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Fig. S1: p53 immunoprecipitation and dynamics in cells. (A) Magnetic beads were conjugated 
with either PAB1801 or an isotype control. Captured proteins were in-solution digested and 
peptides were analyzed by Liquid Chromatography with Tandem Mass Spectrometry (LC-
MS/MS). Abundance was measured by label free quantification. The fold enrichment was 
calculated for immunoprecipitations using anti-p53 antibody compared to isotype control. (n=3 
biological replicates; p-value represents Bonferroni-corrected values following t-test of the 
abundance values for each protein). (B) Western blot of total p53 levels at the indicated time points 
after 10 Gy X-ray irradiation of MCF7 cells. Actin is shown as a loading control.  



Fig. S2: Effects of deacetylase inhibitors on p53 dynamics, and expression patterns of 
acetylation regulators (A) Western blot of p53 levels at the indicated timepoints after 10 Gy X-
ray irradiation. HDACi, SIRTi or DMSO control was added at 4.5 h, corresponding to the trough 
between the first two peaks of p53 expression. Actin is shown as a loading control. (B-C) 
Expression levels based on RNA-Seq of (B) HDAC family enzymes or (C) BTG2 following DNA 
damage (source data obtained from Jiménez et al. 2022 (22)). 





Fig. S3: WT or mutant p53 cell line generation and resulting effects on p53 dynamics and 
target gene expression (A) Western blot showing p53 levels at 7.5 hrs in control or shp53-
expressing cells in the presence or absence of HDACi. Actin is shown as a loading control. (B) 
Design of plasmids used for CRISPR-Cas9 mediated knock-in of p53 variants into the genomic 
safe harbor site AAVS1. (C) Single cell clones were checked for successful integration of the 
construct into genomic DNA using the indicated primers. (D) PCR analysis of single cell clones 
harboring WT or mutant p53 constructs. Indicated bands depict expected products generated from 
PCR from panel B. Plasmid only refers to purified plasmid containing AAVS integration construct 
(lower panel from A) extracted from E. coli prior to transformation. (E) MCF7 cells expressing 
WT or mutant p53-fused to mVenus were subjected to 10 Gy X-ray and HDACi addition at 4.5 
hrs following irradiation and their p53 levels analyzed by western blot 8 hrs post initial irradiation. 
(F) WT and mutant p53 levels were monitored by live cell fluorescence microscopy. Solid line
represents the median while shaded area represents interquartile range. (G) qPCR analysis of the
mRNA levels of the indicated genes at 3 and 8 hrs post-irradiation of WT or indicated mutant p53
expressing MCF7 cells, normalized to mRNA levels for unirradiated cells. Error bars represent
standard deviation from 3 biological replicates. * p< 0.05, ** p< 0.01 by t-test. (H) MCF7 or
MCF7-shp53 cells expressing WT or mutant p53-fused to mVenus were subjected or not to 10 Gy
X-ray and their p53 levels analyzed by western blot 2.5 hrs post initial irradiation. (I) qPCR
analysis of the mRNA levels of the indicated genes at 3 and 8 hrs post-irradiation with or without
the addition of HDACi in WT or 2KR mutant p53-expressing MCF7-shp53 cells, normalized to
mRNA levels for unirradiated cells. Error bars represent standard deviation from 3 biological
replicates. * p< 0.05, ** p< 0.01 by t-test.



Fig. S4: Expression of WT and 2KR p53 and their effects on gene expression, DNA repair, 
and viability (A) Western-blot of cells expressing WT (top) or 2KR (bottom) p53-Venus fusions 
at the indicated timepoints following irradiation. Endogenous and exogenous p53 are indicated. 



Actin is shown as a loading control. (B) qPCR analyses show same expression trends as RNA-Seq 
for the p53 targets CDKN1A and PAI1. (C) Schematic showing the calculation of the area under 
the curve for dynamic gene expression data (See Materials & Methods). (D) Quantification of 
mean γH2A.X intensity of top 10% p53-Venus expressing cells following irradiation. n >100 cells 
per condition per time point, error bars indicate standard deviation. (E) Cell viabilities were 
measured (detailed in Materials and Methods) by Trypan blue staining of WT and mutant p53-
expressing MCF7 subjected to the indicated treatments. * p< 0.05, by t-test (n = 3 biological 
replicates per condition) 



Table S1 (.csv file): Normalized enrichment score (NES) and p-values for each gene ontology 
(GO) function was calculated (detailed in Materials & Methods). NA represents situations where 
no gene within a given GO category was detectable at a given time point. 
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