34],
and the dephasing rate between the ground and excited
states γ∗ = 15THz [34] is used for all transitions.
In [34], each γf

k is obtained by scaling the total decay
rate γtot ∼ 1/29 ns (for NV in nanodiamond) such that
γf

k = εk · γtot where εk = Ak

/∑
k Ak. It is noteworthy

that the effective excited state lifetime in air (or free-
space) 1/

∑
γf

k resulting from the decay rates reported
by Albrecht et al. in [34] is quite close to the optical
excited state (3E) lifetime measurement for a single NV
centre in nanodiamond ∼ 25 ns reported by Beveratos et
al. in [35]. It is observable that optical excited state (3E)
lifetimes in nanodiamond crystals that are considerably
smaller than the fluorescence wavelength approximately
double in comparison to NV centres in bulk diamond.
This change is has been attributed to the reduction of
the radiative emission rate induced by the decrease of
the effective refractive index of the medium surrounding
the NV centre [36].
The absolute angle-averaged optical dipole moment el-

ement for the NV centre is obtained from [37] as µe↔g ∼
5.2D. In our model, we assume 5.2D ∼ µ0 (the dipole
moment element that corresponds to the |ej⟩ ↔ |g0⟩
transition for both j = 0 and 1). We then estimate the
scaled dipole moment elements for other optical transi-
tions |ej⟩ ↔ |gk⟩ as µk =

√
εk/ε0µ0, such that γf

k ∝ |µk|2
for each transition (as required by both Fermi’s golden
rule and Einstein A coefficient for a generic emitter
[1, 26, 38]).
We estimate the total nonradiative decay rate between

excited levels as γe ∼ 1
n (
∑

k γk,k−1) ∗ ne, where ne is
the expected number of phonons between |e1⟩ and |e0⟩
obtained assuming that the average energy of a phonon
in the ground and excited states are similar.
The positive frequency amplitude of the externally in-

cident field is E0 = 30 × 104 Vm−1 (such that the re-
sulting Rabi frequencies are in the GHz range). The re-
fractive indices of air, water, and PMMA were taken as
nb ≈ 1, nb ≈ 1.33, and nb ≈ 1.495, respectively. The
refractive index of diamond, nD ≈ 2.4.
Dielectric permittivity of the MNP ϵm was obtained by

interpolating the tabulations by Johnson and Christy [1]
for both Au and Ag. The bound electron response for a
given angular frequency ω was obtained using the rela-
tionship, ϵcore(ω) = ϵm(ω) + ω2

p

/
(ω2 + iωΓm) [14], where

ωp is the bulk plasma frequency of the metal. Addition-
ally, the parameters in Table II obtained from [14] were
used when modelling the Au and AgNPs.
The values of any other parameters used (MNP ra-

dius rm, NV-MNP centre separation R, the submerging
medium considered, and the orientation parameter sα)
will be presented alongside each set of results, separately.

Generation of sample results and discussion

We generated steady state photon emission inten-
sity spectra for the nonlinearly treated NV⊥MNP and
NV∥MNP configurations using the following procedure:
The NV centre was initiated in its zero-phonon ground
state and evolved using the previously outlined piecewise
superoperator method to obtain the steady state NV den-
sity matrix ρ̂RF. We then obtained the density matrix-
dependent steady state Hamiltonian using (8) and (20).
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FIG. S1. (A) MNP radius (rm) dependence of total near-field NV emission in the presence of small AuNPs of radii 5, 6 and
7 nm at 12 nm centre separation, in air. (B) MNP centre separation (R) dependence of NV emission in the presence of a 7 nm
radius AuNP in air. (C) Submerging medium dependence of NV emission in the presence of a 7 nm radius AuNP at a 12 nm

centre separation. The red and blue shaded curves in all three subplots correspond to NVs in NV⊥MNP (⊥) and NV∥MNP (∥)
configurations, respectively. The dashed reference line corresponds to the emission intensity of the isolated NV centre in air.
All curves are normalized by the area of the respective reference curve. Illumination is at the free-space wavelength 532 nm.

FIG. S2. (A) Absolute polarizabilities |α| for rm = 30nm AuNP in different media. Diamond markers depict the values at the
illumination frequency. (B) Decay rate modification for generic emitters in different media, oriented ⊥ and ∥ to the surface of
the rm = 30nm AuNP at R = 38nm. Circles depict the values at NV emission peaks.

The steady state density matrix-based Hamiltonian and
all collapse operators accompanied by their respective
rates (arranged in the form

√
ΓxL̂x) were then input to

the spectrum() function in QuTiP to obtain the emis-
sion correlation spectra for each emission operator σ̂k.
The total NV emission spectrum in the rotating refer-
ence frame was then obtained as the summation of such
spectra for all NV emission bands, as outlined in (32).
The obtained spectra were normalized by the area of the
respective isolated NV emission intensity spectrum and
shifted into the laboratory reference frame by adding ℏωd

to the emitted photon energies (in the independent axis).

The same procedure was followed in the absence of
MNP induced electric field components, when generating

the isolated NV emission spectra in Fig. 1(C) of the main
text and the reference curves in all figures.

Sample results generated using the above procedure,
for MNP radius (rm), centre separation (R) and sub-
merging medium permittivity (ϵb) dependence of the NV
emission intensity in the presence of small MNPs are de-
picted in Fig. S1. It is evident that the behavioural trends
of NV emission in the presence of small MNPs are qual-
itatively equivalent to those observed in the presence of
large MNPs, presented in the main text.

Absolute polarizabilities of the rm = 30nm AuNP and
decay rate modifications of emitters oriented ⊥ and ∥ to
its surface (at R = 38nm) in different media, relevant to
Fig. 3 of the main text, can be found in Fig. S2.
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FIG. S3. Variation of the total near-field emission of an NV centre in NV⊥AuNP and NV∥AuNP setups in Fig. 3(A) and (B)
of the main text for different centre separations (R). The AuNP radius rm = 30nm and the background medium is air. The
reference (dashed black) curves show the emission of the isolated NV centre in air.

Fig. S3 shows the variation of the total near-field emis-
sion of an NV centre in NV⊥AuNP and NV∥AuNP setups
in Fig. 3(A) and (B) of the main text for different centre
separations (R). It is observable from these results that
the qualitative impact of reducing the NV-MNP centre
separation (R) for a fixed MNP radius is similar to that

of increasing the MNP radius at a fixed centre separation.
This is because both result in increasing the MNP dipole
response field at the NV location. Thus, we observe an
increase in NV emission intensity with decreasing R for
the NV⊥AuNP setup, and vise-versa for the NV∥AuNP
setup, in the current parameter region.
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