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Supplementary Information 1: Sensitivity and specificity 

For a thresholded N×N binary matrix P, significant edges were coded as 1 and all other edges were coded as 0. For a 
ground-truth N×N binary matrix T, the ground-truth edges were coded as 1 and all other edges were coded as 0. The ground-
truth edges connected: (1) modules 1 and 2, 3 and 4 for “Condition A”; (2) modules 1 and 4, 2 and 3 for “Condition B”. The 
sensitivity and specificity of task-modulated functional connectivity (TMFC) methods were computed as:  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐹𝐹𝐹𝐹) = ∑ ∑ ((1 − 𝑇𝑇𝑖𝑖𝑖𝑖)𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 × 𝑃𝑃𝑖𝑖𝑖𝑖)     (S1.1) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐹𝐹𝐹𝐹) = ∑ ∑ (𝑇𝑇𝑖𝑖𝑖𝑖 × (1 − 𝑃𝑃𝑖𝑖𝑖𝑖))𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1      (S1.2) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇) = ∑ ∑ (𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑖𝑖𝑖𝑖)𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1      (S1.3) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑇𝑇) = ∑ ∑ ((1 − 𝑇𝑇𝑖𝑖𝑖𝑖) × (1 − 𝑃𝑃𝑖𝑖𝑖𝑖))𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1     (S1.4) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100    (S1.5) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100    (S1.6) 
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Supplementary Information 2: Empirical data 

2.1. Scanning parameters 

For the Human Connectome Project (HCP) dataset, the sample size was N = 100 (unrelated healthy subjects, 54 females, 
46 males, mean age = 29.1 ± 3.7). For the Consortium for Neuropsychiatric Phenomics (CNP) dataset, the sample size was 
N = 115 subjects (healthy subjects, 55 females, 60 males, mean age = 31.7 ± 8.9). 

The fMRI data from the HCP dataset were collected using an echo-planar imaging (EPI) sequence on a modified 3T 
Siemens Skyra with the scanner repetition time, TR = 720 ms, echo time, TE = 33.1 ms, flip angle = 52°, in-plane field of 
view, FOV = 208 × 180 mm, 72 axial slices, and voxel size = 2 × 2 × 2 mm, with a multi-band acceleration factor of 8 
(Glasser et al., 2013). Each HCP task consisted of two sessions: one with right-to-left and the other with left-to-right phase 
encoding (see duration in section 2.2). The HCP resting-state data consisted of two sessions each lasting ≈ 14.5 min (1200 
scans).  

The fMRI data from the CNP dataset were collected using an EPI sequence on a 3T Siemens Trio scanner with TR = 2 s, 
TE = 30 ms, flip angle = 90°, in-plane FOV = 192 × 192 mm, 34 axial slices, slice thickness = 4 mm, and voxel size = 3 × 3 
× 4 mm (Poldrack et al., 2016). Each CNP task consisted of one session (see duration in section 2.2). The CNP resting-state 
data consisted of one session lasting ≈ 5 min (152 scans). 

2.2. Task designs 

The block design tasks included working memory and social cognition tasks (for more details, see Barch et al., 2013). In 
the working memory task, each session consisted of eight blocks for two working memory loads (0-back and 2-back) and 
four stimulus categories (faces, places, tools, body parts). Each block lasted 27.5 s. For each working memory load within a 
session, two regressors were included in the subject-level model. Each session contained four fixation blocks (15 s). The total 
scanning time was ≈ 10 min (810 scans). In the social cognition task, each session consisted of two or three blocks for the 
random movement condition and two or three blocks for the social interaction condition. Each block lasted 20 s. For each 
condition within a session, two regressors were included in the subject-level model. Each session contained five fixation 
blocks (15 s). The total scanning time was ≈ 7 min (548 scans). 

The event-related tasks were the stop-signal and task-switching tasks (for more details, see Poldrack et al., 2016). The 
stop-signal task consisted of 96 Go trials and 32 Stop-signal trials. All trials were preceded by a 500 ms fixation cross. Each 
trial lasted for 1000 ms and was separated by jittered null events ranging from 0.5 to 4 s (mean of 1 s). Two regressors were 
included in the subject-level model with a fixed event duration of 1.5 s. The total scanning time was ≈ 7 min (184 scans). 
The task-switching task consisted of 36 “Congruent, No Switch” trials, 12 “Congruent, Switch” trials, 36 “Incongruent, No 
Switch” trials, and 12 “Incongruent, Switch” trials. Four regressors were included in the subject-level model with a fixed 
duration of 1 s. The total scanning time was ≈ 6 min (208 scans).  
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Supplementary Information 3: Simulations 

3.1. Large-scale neural mass model 

Consistent with previous studies (e.g., Papadopoulos et al., 2020), the coarse-grained form of the Wilson-Cowan 
equations for the i-th brain region can be expressed as: 

𝜏𝜏𝐸𝐸
𝑑𝑑𝐸𝐸𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝐸𝐸𝑖𝑖(𝑡𝑡) + �1 − 𝐸𝐸𝑖𝑖(𝑡𝑡)�𝑓𝑓𝐸𝐸�𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖(𝑡𝑡) −𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑡𝑡) + 𝐺𝐺 ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗 𝐸𝐸𝑗𝑗(𝑡𝑡 − 𝑑𝑑) + 𝑃𝑃𝐸𝐸� + 𝜉𝜉𝑖𝑖𝑜𝑜𝑜𝑜(𝑡𝑡),       (S2.1) 

𝜏𝜏𝐼𝐼
𝑑𝑑𝐼𝐼𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝐼𝐼𝑖𝑖(𝑡𝑡) + �1 − 𝐼𝐼𝑖𝑖(𝑡𝑡)�𝑓𝑓𝐼𝐼[𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖(𝑡𝑡) − 𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑡𝑡) + 𝑃𝑃𝐼𝐼] + 𝜉𝜉𝑖𝑖𝑜𝑜𝑜𝑜(𝑡𝑡).    (S2.2) 

The variables Ei(t) and Ii(t) correspond to neuronal activity of the excitatory and inhibitory subpopulations of the i-th 
region (proportion of excitatory and inhibitory cells firing per unit time), τE and τI are the excitatory and inhibitory time 
constants, and wEE, wIE, wEI and wII are the connectivity coefficients between excitatory and inhibitory subpopulations 
representing the average number of excitatory and inhibitory synapses per cell (synaptic weights). The non-linear response 
functions ƒE and ƒI for excitatory and inhibitory subpopulations are defined as: 

𝑓𝑓𝐸𝐸(𝑥𝑥) =  𝑐𝑐𝐸𝐸
1+𝑒𝑒−𝑎𝑎𝐸𝐸(𝑥𝑥−𝑏𝑏𝐸𝐸),             (S3.1) 

𝑓𝑓𝐼𝐼(𝑥𝑥) =  𝑐𝑐𝐼𝐼
1+𝑒𝑒−𝑎𝑎𝐼𝐼(𝑥𝑥−𝑏𝑏𝐼𝐼),            (S3.2) 

where aE and aI are the slopes, bE and bI are the positions of the maximum slope, cE and cI are the amplitudes of excitatory 
and inhibitory response functions. 

The 𝐺𝐺 ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗 𝐸𝐸𝑗𝑗(𝑡𝑡 − 𝑑𝑑) term represents interactions of the i-th region with the rest of the network, G is the global coupling 
parameter, wji is the synaptic weight from the j-th to i-th region, and d is the signal transmission delay between brain regions. 
The delay was d = 25 ms, which is a physiologically plausible value for humans as estimated by Ringo et al. (1994). Synaptic 
weights (wji) were changed according to stimulus onsets. Typically, short-term synaptic plasticity reaches a plateau by the 8th 
– 10th excitatory postsynaptic current (EPSC8-10), so at 40 Hz activity, it reaches a plateau at about 200 ms (Dittman et al., 
2000; Kreitzer & Regehr, 2000). To account for the fact that synaptic weights do not change instantaneously, we added a 
synaptic plasticity delay of 200 ms between stimulus onset and synaptic weight change. 

The PE and PI terms are constant, background drive for excitatory and inhibitory subpopulations. The ξi
ou term is the 

background noise modelled as an Ornstein-Uhlenbeck process with zero mean (Uhlenbeck & Ornstein, 1930; Cakan et al., 
2021, 2022): 

𝑑𝑑𝜉𝜉𝑖𝑖
𝑜𝑜𝑜𝑜(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝜉𝜉𝑖𝑖
𝑜𝑜𝑜𝑜(𝑡𝑡)
𝜏𝜏𝑜𝑜𝑜𝑜

+ 𝜎𝜎𝑜𝑜𝑜𝑜𝜉𝜉𝑖𝑖(𝑡𝑡),                  (S4) 

where τou is the time scale, σou is the standard deviation of the process, and ξi is the white Gaussian noise. In the absence of 
background noise, the Wilson-Cowan units produce unmodulated limit-cycle oscillations. With the addition of background 
noise, ultra-slow fluctuations in the power of the limit-cycle oscillations can be observed in accordance with empirical 
observations (Leopold et al., 2003; Nir et al., 2008; Keller et al., 2013; Thompson et al., 2013). 

Before converting neuronal activity into the BOLD signal, we calculated synaptic activity as the sum of all inputs to the 
excitatory and inhibitory subpopulations (Tagamets & Horwitz, 1998; Kim & Horwitz, 2007; Ulloa & Horwitz, 2016): 

𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖(𝑡𝑡) + 𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖(𝑡𝑡) + 𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑡𝑡) + 𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖(𝑡𝑡) + ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗 𝐸𝐸𝑗𝑗(𝑡𝑡).               (S5) 

Synaptic activity SAi(t) was considered as a proxy for local field potential (LFP) and used as input to the Balloon-
Windkessel model. 

All fixed parameters of the Wilson-Cowan model were selected as in Papadopoulos et al. (2020). Three tuning parameters 
(G, PE, σou) were determined based on the maximum similarity between the ground-truth synaptic weight matrix and the task-
modulated functional connectivity (TMFC) matrix estimated using the direct correlation difference (CorrDiff) approach for 
block design time series without scanner measurement error. Similarity between matrices was assessed using Pearson’s r 
correlation. First, we considered combinations of parameters with large steps: G = 2.0 – 3.0 (step = 0.1), PE = 0.70 – 0.80 
(step = 0.1), σou = 1.0×10-3 – 6.0×10-3 (step = 0.5×10-3). Then we used smaller steps: G = 2.60 – 2.75 (step = 0.01), PE = 0.755 
– 0.765 (step = 0.01), σou = 3.0×10-3 – 4.5×10-3 (step = 0.1×10-3). The selected set of tuning parameters for all simulations 
was as follows: G = 2.63, PE = 0.758, σou = 3.5×10-3. For the full set of parameters, see Supplementary Table S9. 

Numerical integration of the system of ordinary differential equations was performed using the Euler-Maruyama method 
with a time step of dt = 0.1 ms, implemented in the neurolib software (https://github.com/neurolib-dev/neurolib). Neurolib 
is a Python library that provides a computationally efficient framework for whole-brain resting-state functional connectivity 



4 
 

(RSFC) simulations (Cakan et al., 2021). In the current study, we modified the neurolib software to perform task-modulated 
functional connectivity (TMFC) simulations for a given task design and temporal resolution. To facilitate replication of our 
TMFC simulations, we share the simulated time-series, as well as MATLAB (R2021b) and Python code (versions 3.7-3.10) 
and user-friendly Jupyter notebooks (https://github.com/IHB-IBR-department/TMFC_simulations). The code for TMFC 
simulation is also available as a separate Python module TMFC_simulator (https://github.com/IHB-IBR-
department/TMFC_simulator). 

3.2. The Balloon-Windkessel haemodynamic model 

This model consists of three parts (Friston et al., 2003). The first describes relationship between synaptic activity and 
regional cerebral blood flow (rCBF). It is assumed that changes in synaptic activity cause an exponentially decaying 
vasodilatory signal Si(t), which is subject to autoregulatory feedback depending on the blood flow fi(t) it induces: 

𝑑𝑑𝑆𝑆𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑆𝑆𝑖𝑖(𝑡𝑡) − 𝜅𝜅𝑆𝑆𝑖𝑖(𝑡𝑡) − 𝛾𝛾(𝑓𝑓𝑖𝑖(𝑡𝑡) − 1),              (S6.1) 

𝑑𝑑𝑓𝑓𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑖𝑖(𝑡𝑡),                      (S6.2) 

where κ is the rate of vasodilatory signal decay, and γ is the rate of flow-dependent autoregulatory feedback. 
The second part describes how change in blood flow causes changes in blood volume vi(t) and deoxyhaemoglobin content 

qi(t) within the post-capillary venous compartment, analogous to an expandable “balloon” or “windkessel" (air chamber):  

𝜏𝜏 𝑑𝑑𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑖𝑖(𝑡𝑡) − 𝑣𝑣𝑖𝑖
1/𝛼𝛼(𝑡𝑡),                 (S7.1) 

𝜏𝜏 𝑑𝑑𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑖𝑖(𝑡𝑡)
1−(1−𝜌𝜌)1/𝑓𝑓𝑖𝑖(𝑡𝑡)

𝜌𝜌
− 𝑣𝑣𝑖𝑖

1/𝛼𝛼(𝑡𝑡) 𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑣𝑣𝑖𝑖(𝑡𝑡)

,                (S7.2) 

where τ is the haemodynamic transit time (mean transit time of venous blood), α is the Grubb’s exponent (stiffness of the 
venous “balloon”), and ρ is the resting net oxygen extraction fraction. Blood flow, blood volume and deoxyhaemoglobin 
content are expressed in normalised form relative to resting values. 

The third part derives the BOLD signal Yi(t) from blood volume and deoxyhaemoglobin content by a static nonlinear 
function: 

𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝑉𝑉0 �𝑘𝑘1�1 − 𝑞𝑞𝑖𝑖(𝑡𝑡)� + 𝑘𝑘2 �1 − 𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑣𝑣𝑖𝑖(𝑡𝑡)

� + 𝑘𝑘3�1 − 𝑣𝑣𝑖𝑖(𝑡𝑡)��,               (S8) 

where V0 is the resting volume fraction, 𝑘𝑘1 = 7𝜌𝜌, 𝑘𝑘2 = 2, and 𝑘𝑘3 = 2𝜌𝜌 − 0.2. The first term of Eq. (S8) describes the intrinsic 
extravascular signal, the second term describes the intravascular signal, and the third term describes the effect of changing 
the balance between them (Buxton et al., 1998). 
  

https://github.com/IHB-IBR-department/TMFC_simulations
https://github.com/IHB-IBR-department/TMFC_simulator
https://github.com/IHB-IBR-department/TMFC_simulator
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Supplementary Information 4: Psycho-physiological interactions 

The psychophysiological interaction (PPI) approach adapted for the ROI-to-ROI analysis is based on a general linear 
model of the following form: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛽𝛽0𝑖𝑖 + 𝜀𝜀𝑖𝑖,                    (S9) 

where 𝑌𝑌𝑖𝑖 is the BOLD signal in the target region (i-th ROI); XPSY is the psychological variable(s), modelling task-evoked 
haemodynamic responses; 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗  is the physiological variable, BOLD signal in the “seed” region (j-th ROI); 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗  is the 
psychophysiological interaction variable(s); 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are the non-neuronal nuisance variables (e.g. head motion regressors and 
aCompCorr regressors); 𝛽𝛽0𝑖𝑖  is the constant term; and 𝜀𝜀𝑖𝑖 is the residual error. The beta values 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 , 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 , 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 , and 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 
reflect the contributions to the target ROI of co-activations, spontaneous fluctuations, task-modulated fluctuations (TMFC) 
and non-neuronal noise, respectively. 

The PPI term represents the element-by-element product of psychological and physiological variables. According to the 
standard PPI (sPPI) approach proposed by Friston et al. (1997), the general linear model includes one psychological and one 
PPI term for a difference between task conditions: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴−𝐵𝐵) = (𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴) − 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵)) ⨂ HRF,               (S10.1) 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴−𝐵𝐵)𝑗𝑗 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 × ((𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴) − 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵)) ⨂ HRF),         (S10.2) 

where 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴) and 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵) are the task design regressors (box-car or delta functions) for conditions A and B, respectively; 
⨂ is the convolution operator; and HRF is the haemodynamic response function. 

According to the generalised PPI (gPPI) approach proposed by McLaren et al. (2012), the general linear model includes 
multiple psychological and PPI terms for each task condition: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴) + 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐵𝐵) = 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴)⨂ HRF + 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵)⨂ HRF,                         (S11.1) 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴)𝑗𝑗 + 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐵𝐵)𝑗𝑗 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 × (𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴)⨂ HRF) +  𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 × (𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵)⨂ HRF).            (S11.2) 

To account for the fact that psycho-physiological interactions occur at the neuronal level, Gitelman et al. (2003) proposed 
to deconvolve the BOLD signal in the seed ROI and calculate the element-by-element product of the deconvolved 
physiological regressor 𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗  (estimated neuronal activity) and the task design regressor ZTASK (i.e. psychological variable 
before convolution with HRF). The product is then convolved with HRF: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 = 𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗⨂ HRF + 𝜀𝜀,            (S12.1) 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗
∗ = (𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 × 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ⨂ HRF.                                    (S12.2) 

We calculated PPI terms both with and without the deconvolution step. For more details on the deconvolution procedure, 
see Supplementary Information 5. 

If the deconvolution step is applied, it is necessary to centre the task design regressor 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 before multiplication with 
the deconvolved psychological regressor 𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 . When the PPI term is calculated with deconvolution but without centring, 
the PPI approach produces spurious results that resemble RSFC rather than TMFC (Di et al., 2017). Mean centring of 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
is the default setting in SPM12 since revision r6556. It is important to caution that the gPPI toolbox (McLaren et al., 2012) 
(https://www.nitrc.org/projects/gppi), one of the most popular tools for PPI analysis, does not use centering. In the main text, 
we calculated all PPI terms with 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 mean centering. For more details on the mean centering of the task design regressors, 
see Supplementary Information 6. 

The correlational PPI (cPPI) approach  proposed by Fornito et al. (2012) is based on the partial correlation between PPI 
terms for i-th and j-th ROIs, 𝑟𝑟𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ,𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗∙𝐶𝐶, eliminating the variance associated with confounds 𝐶𝐶 =

{ 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ,𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 ,𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛}. The cPPI approach uses PPI terms for the difference between task conditions, 
𝑟𝑟𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴−𝐵𝐵)𝑖𝑖 ,𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴−𝐵𝐵)𝑗𝑗∙𝐶𝐶

, as well as sPPI. 

All MATLAB scripts for different types of PPI analysis are available on GitHub (https://github.com/IHB-IBR-
department/TMFC_simulations). We also provide a user-friendly SPM12-based toolbox with GUI and parallel computing 
capability for voxel-based and ROI-to-ROI gPPI analysis with deconvolution, called TMFC_toolbox 
(https://github.com/IHB-IBR-department/TMFC_toolbox). 

  

https://github.com/IHB-IBR-department/TMFC_simulations
https://github.com/IHB-IBR-department/TMFC_simulations
https://github.com/IHB-IBR-department/TMFC_toolbox
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Supplementary Information 5: Deconvolution of the BOLD signal 

In the main text, we used deconvolution approach proposed by Gitelman et al. (2002) and implemented in SPM12 
(spm_peb_ppi.m function). Let's express convolution from Eq. (S12.1) in matrix form: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐻𝐻𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜀𝜀,        (S13) 

where H is the HRF in Toeplitz matrix form. 
We can assume that the observed BOLD signal represents a neuronal signal convolved with a canonical HRF with 

measurement noise 𝜀𝜀. The goal of BOLD signal deconvolution is to estimate this underlying unknown neuronal activity. To 
do this, we can expand the underlying neuronal activity in terms of a cosine basis set, so that the estimation of the temporal 
time series is transformed into the frequency domain. We can rewrite the neuronal signal as a linear combination of cosine 
functions (discrete cosine series, 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷) multiplied by unknown β parameters: 

𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝛽𝛽.                   (S14) 

We now need to estimate β parameters of the linear deconvolution model: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐻𝐻𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝛽𝛽 + 𝜀𝜀.                 (S15) 

We can estimate parameters β using the ordinary least-squares (OLS) solution: 

𝛽̂𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = (𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝐻𝐻𝑇𝑇𝐻𝐻𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷)−1𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝐻𝐻𝑇𝑇𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,               (S16) 

where 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝐻𝐻𝑇𝑇  is a transpose of 𝐻𝐻𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷. 
To recover the neuronal signal from β parameters, we need to multiply them by unconvolved cosine basis set. 
However, if deconvolution is performed with least squares estimation, parameter estimates will be highly variable due to 

the use of the full-rank basis set and multicollinearity. This is particularly so for the coefficients controlling high frequencies, 
since HRF attenuates them. Therefore, some type of regularisation or prior constraints should be introduced to suppress this 
confounding effect. Gitelman et al. (2002) proposed to use Parametric Empirical Bayes (PEB) approach with Gaussian priors. 
SPM12 deconvolution suppresses high frequency components in the signals. The reconvolved BOLD signal represents a 
smoother version of the original BOLD signal. 

A practical disadvantage of the PEB approach is that it is difficult to implement outside of the SPM12 package. As an 
alternative to the PEB approach, we can use ridge regression (Gaudes et al., 2010), which is readily available in most software 
packages for data analysis. Ridge regression (Tikhonov regularisation or L2-norm regularisation) penalizes higher parameter 
estimates and prevents model overfitting to noise by introducing a regularisation parameter α: 

𝛽̂𝛽𝑅𝑅𝑅𝑅 = (𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝐻𝐻𝑇𝑇𝐻𝐻𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛼𝛼𝛼𝛼)−1𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 𝐻𝐻𝑇𝑇𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,                  (S17) 

where I is the identity matrix (Hoerl & Kennard, 1970; Tikhonov & Arsenin, 1977). 
When α = 0, the penalty term has no effect, and ridge regression reduces to a least squares estimation. The higher α the 

more regularisation is applied. Increasing regularisation parameter α results in a smoother estimated neuronal signal, while 
decreasing α leads to overfitting. 

To ensure the reproducibility of our results, we developed MATLAB and Python functions for ridge regression 
deconvolution, independent of the SPM12 software (https://github.com/IHB-IBR-department/BOLD_deconvolution). A 
comparison of the results produced by these functions and the spm_peb_ppi.m function can be found on GitHub 
(https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/deconvolution). Here, our goal was not to determine 
the best deconvolution method, but to reproduce as closely as possible the results obtained by the spm_peb_ppi.m function 
without SPM12.  

Consider, for example, ridge regression implemented in Python for a simulated BOLD signal in a block design with ten 
20 s blocks per condition and a signal-to-noise ratio (SNR) of 0.4. The correlation between neuronal activity estimated by 
SPM12 PEB and ridge regression deconvolution was r = 0.998 at α = 0.005 (see Supplementary Fig. S15, S16a-c). The 
correlation between convolved PPI terms calculated using SPM12 PEB and ridge regression at α = 0.005 was r = 0.936 (see 
Supplementary Fig. S16d). Similar results were obtained for the simulated event-related task and empirical block and event-
related tasks (https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/deconvolution/python). For a 
simulated event-related task with one hundred 1 s events per condition and ISI = 6 s, the correlation between convolved PPI 
terms was r = 0.963 at α = 0.005. For the empirical block design task (working memory task), the correlation between 
convolved PPI terms was r = 0.985 at α = 0.002. For the empirical event-related task (stop-signal task) the correlation between 
convolved PPI terms was r = 0.952 at α = 0.003. Similar results were also obtained using ridge regression implemented in 
MATLAB (https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/deconvolution/matlab). Therefore, ridge 
regression allows us to obtain similar estimates of neuronal activity as SPM12 PEB with the regularisation parameter α = 
0.002-0.005.  

https://github.com/IHB-IBR-department/BOLD_deconvolution
https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/deconvolution
https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/deconvolution/python
https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/deconvolution/matlab
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Supplementary Information 6: Mean centering of the task design regressor prior to PPI term calculation 

Without deconvolution, TMFC estimates obtained using PPI analysis with or without mean centering will be equivalent. 
Di et al. (2017) demonstrated it with empirical data and provided mathematical proof of this. For convenience, we present 
the mathematical proof here. 

Consider the general linear model for PPI analysis from Eq. (S9). Let’s remove the subscripts denoting ROI indices and 
add superscripts “1” for the model with a centered psychological regressor 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 : 

𝑌𝑌 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛽𝛽𝑜𝑜1 + 𝜀𝜀.                         (S18) 

We can rewrite the PPI term calculated with mean centering and without deconvolution as: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.                      (S19) 

Put Eq. (S19) into Eq. (S18): 

𝑌𝑌 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛽𝛽𝑜𝑜1 + 𝜀𝜀.               (S20) 

For a model without mean centering of the psychological regressor, add superscripts “2”: 

𝑌𝑌 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛽𝛽𝑜𝑜2 + 𝜀𝜀.               (S21) 

The non-centered psychological variable 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃2  can be expressed as: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃2 = 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝑐𝑐,                     (S22) 

where c is a constant value. 

Put Eq. (S22) into Eq. (S21): 

𝑌𝑌 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 (𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝑐𝑐) + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 (𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝑐𝑐)𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝛽𝛽𝑜𝑜2 + 𝜀𝜀.           (S23) 

And match terms in Eq. (S23) and Eq. (S20): 

𝑌𝑌 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + (𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝑐𝑐𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 )𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝛽𝛽𝑜𝑜2 + 𝑐𝑐𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 ) + 𝜀𝜀.         (S24) 

Comparing Eq. (S24) and Eq. (20), it can be seen that: 

𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃1 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 ,                (S25.1) 

𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1 = (𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 + 𝑐𝑐𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 ),                         (S25.2) 

𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃1 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 ,                             (S25.3) 

𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛1 = 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 ,                   (S25.4) 

𝛽𝛽𝑜𝑜1 = 𝛽𝛽𝑜𝑜2 + 𝑐𝑐𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 .                   (S25.5) 

Therefore, without deconvolution, the parameter estimates of the psychological, PPI and nuisance regressors are exactly 
the same with or without mean centering. For TMFC analysis, we use the parameter estimates of the PPI regressors (Eq. 
S25.3). The only parameter estimates that change are those for the physiological regressor and the constant term (Eqs. S25.2 
and S25.5).  

We also used simulations to demonstrate that PPI results without deconvolution are exactly the same with or without 
mean centering (see Supplementary Fig. S17a-b and S18a-b). 

However, when we apply deconvolution, the PPI matrices calculated for each of the task conditions (i.e., “Condition vs. 
Baseline”) become different with or without mean centering (Fig. S17c-d and S18c-d). FC estimates between nodes that 
exhibit high connectivity during rest periods (reflecting task-unrelated spontaneous fluctuations) are positive when we do not 
apply mean centering (Fig. S17d and S18d) and negative when we apply mean centering (Fig. S17c and S18c). Without 
deconvolution, the FC estimates for these functional modules are also negative, regardless of mean centering (Fig. S17a-b 
and S18a-b). Similar to Di et al. (2017), we can see in simulations that the PPI matrices calculated without deconvolution 
(with or without mean centering) are more similar to the PPI matrices calculated with deconvolution and mean centering. 
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When we use deconvolution, we cannot match the model terms with and without mean centering as in Eqs. (S25.1-5). If 
the psychological variable is non-centered with a constant component, the constant component will add a physiological 
variable to the PPI term (Di et al., 2017). After deconvolution and reconvolution, this physiological component is no longer 
exactly the same as the original physiological variable. Consider the PPI term without deconvolution and without centering: 

𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 (𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝑐𝑐)𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝑐𝑐𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.        (S26) 

We can combine the terms 𝑐𝑐𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, since both contain the same variable 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, to obtain Eq. (S25.2) 
and Eq. (S23.3). 

Now, consider the PPI term with deconvolution and without centering: 

𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 [((𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃1 + 𝑐𝑐)𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⨂HRF] = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 [(𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃1 𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⨂HRF] + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 [(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⨂HRF].    (S27) 

We cannot combine the terms 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃2 [(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)⨂HRF] and 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and obtain equations similar to Eqs. (S25.1-5), since 
the original physiological signal is not equal to the physiological signal reconvolved from the estimated neuronal signal: 

𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≠ 𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ⨂ HRF.          (S28) 

Meanwhile, the main goal of studying task-modulated functional connectivity is not to study connectivity only in one task 
condition but the relative connectivity changes in one task compared with others (“Condition A vs. Condition B”). For the 
balanced task designs, the sPPI and gPPI matrices showing the difference in FC between conditions are still the same with 
or without mean centering (Fig. S17c-d and S18c-d). In well-balanced designs, the effects related to spontaneous fluctuations 
are similar in the condition of interest and the control condition, so they canceled out for the “Condition A vs. Condition B” 
comparison. However, it may be not the case if the spontaneous fluctuation component has different weights for two task 
conditions, for example, the two task conditions have different numbers of blocks or events (Di et al., 2017). 

To demonstrate this, we performed simulations with task designs identical to the stop-signal task and task-switching task 
from the CNP dataset, as an examples of unbalanced event-related designs. The stop-signal task consists of 96 Go trials and 
32 Stop-signal trials. The task-switching task consists of 72 “No Switch” trials and 24 “Switch” trials. For both task designs, 
we can see a significant difference in FC between conditions within functional modules (i.e., FC associated with task-
unrelated spontaneous fluctuations) when using the sPPI method without mean centering (see Supplementary Fig. S19). This 
is a false positive result since we did not change synaptic weights within functional modules during the task. This false 
positive result can be avoided if we apply mean centering to the sPPI method or use the gPPI method with or without mean 
centering.  
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Supplementary Information 7: Beta-series correlation 

The beta-series correlation “Least-Squares All” (BSC-LSA) approach is based on a single general linear model with all 
trials represented by separate regressors (Rissman et al., 2004): 

𝑌𝑌 = 𝛽𝛽𝐴𝐴1𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴1) + ⋯+ 𝛽𝛽𝐴𝐴𝐴𝐴 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) + 𝛽𝛽𝐵𝐵1𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵1) + ⋯+ 𝛽𝛽𝐵𝐵𝐵𝐵 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵) 

+ 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽0 + 𝜀𝜀           (S29) 

where {𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴1), …, 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴)} are regressors for individual trials {1, …, N} for task condition A;  {𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵1), …, 
𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵)} are regressors for individual trials {1, …, N} for task condition B; {𝛽𝛽𝐴𝐴1 , …,𝛽𝛽𝐴𝐴𝐴𝐴} and {𝛽𝛽𝐵𝐵1 , …,𝛽𝛽𝐵𝐵𝐵𝐵} are beta 
parameters for individual trials for task conditions A and B, respectively. For rapid event-related results with short 
interstimulus intervals, the correlation between individual trial regressors becomes high (multicollinearity problem), resulting 
in noisy beta estimates obtained by the ordinary least squares. 

The BSC “Least-Squares Separate” (BSC-LSS) approach is based on separate general linear models for each individual 
trial, avoiding multicollinearity problem (Mumford et al., 2012): 

𝑌𝑌 = 𝛽𝛽𝐴𝐴1𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴1) + 𝛽𝛽𝐴𝐴{2:𝑁𝑁}𝐵𝐵{1:𝑁𝑁}𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{2:𝑁𝑁}𝐵𝐵{1:𝑁𝑁}) + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽0 + 𝜀𝜀   (S30.1) 

… 

𝑌𝑌 = 𝛽𝛽𝐴𝐴𝐴𝐴𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴) + 𝛽𝛽𝐴𝐴{1:𝑁𝑁−1}𝐵𝐵{1:𝑁𝑁}𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{1:𝑁𝑁−1}𝐵𝐵{1:𝑁𝑁}) + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽0 + 𝜀𝜀     (S30.2) 

 

𝑌𝑌 = 𝛽𝛽𝐵𝐵1𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵1) + 𝛽𝛽𝐴𝐴{1:𝑁𝑁}𝐵𝐵{2:𝑁𝑁}𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{1:𝑁𝑁}𝐵𝐵{2:𝑁𝑁}) + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽0 + 𝜀𝜀                (S30.3) 

… 

𝑌𝑌 = 𝛽𝛽𝐵𝐵𝐵𝐵𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐵𝐵𝐵𝐵) + 𝛽𝛽𝐴𝐴{1:𝑁𝑁}𝐵𝐵{1:𝑁𝑁−1}𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{1:𝑁𝑁}𝐵𝐵{1:𝑁𝑁−1}) + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽0 + 𝜀𝜀              (S30.4) 

where {𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{2:𝑁𝑁}𝐵𝐵{1:𝑁𝑁}), …, 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{1:𝑁𝑁−1}𝐵𝐵{1:𝑁𝑁})} are regressors for all trials except for the {1, …, N}-th individual trial 
for task condition A and all trials for condition B; {𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{1:𝑁𝑁}𝐵𝐵{2:𝑁𝑁}), …, 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐴𝐴{1:𝑁𝑁}𝐵𝐵{1:𝑁𝑁−1})} are regressors for all trials 
for task condition A and all trials except for the {1, …, N}-th individual trial for condition B. 

In this paper, we also propose to apply fractional ridge regression (FRR) for BSC analysis. FRR approach is based on the 
LSA model, but uses fractional ridge regression instead of least-squares estimation to regularize single-trial beta estimates 
for each voxel or region of interest (Rokem & Kay, 2020; Prince et al., 2022). FRR is a reparameterisation of the ridge 
regression in terms of the ratio γ between the L2-norms of the regularised and unregularised parameters (Rokem & Kay, 
2020): 

𝛾𝛾 =
�𝛽𝛽��𝑅𝑅𝑅𝑅�

2

�𝛽𝛽��𝑂𝑂𝑂𝑂𝑂𝑂�
2

,           (S31) 

where �𝛽̂𝛽�𝑅𝑅𝑅𝑅�
2
and �𝛽̂𝛽�𝑂𝑂𝑂𝑂𝑂𝑂�

2
are L2-norms of the regularised and unregularised (ordinary least squares) solutions in the 

low-dimensional space obtained by singular value decomposition (SVD) of the design matrix X. The fraction value γ = 1 
means no regularisation, and γ = 0 means full regularisation (shrinking all parameters to β = 0). 

One of the challenges of using ridge regression is the choice of the regularisation parameter α. FRR is fast and scalable 
approach to determine the degree of regularisation that yields the best solution, designed to handle large-scale data. 
Computational redundancies are avoided because solutions with different fraction value γ are guaranteed to be different. FRR 
approach explores the full range of effects of regularisation on β, thus ensuring that the best possible solution is within the 
range of solutions explored (Rokem & Kay, 2020). 

The LSS approach can be thought as an extreme regularisation approach applied uniformly across all brain regions, while 
the FRR approach can be thought as a tunable regularisation where regularisation is applied only if the data need it. In the 
current work, the regularisation for each region of interest was determined via split-half cross-validation on single-trial betas. 
The first step of the cross-validation procedure is to analyze all data using the ordinary least squares (γ = 1). The second step 
is to perform a grid search over fraction value γ ranging from 0.05 to 1.00 in increments of 0.05. For each fraction value γ, 
we assess how well the beta estimates calculated on one half (training) generalize to the other half (testing). Squared errors 
between the regularised beta estimates from the training half and the unregularised beta estimates from the validation half 
are computed. Next, this procedure is repeated for the swapped halves, and then the errors are summed up. Finally, the optimal 
fraction value γ is applied to the full dataset. 
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To calculate regularised single-trial beta estimates, we used the FRR approach implemented in the GLMsingle toolbox 
for MATLAB (Prince et al., 2022) (https://glmsingle.org/). We used the canonical HRF for the BSC-FRR analysis, as in all 
other TMFC analyses, and did not use data-derived nuisance regressors (i.e., GLMdenoise). For the BSC-FRR analysis, we 
did not perform upsampling of the task design matrix prior to convolution with HRF, since the GLMsignle toolbox requires 
that the task design have the same temporal resolution as the data to be convolved. 

In the current work, beta values for individual trials were calculated using LSA, LSS and FRR approaches. Pearson’s r 
correlations were calculated between the mean beta values extracted from the i-th and j-th ROIs, separately for task conditions 
A and B ({𝛽𝛽𝐴𝐴1, …, 𝛽𝛽𝐴𝐴𝐴𝐴} and {𝛽𝛽𝐵𝐵1, …, 𝛽𝛽𝐵𝐵𝐵𝐵}). When Pearson’s r correlations for task conditions A and B were converted to 
Fisher’s Z and subtracted. 

All MATLAB scripts for different types of BSC analysis are available on GitHub (https://github.com/IHB-IBR-
department/TMFC_simulations). We also provide a user-friendly SPM12-based toolbox with GUI and parallel computing 
capability for voxel-based and ROI-to-ROI BSC-LSS analysis, called TMFC_toolbox (https://github.com/IHB-IBR-
department/TMFC_toolbox). 

 

  

https://github.com/IHB-IBR-department/TMFC_simulations
https://github.com/IHB-IBR-department/TMFC_simulations
https://github.com/IHB-IBR-department/TMFC_toolbox
https://github.com/IHB-IBR-department/TMFC_toolbox
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Supplementary Information 8: Regression dynamic causal modelling 

Dynamic causal modelling (DCM) is a generative modelling framework for inferring effective connectivity from 
neuroimaging data (Friston et al., 2003). Originally, DCM was introduced for fMRI data and described changes in hidden 
neuronal states by a bilinear differential equation: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝐴𝐴 + ∑ 𝑢𝑢𝑘𝑘𝐵𝐵(𝑘𝑘)𝑚𝑚
𝑘𝑘=1 �𝑥𝑥 + 𝐶𝐶𝐶𝐶,      (S32) 

where x is the neural state, uk is the k-th experimental manipulation, A is the matrix of task-independent (endogenous) 
connection strengths, B(k) is the matrix representing connection strengths modulated by k-th experimental manipulation (task-
modulated or exogenous effective connectivity, TMEC), and C is the matrix representing the direct influence of driving 
inputs (co-activations). Conceptually, the {A, B, C} parameters can be matched with the {𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 , 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃} parameters from 
the PPI approach (see Eq. S9). 

 The combination of the neuronal state equation (Eq. S32) and the set of the Balloon-Windkessel haemodynamic model 
equations (Eqs. S6-8) constitutes a generative (forward) model. The model inversion is aimed at finding the parameters that 
enable the model to best explain the data and is based on Variational Bayes under the Laplace assumption (Friston et al., 
2007). The problem is that the original DCM is limited to parameter estimation of small brain networks (about ten nodes), 
since the model inversion becomes ill-posed and computationally demanding for large-scale (whole-brain) networks. To 
address this problem, a regression DCM (rDCM) approach has been proposed (Frassle et al., 2017). 

This approach applies several simplifications and modifications to the original DCM that include: (1) replacing the 
bilinear equation with a linear equation (removing the ∑ 𝑢𝑢𝑘𝑘𝐵𝐵(𝑘𝑘)𝑚𝑚

𝑘𝑘=1 x term, related to TMEC); (2) translation from the time 
domain to the frequency domain using the Fourier transformation; (3) replacing the non-linear haemodynamic model (the 
Balloon-Windkessel model) with a fixed, linear haemodynamic response function (HRF); (4) ignoring dependencies among 
parameters affecting distinct brain regions; and (5) replacing the log-normal prior on noise variance with a Gaussian prior. 
These modifications reformulate the model inversion as a special case of Bayesian linear regression and significantly improve 
computational efficiency for large-scale networks (Frassle et al., 2017). We used the rDCM method implemented in the 
TAPAS software collection (Frassle et al., 2021). 
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Supplementary Information 9: Asymmetry of the regression coefficients due to amplitude differences 

One possible reason for the PPI matrices asymmetry could be differences in the BOLD signal amplitudes, rather than 
causal directionality (Cole et al., 2016). When using linear regression to estimate the statistical relationship between two time 
series, the difference in time-series amplitudes typically makes the regression coefficients asymmetric with respect to the 
substitution of dependent and independent variables. This asymmetry does not reflect real causality between time series. 

Here, we can demonstrate it with two simple “toy” examples (https://github.com/IHB-IBR-
department/TMFC_simulations/tree/main/amplitude_difference_toy_examples). We generated correlated time series for 30 
ROIs and 100 subjects from a multivariate normal distribution with a mean of 100 and a covariance matrix with main diagonal 
elements equal 0.5 and off-diagonal elements equal 0.1. Each time series consisted of 400 time points. We then calculated 
the dependencies between each pair of ROIs using Pearson’s r correlation and linear regression. In this case, the connectivity 
matrices obtained by correlation and regression methods were similar (see Supplementary Fig. S11a). The regression-based 
connectivity matrix was close to symmetric, since the correlation between the upper and lower diagonal elements was very 
high, 𝑟𝑟(𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.90. The amplitude differences were small relative to the mean amplitude of the time series (mean 
amplitude difference across ROIs and subjects, 𝑎𝑎𝑎𝑎𝑎𝑎������𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = -0.0001). The correlation between the absolute amplitude 
differences and differences in beta coefficients from the upper and lower diagonal was close to zero (mean correlation across 
subjects, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) = -0.001).  

Next, we split 30 ROIs on two “functional modules”. The first 15 ROIs were assigned to Module #1 (M1), and the last 
15 ROIs were assigned to Module #2 (M2). We considered two examples with amplitude differences.  

In the first example, we added uncorrelated time series to the M1 (Fig. S11b). The uncorrelated time series were generated 
from a normal distribution with a mean of one and a standard deviation of 0.5. The mean amplitude difference across ROIs 
and subjects, 𝑎𝑎𝑎𝑎𝑎𝑎������𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.5, is relatively high compared to the mean amplitude of the time series of 4.7. In this example, we 
observed a clear difference between correlation-based and regression-based connectivity matrices. In the correlation-based 
matrix, we saw the largest connectivity decrease within M1, a medium decrease between M1 and M2, and no decrease within 
M2. We also observed a decrease within M1 and no decrease within M2 in the regression-based matrix. However, there was 
a decrease in connectivity estimates from M1 to M2 (M1M2, M1 – seed, M2 – target) and no decrease from M2 to M1 
(M2M1, M2 – seed, M1 – target). This made the regression-based matrix noticeably asymmetric (𝑟𝑟(𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.33). The 
correlation between the absolute amplitude differences and differences in beta coefficients from the upper and lower diagonal 
was high, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) = 0.80. Cole et al. (2016) previously obtained a similar result showing that adding an unshared 
signal can decrease source (or seed) betas and not change target betas. 

In the second example, we added correlated time series to the M1 (Fig. S11c). The correlated time series were generated 
from a multivariate normal distribution with a mean of one and a covariance matrix with main diagonal elements equal 0.5 
and off-diagonal elements equal 0.15. In the correlation-based matrix, we observed a connectivity increase within M1, a 
decrease between M1 and M2, and no decrease within M2. In the regression-based matrix, we also observed an increase 
within M1 and no decrease within M2. However, as in the previous example, connectivity estimates decreased from M1 to 
M2 and did not decrease from M2 to M1. In this example, there was also a high correlation between the absolute amplitude 
differences and differences in beta coefficients from the upper and lower diagonal, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) = 0.82. 

To summarize, introducing amplitude differences by adding uncorrelated and correlated signals into some functional 
module decreased the connectivity estimates from that module to other modules and did not change estimates from other 
modules to that module. Within-module connectivity estimates increased after adding correlated signals and decreased after 
adding uncorrelated signals. 

In the large-scale neural mass simulations, the time series for all ROIs had the same amplitudes for the rest condition. 
However, there were two potential sources of differences in amplitudes during task conditions. The first was the change of 
synaptic weights, and the second was the addition of co-activations. We verified that the change of synaptic weight did not 
change the amplitude differences between ROIs. However, the addition of co-activations leaded to amplitude differences and 
asymmetry of PPI matrices (in particular, the sPPI matrices). After FIR task regression, amplitude differences and the 
asymmetry of PPI matrices associated with these differences were eliminated. Below we consider several simulations in 
which we independently manipulated synaptic weights and co-activations. 

 
(А) Simulation with task-related synaptic weight changes and without adding co-activations. 
 For the block design with ten 20 s blocks per condition, the mean amplitude difference during task conditions across 100 

ROIs and 100 subjects was 𝑎𝑎𝑎𝑎𝑎𝑎������𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = 0.004 without adding co-activations, which is relatively small compared to the mean 
amplitude of 12.5. The gPPI matrix was close to symmetric, 𝑟𝑟(𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.97. The correlations between the absolute 
amplitude differences during task conditions and absolute differences in beta coefficients from the upper and lower diagonal 
of the “Cond A-B” matrix were close to zero. For condition A, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.002. For condition B, 

https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/amplitude_difference_toy_examples
https://github.com/IHB-IBR-department/TMFC_simulations/tree/main/amplitude_difference_toy_examples
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𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.001. Therefore, the change of synaptic weight did not induce the amplitude differences between 
ROIs. 

 
(B) Simulation without task-related synaptic weight changes and with adding co-activations. 
In the previous case, we changed the synaptic weights and did not add co-activations. Now, we consider simulation 

without synaptic weights changes, but with adding co-activations (see Supplementary Fig. S12). Co-activations were added 
to modules 1 (M1) and 3 (M3) in condition A and to modules 2 (M2) and 4 (M4) in condition B (Fig. S12b). The mean 
amplitude difference during task conditions across 100 ROIs and 100 subjects was 𝑎𝑎𝑎𝑎𝑎𝑎������𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = 0.6, which is comparable to 
the mean amplitude of 12.8. Adding co-activations is analogous to adding correlated signals, as in the second “toy” example 
described above (Fig. S11c). Therefore, we can expect an increase in beta parameters within and between M1 and M3 for 
condition A, as well as M2 and M4 for condition B. More importantly, we can expect a decrease in M1M2, M1M4, 
M3M2, M3M4 for condition A and decrease in M2M1, M2M3, M4M1, M4M3 for condition B (Fig. S12b). 
This should result in an asymmetric TMFC matrix (“Cond A-B”). Indeed, we can see the expected pattern of the asymmetry 
when using the sPPI method without FIR task regression (Fig. S12c). In this case, the asymmetry of regression coefficients 
was due differences in the BOLD signal amplitudes. The correlations between the absolute amplitude differences during task 
conditions and absolute differences in beta coefficients from the upper and lower diagonal of the “Cond A-B” matrix across 
subjects were high. For condition A, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.736. For condition B, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.737. The 
sPPI method failed to eliminate the effects related to co-activations. We observed significant FC differences between all 
regions after FDR thresholding, which were false positives. Meanwhile, when we used the gPPI method without FIR task 
regression, all false positives were eliminated (Fig. S12d). The asymmetry due to amplitude differences was also eliminated: 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.004 and 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.003. Furthermore, when we performed FIR task regression 
before TMFC analysis, the sPPI method did not produce false positives or demonstrate asymmetry due to amplitude 
differences: 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.004, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.003 (Fig. S12e). The same was true for the gPPI 
method with FIR task regression: 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.003, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.002 (Fig. S12f). Therefore, the 
gPPI method (with or without FIR task regression) as well as the sPPI method with FIR task regression protects against co-
activation effects and regression coefficient asymmetry due to amplitude differences. 

 
(C) Simulations with task-related synaptic weight changes and co-activations. 
All simulations presented in the main text were performed with the change of synaptic weights during task conditions and 

addition of co-activations, unless otherwise stated. To deal with co-activations, we performed FIR task regression before 
TMFC analysis. Thus, the asymmetry of the regression coefficients due to the amplitude differences was eliminated. For the 
block design simulation with task-related synaptic weight changes and co-activations, the correlations between the absolute 
amplitude differences during task conditions and absolute differences in beta coefficients from the upper and lower diagonal 
of the “Cond A-B” matrix were close to zero: 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.003 and 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.009. 

 
(D) Simulations with asymmetric ground-truth synaptic weights and without co-activations  
In the last section of the main text, we considered simulations with asymmetric ground-truth matrices (see Supplementary 

Fig. S10) without co-activations to test whether the gPPI method could in principle reveal true causal directionality. Here, 
we consider the best-case scenario: block design simulation with twenty 20 s blocks per condition (twice as much as in the 
default block design), high SNR = 5 and no HRF variability. The gPPI method was used with deconvolution and without a 
symmetrisation procedure. 

The mean amplitude difference during task conditions across 100 ROIs and 100 subjects was 𝑎𝑎𝑎𝑎𝑎𝑎������𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  = 0.002 without 
adding co-activations, which is relatively small compared to the mean amplitude of 4.9. The correlations between the absolute 
amplitude differences during task conditions and absolute differences in beta coefficients from the upper and lower diagonal 
of the “Cond A-B” matrix were close to zero. For condition A, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.051. For condition B, 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.039. Therefore, the asymmetry of the gPPI matrix was not related to the amplitude differences 
between ROIs. The gPPI asymmetry reflected the asymmetric ground-truth synaptic weights. The correlation between the 
the group-mean asymmetric gPPI matrix and asymmetric ground-truth “Cond A-B” matrix was 0.93. The percent of correct 
direction estimated (correct sign rate, CSR) was 100%. CSR was defined as the ratio between correctly identified sign of 
connections to the total number of non-zero ground-truth connections for the “Cond A-B” contrast: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐶𝐶𝐶𝐶𝐶𝐶) =
∑ ∑ ((|𝑇𝑇𝑖𝑖𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴×𝑆𝑆𝑖𝑖𝑖𝑖|+(𝑇𝑇𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴×𝑆𝑆𝑖𝑖𝑖𝑖))/2)𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

∑ ∑ |𝑇𝑇𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1

,   (S33) 

where 𝑆𝑆𝑖𝑖𝑖𝑖  is a signed N×N matrix representing the sign of the difference between the connectivity estimates for conditions 
A and B (“Cond A-B” contrast). 𝑇𝑇𝑖𝑖𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is a N×N signed matrix representing the asymmetric ground-truth signs for the 
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“Cond A-B” contrast. In “Cond A”, synaptic weights were increased for M4M3, M3M2, M2M1 and M1M4 (coded 
as 1 in 𝑇𝑇𝑖𝑖𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). In “Cond B”, synaptic weights were increased in the opposite direction M1M2, M2M3, M3M4 and 
M4M1 (coded as -1 in 𝑇𝑇𝑖𝑖𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). All other connections were coded as 0 in the 𝑇𝑇𝑖𝑖𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  matrix (see Fig. 10a in the main 

text). CSR of 50% means the sign was detected by chance. CSR of 100% means that the signs of all connections presented 
in the ground truth were correctly identified. CSR of 0% means the opposite of 100% (all signs are flipped). 

Thus, the gPPI method with deconvolution was able to reveal the true causal directionality in the best-case scenario. 
However, there are two important notes to make. First, even though CSR = 100%, none of the connections survived the FDR-
corrected threshold of 0.001. Second, when we shortened the scan duration, reduced the SNR, and, most importantly, 
introduced HRF variability, the ability of the gPPI method to correctly identify the direction of information flow was reduced 
to almost zero. 
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Supplementary Figures 

Supplementary Figure S1 

 
Figure S1. RSFC, BGFC and TSFC matrices as well as FC matrices obtained by different TMFC methods. sPPI and 
gPPI matrices were symmetrised. All PPI terms were calculated with the deconvolution step. (a, b) Results for the block 
design: working memory task (“2-back > 0-back”). (c, d) Results for the event-related design: stop-signal task (“Stop > Go”). 
(a, c) Unthresholded weighted group-mean matrices. (b, d) Thresholded weighted group-mean matrices representing the top 
10% connections.  
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Stop-signal task: weighted unthresholded matricesc
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Supplementary Figure S2 

 
Figure S2. Overlap between thresholded RSFC, BGFC and TSFC matrices and FC matrices obtained by different 
TMFC methods. sPPI and gPPI matrices were symmetrised. All PPI terms were calculated with the deconvolution step. (a) 
Results for the block design: working memory task. (b) Results for the event-related design: stop-signal task. The overlap 
was calculated between thresholded weighted group-mean matrices representing the top 10% connections. Overlap was 
defined as the ratio between overlapping connections with the same sign to the number of all connections in the two 
thresholded weighted (signed) matrices. We refer to this index as the Signed Dice Coefficient (SDC), which is similar to the 
original Dice Coefficient but takes into account the sign of connections.1 SDC of 0 means no overlap between thresholded 
signed matrices. SDC of 1 means complete overlap between positive and negative connections of two thresholded signed 
matrices.  

 
1 Dice Coefficient can be defined as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐷𝐷𝐷𝐷) =
2∑ ∑ |𝑊𝑊𝑖𝑖𝑖𝑖

(1)𝑁𝑁
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 ×𝑊𝑊𝑖𝑖𝑖𝑖

(2)|
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, 

where 𝑊𝑊𝑖𝑖𝑖𝑖
(1)and 𝑊𝑊𝑖𝑖𝑖𝑖

(2) are thresholded signed N×N matrices (consisting of 1, 0, -1) calculated by method (1) and method (2). 
When the Signed Dice Coefficient can be defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑆𝑆𝑆𝑆𝑆𝑆) =
2∑ ∑ ((|𝑊𝑊𝑖𝑖𝑖𝑖
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Supplementary Figure S3 

 
Figure S3. Correlations between unthresholded RSFC, BGFC and TSFC matrices and FC matrices obtained by 
different TMFC methods. To evaluate the similarity between the raw FC matrices, we calculated Pearson’s r correlations 
between lower diagonal elements. sPPI and gPPI matrices were symmetrised. All PPI terms were calculated with the 
deconvolution step. (a) Results for the block design: social cognition task. (b) Results for the event-related design: task-
switching task. 
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Supplementary Figure S4 

 
Figure S4. Overlap between thresholded RSFC, BGFC and TSFC matrices and FC matrices obtained by different 
TMFC methods. sPPI and gPPI matrices were symmetrised. All PPI terms were calculated with the deconvolution step. (a) 
Results for the block design: social cognition task. (b) Results for the event-related design: task-switching task. The overlap 
was calculated between thresholded weighted group-mean matrices representing the top 10% connections. Overlap was 
defined as the ratio between overlapping connections with the same sign to the number of all connections in the two 
thresholded weighted (signed) matrices. We refer to this index as the Signed Dice Coefficient (SDC), which is similar to the 
original Dice Coefficient but takes into account the sign of connections. SDC of 0 means no overlap between thresholded 
signed matrices. SDC of 1 means complete overlap between positive and negative connections of two thresholded signed 
matrices. 
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Supplementary Figure S5 

 

Figure S5. The emergence of ultra-slow BOLD signal fluctuations from ultra-slow modulations of fast oscillatory 
activity (block design simulation). (a) Ground-truth symmetric synaptic weight (wji) matrices for a single subject. For the 
long-range connections between Wilson-Cowan units (wji), we used three synaptic weight matrices corresponding to two task 
conditions (“Cond A” and “Cond B”) and interim “Rest” periods. Each synaptic weight matrix consisted of 100 brain regions 
and 4 functional modules. (b) Gamma-band neuronal synchronisation estimated by the phase-locking value (ρji) for a single 
subject. The simulation was performed for the block design with ten 20 s blocks per condition. (c) Example of simulated 
synaptic activity (SA) and gamma-band envelope for one of 100 connected brain regions (ROIs). (d) The time series of the 
gamma-band envelope and BOLD signal generated by the Balloon-Windkessel model based on simulated SA. We used the 
standard parameters of the haemodynamic model (Friston et al., 2003). (e) One second of simulated SA. (f) Power spectral 
density (PSD) of simulated SA. The main peak at 40 Hz (gamma-band oscillations). (g) Cross-correlation between the 
gamma-band envelope and BOLD signal. The maximum correlation r = 0.81 corresponds to a time lag of 3.5 seconds. (h) 
Power spectral density of the BOLD signal.  
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Supplementary Figure S6 

 
Figure S6. The cPPI method fails to estimate TMFC. Simulation results for the block design with ten 20 s blocks per 
condition, sample size N = 100, SNR = 0.4, and TR = 2 s. (a) Expected FC matrices based on ground-truth synaptic weight 
matrices. (b) Relationship between weighted unthresholded FC matrices obtained by the correlation difference (CorrDiff) 
and correlational PPI (cPPI) methods. To evaluate the similarity between unthresholded matrices, we calculated Pearson’s r 
correlation. (c-e) Relationship between weighted thresholded FC matrices obtained by the CorrDiff and cPPI methods. To 
evaluate similarity between thresholded matrices, we calculated Dice coefficients. In this case, the original Dice coefficients 
were numerically identical to the signed Dice coefficients (SDC). Matrices were thresholded to the (c) top 50% connections, 
(d) top 30% connections, and (e) top 10% connections. In all cases, the cPPI matrices calculated for the “Cond A-B” contrast 
were similar to the CorrDiff matrices calculated for the “Cond A+B” contrast. (c) The top 50% and top 30% of connections 
of the cPPI matrix reflect summary FC in both task conditions and resting state. (e) The top 10% of connections of the cPPI 
matrix reflect resting-state (task-independent) connections. The PPI terms for the “Cond A-B” contrast were calculated using 
deconvolution. The color scales were adjusted for each matrix based on the maximum absolute value and were assured to be 
positive and negative symmetrical. 
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Supplementary Figure S7 

 

Figure S7. Asymmetry of gPPI matrices in block and event-related designs. Results for the working memory task and 
the stop-signal task. (a, b) Group-mean gPPI matrices without symmetrisation procedure for the block and event-related 
design tasks (upper panels). Scatterplots for the upper and lower diagonal elements of the corresponding gPPI matrices (lower 
panels). (c, d) Histograms of correlations between the upper and lower diagonal elements of individual subjects’ matrices. 
Blue and red colours represent gPPI results without (w/o) and with (w/) the deconvolution step, respectively. The color scales 
were adjusted for each matrix based on the maximum absolute value and were assured to be positive and negative 
symmetrical.  
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Supplementary Figure S8 
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Figure S8. Asymmetry of gPPI matrices in block and event-related designs. Results for the social cognition task and the 
task switching task. (a, b) Group-mean gPPI matrices without symmetrisation procedure for the block and event-related 
design tasks (upper panels). Scatterplots for the upper and lower diagonal elements of the corresponding gPPI matrices (lower 
panels). (c, d) Histograms of correlations between the upper and lower diagonal elements of individual subjects’ matrices. 
Blue and red colours represent gPPI results without (w/o) and with (w/) the deconvolution step, respectively. The color scales 
were adjusted for each matrix based on the maximum absolute value and were assured to be positive and negative 
symmetrical.  
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Supplementary Figure S9 

 
Figure S9. Spurious asymmetry of gPPI matrices. Here, we considered simulations with symmetric ground-truth matrices. 
We calculated correlations between the upper and lower diagonal elements of the group-mean gPPI matrices to assess matrix 
asymmetry. By default, we considered the event-related design to consist of one hundred 1 s events per condition, mean ISI 
= 6 s, TR = 2 s, and sample size N = 100. (a) Dependence of gPPI matrix asymmetry on SNR. (b) Asymmetry depending on 
sample size. Here, PPI terms were calculated using deconvolution. Without deconvolution, the asymmetry does not arise. (с) 
Asymmetry depending on the duration of a single event. (d) Asymmetry depending on the mean interstimulus (ISI) interval. 
(e) Asymmetry depending on the number of events per condition (Ne). (f) Asymmetry depending on the repetition time (TR) 
for a fixed scan time (23.6 minutes). Boxplots whiskers are drawn within the 1.5 interquartile range (IQR), computed from 
1000 random resamplings with replacement. Blue and red bars represent gPPI matrix symmetry without (w/o) and with (w/) 
the deconvolution step, respectively. 
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Supplementary Figure S10 

 

Figure S10. Asymmetric ground-truth matrices. (a) Ground-truth asymmetric synaptic weight (wji) matrices for a single 
subject. For the long-range connections between Wilson-Cowan units (wji), we used three synaptic weight matrices 
corresponding to two task conditions (“Cond A” and “Cond B”) and interim “Rest” periods. Each synaptic weight matrix 
consisted of 100 brain regions and 4 functional modules. In “Cond A”, synaptic weights were increased from module №1 to 
№4, from №4 to №3, from №3 to №2, and from №2 to №1. In “Cond B”, synaptic weights were increased in the opposite 
direction. (b) Gamma-band neuronal synchronisation estimated by the phase-locking value (ρji) for a single subject. The 
simulation was performed for the block design with ten 20 s blocks per condition. Note that phase-locking value (PLV) is a 
functional connectivity method that cannot reflect the direction of information flow and produces symmetrical matrices. 
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Supplementary Figure S11 

 
Figure S11. Asymmetry of the regression coefficients due to amplitude differences. To demonstrate the impact of 

amplitude differences on the regression coefficients asymmetry, we performed simple “toy” example simulations. (a) 
Correlated time series for 30 ROIs and 100 subjects were generated from a multivariate normal distribution with a mean of 
100 and a covariance matrix with main diagonal elements equal 0.5 and off-diagonal elements equal 0.1. Each time series 
consisted of 400 time points. Correlation analysis performed using Pearson’s r correlation. Regression analysis performed 
using simple linear regression. Histograms show the distribution of correlation between the absolute amplitude differences 
and beta coefficients differences (upper diagonal minus lower diagonal) for each subject. Mean correlation across subjects 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) = -0.001. (b) Example #1. Adding uncorrelated signals to the first 15 ROIs (Module #1, M1), but not to the 
last 15 ROIs (Module #2, M2). The uncorrelated time series were generated from a normal distribution with a mean of one 
and a standard deviation of 0.5. Correlation and regression-based approaches demonstrate FC decrease within M1 and no 
decrease within M2. Regression-based approach show FC decrease from M1 to M2 (M1M2, M1 – seed, M2 – target) and 
no decrease from M2 to M1 (M2M1, M2 – seed, M1 – target). 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) = 0.80. (c) Example #2. Adding correlated 
signals to the first 15 ROIs (Module #1, M1), but not to the last 15 ROIs (Module #2, M2). The correlated time series were 
generated from a multivariate normal distribution with a mean of one and a covariance matrix with main diagonal elements 
equal 0.5 and off-diagonal elements equal 0.15. Correlation and regression-based approaches demonstrate FC increase within 
M1 and no change within M2. As in previous example, regression-based approach show FC decrease from M1 to M2 and no 
decrease from M2 to M1. 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) = 0.82. 
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Supplementary Figure S12 

 
Figure S12. Asymmetry of the regression coefficients due to co-activation. In this example, we simulated BOLD 

signals without changing synaptic weights during task conditions, but adding co-activations. The simulation was performed 
for the block design with ten 20 s blocks per condition. SNR = 0.4, TR = 2 s. (a) Synaptic weights were the same for the 
resting condition, task condition A (Cond A) and condition B (Cond B) blocks. True TMFC is absent. Any significant 
difference in FC between the two task conditions (Cond A-B) will be a false positive. (b) Co-activations were added to 
modules 1 (M1) and 3 (M3) in condition A and to modules 2 (M2) and 4 (M4) in condition B. We can expect an increase in 
beta parameters within and between M1 and M3 for condition A, as well as M2 and M4 for condition B. We also can expect 
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a decrease in M1M2, M1M4, M3M2, M3M4 for condition A and decrease in M2M1, M2M3, M4M1, 
M4M3 for condition B. (c) We obtained the expected asymmetric regression coefficients when using the sPPI method 
without FIR task regression. In this case, the sPPI method failed to eliminate the effects related to co-activations. We see 
significant FC differences between all regions after thresholding. All of them are false positives. The asymmetry of regression 
coefficients is due differences in the BOLD signal amplitudes, rather than causal directionality. Histograms show the 
distribution of correlations between the absolute amplitude differences during each task condition (Rest, Cond A, Cond B) 
and beta coefficients differences (difference between the upper and lower diagonal elements of the “Task Independent” matrix 
and “Cond A-B” matrix) for each subject. For the rest condition, mean correlation across subjects was close to zero, 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|) = 0.013. However, correlations were high for task conditions. For condition A, 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.736. For condition B, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = 0.737. (d) When we used the gPPI method without 
FIR task regression, all false positives were eliminated. The asymmetry due to amplitude differences was also eliminated: 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|) = -0.005, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.004, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.003. (e) When we 
performed FIR task regression before TMFC analysis, the sPPI method did not produce false positives or demonstrate 
asymmetry due to amplitude differences, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|) = -0.009, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.004, 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.003. (f) The same was true for the gPPI method with FIR task regression: 
𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|) = -0.006, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.003, 𝑟̅𝑟(|𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵|,|𝛽𝛽𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐴𝐴−𝐵𝐵|) = -0.002. All PPI terms were 
calculated with deconvolution and with mean centering. sPPI and gPPI matrices were thresholded at α = 0.001 (two-sided 
one-sample t test, false discovery rate (FDR) correction). sPPI and gPPI matrices were not symmetrised. The color scales 
were adjusted for each matrix based on the maximum absolute value and were assured to be positive and negative 
symmetrical. 
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Supplementary Figure S13 
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Figure S13. Dynamics of neuronal activity produced by a non-linear stochastic model and the Wilson-Cowan neural 
mass model. A simulation study by Cole et al. (2019) used a large-scale neural mass model with 300 regions obeying 
simplified Wilson-Cowan type equations. The authors sought to optimize the model simultaneously for both simplicity and 
biological plausibility. To simplify the model, they removed the inhibitory subpopulations and allowed the remaining 
populations to have both positive and negative synaptic weights. Similar neural mass reductions have also been used in 
several previous studies (Galan, 2008; Cabral et al., 2012; Stern et al., 2014; Messe et al., 2015). We reproduced the Cole et 
al. (2019) simulations, varying the model parameters, and did not observe limit-cycle oscillations. This may indicate that the 
dynamics of the Cole et al. (2019) model are driven only by the injected Gaussian noise. In the absence of background noise, 
the neuronal activity simulated by this non-linear stochastic model converge to a constant value, similar to the linear 
stochastic model (Galan, 2008; Cabral et al., 2012). Therefore, this non-linear stochastic model (NLSM) neglects the fast 
oscillatory nature of neuronal activity and does not produce the dynamics observed in electrophysiological data. In the current 
study, we used the Wilson-Cowan model (WCM) with separate excitatory and inhibitory subpopulations, which is able to 
produce self-sustained limit-cycle (LC) oscillations. (a, e) Synaptic weights between regions for NLSM and WCM, 
respectively. (b, f) One second of neuronal activity simulated by NLSM and WCM. (c, g) Power spectral density (PSD) of 
neuronal activity simulated by NLSM and WCM. NSLM gives rise to a 1/f power spectrum. At the same time, the power 
spectrum for the WCM has a main peak at 40 Hz (gamma-band oscillations). (d, h) Bifurcation diagrams for NLSM and 
WCM. They represent the relationship between the minimum/maximum neuronal activity in one of many coupled brain 
regions and the excitatory background drive in the absence of background noise. Excitatory background drive (PE) 
corresponds to the bias parameter in Cole et al. (2019). NLSM has no bifurcation points and does not produce to LC 
oscillations. WCM has two bifurcation points and produces LC oscillations. 
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Supplementary Figure S14 

 
Figure S14. Sensitivity and specificity of TMFC methods do not depend on the scaling factor after FIR task regression. 
Simulation results for sample size N = 100, SNR = 0.4 and TR = 2 s. (a) Sensitivity (true positive rate, TPR) and specificity 
(true negative rate, TNR) of different TMFC methods for the block design with ten 20 s blocks per condition. (b) TPR and 
TNR for the event-related design with one hundred 1 s events per condition and mean ISI = 6 s. All TMFC matrices were 
calculated with FIR task regression. All PPI terms were calculated with and without the deconvolution step. sPPI and gPPI 
matrices were symmetrised. Boxplots whiskers are drawn within the 1.5 interquartile range (IQR), computed from 1000 
random resamplings with replacement. 
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Supplementary Figure S15 

 
Figure S15. Correlation between neuronal signals estimated by SPM12 PEB and ridge regression. Results for the block 
design simulation. SNR = 0.4, TR = 2 s. The maximum correlation r = 0.998 is achieved with a regularisation parameter α = 
0.005. 
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Supplementary Figure S16 

 
Figure S16. Comparison of neuronal signals and PPIs estimated by SPM12 PEB and ridge regression. Results for the 
block design simulation. SNR = 0.4, TR = 2 s. (a-c) Example of neuronal signals estimated using SPM12 PEB and ridge 
regression with different values of the regularisation parameter α. (a) When α = 0, ridge regression reduces to a least squares 
estimation. When the regularisation parameter is close to zero, there is a risk of overfitting. (b) Increasing regularisation 
parameter α results in a smoother estimated neuronal signal. (с) The maximum correlation between neuronal signals estimated 
by SPM12 PEB and ridge regression is achieved with a regularisation parameter α = 0.005. (d) At α = 0.005, the correlation 
between convolved PPI regressors calculated using SPM12 PEB and ridge regression is r = 0.936. 
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Supplementary Figure S17 

 
Figure S17. Comparison PPI matrices estimated with and without mean centering of the task design regressor prior 
to PPI term calculation (block design simulation). The simulation was performed for the block design with ten 20 s blocks 
per condition. SNR = 0.4, TR = 2 s. (a) PPI terms were calculated without (w/o) deconvolution and with (w/) mean centering. 
(b) PPI terms were calculated without (w/o) deconvolution and without (w/o) mean centering. (c) PPI terms were calculated 
with (w/) deconvolution and with (w/) mean centering. (d) PPI terms were calculated with (w/) deconvolution and without 
(w/o) mean centering. sPPI and gPPI matrices were thresholded at α = 0.001 (two-sided one-sample t test, false discovery 
rate (FDR) correction). To evaluate the similarity between matrices, we used Pearson’s r correlation. sPPI and gPPI matrices 
were symmetrised. The color scales were adjusted for each matrix based on the maximum absolute value and were assured 
to be positive and negative symmetrical. 
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Supplementary Figure S18 

 
Figure S18. Comparison PPI matrices estimated with and without mean centering of the task design regressor prior 
to PPI term calculation (event-related design simulation). The simulation was performed for the event-related design with 
one hundred 1 s events per condition and mean interstimulus interval (ISI) = 6 s. SNR = 0.4, TR = 2 s. (a) PPI terms were 
calculated without (w/o) deconvolution and with (w/) mean centering. (b) PPI terms were calculated without (w/o) 
deconvolution and without (w/o) mean centering. (c) PPI terms were calculated with (w/) deconvolution and with (w/) mean 
centering. (d) PPI terms were calculated with (w/) deconvolution and without (w/o) mean centering. sPPI and gPPI matrices 
were thresholded at α = 0.001 (two-sided one-sample t test, false discovery rate (FDR) correction). To evaluate the similarity 
between matrices, we used Pearson’s r correlation. sPPI and gPPI matrices were symmetrised. The color scales were adjusted 
for each matrix based on the maximum absolute value and were assured to be positive and negative symmetrical. 
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Supplementary Figure S19 
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Figure S19. Comparison PPI matrices estimated with and without mean centering of the task design regressor prior 
to PPI term calculation (unbalanced event-related designs from the CNP dataset). The simulations were performed for 
the unbalanced event-related designs taken from the CNP dataset. The sample size was the same as for the CNP dataset, N = 
115 subjects. SNR = 0.4, TR = 2 s. (a-b) The stop-signal task consisted of 32 Stop-signal trials and 96 Go trials lasted for 1.5 
s. Mean ISI = 1 s. The contrast of interest is “Stop-Go”. (c-d) The task-switching task consisted of 24 “Switch” trials and 72 
“No Switch” lasted for 1 s. Mean ISI = 3 s. (a, c) PPI terms were calculated (w/) deconvolution and with (w/) mean centering. 
(b, d) PPI terms were calculated with (w/) deconvolution and without (w/o) mean centering. (a-d) The gPPI method produces 
similar TMFC matrices (“Stop-Go” and “Switch-NoSwitch” or “S-NS”) w/ and w/o mean centering. (a, c) The sPPI method 
produces TMFC matrices similar to the gPPI method, only w/ mean centering. (b, d) W/o mean centering, the sPPI method 
shows greater sensitivity to FC modulations caused by task condition for which considerably more trials are available (Go 
condition for the stop-signal task and “No Switch” condition for the task-switching task, see connections between functional 
modules 1 and 4, 2 and 3). However, we also see significant FC differences within each functional module that are associated 
with task-unrelated spontaneous fluctuations when using sPPI w/o mean centering. False positive results are highlighted with 
red squares and red arrows. Task-unrelated spontaneous fluctuations are present both in the rest condition and task conditions 
(high connectivity within each functional module). Therefore, in each condition there are both task-related and task-unrelated 
effects. The difference between the two well-balanced conditions should subtract task-unrelated effects (here, effects within 
each functional module). However, in unbalanced designs this may not be the case. Using sPPI w/o mean centering, we see 
higher connectivity within each functional module in the condition with a large number of trials compared to the condition 
with a small number of trials. This false positive result can be avoided if we apply mean centering to the sPPI method or use 
the gPPI method w/ or w/o mean centering. sPPI and gPPI matrices were thresholded at α = 0.001 (two-sided one-sample t 
test, false discovery rate (FDR) correction). To evaluate the similarity between matrices, we used Pearson’s r correlation. 
sPPI and gPPI matrices were symmetrised. The color scales were adjusted for each matrix based on the maximum absolute 
value and were assured to be positive and negative symmetrical. 

  



35 
 

Supplementary Tables 

Supplementary Table S1 

Terms used to refer to different types of FC in this work and previous studies 

Definition of FC type Terms used in previous studies Terms used in this work 

Correlation of the whole time 
series of the preprocessed resting-
state BOLD signal 
 

• Rest FC  
(Cole et al., 2014, 2019) 

• Rest-based FC 
(Krienen et al., 2014; Greene et al., 2018) 

• Resting-state FC  
(Rehme et al., 2013; Cole et al., 2014, 2019; 
Krienen et al., 2014; Watanabe et al., 2014; 
Greene et al., 2018; Lynch et al., 2018; Di & 
Biswal, 2019; Gao et al., 2019; Yang et al., 
2020; Zhang et al., 2023; Zhao et al., 2023) 

Resting-state FC (RSFC) 

Correlation of the whole time 
series of the preprocessed task-
state BOLD signal 
 

• Task FC  
(Gao et al., 2019; Yang et al., 2020) 

• Task-based FC 
(Rehme et al., 2013; Greene et al., 2018; Gao 
et al., 2019; Zhao et al., 2023) 

• Task-state FC 
(Rehme et al., 2013; Lynch et al., 2018; 
Zhang et al., 2023) 

Task-state FC (TSFC) 

Correlation of the whole residual 
time series after task regression 
 

• Background FC 
(Al-Aidroos et al., 2012; Norman-Haignere et 
al., 2012; Cordova et al., 2016) 

• Task-residualized FC 
(Raud et al., 2023) 

• Task-model-residual FC  
(Zhao et al., 2023) 

Background FC (BGFC) 

Correlation of the residual time 
series after task regression 
restricted to particular task 
condition 
 

• Task FC  
(Cole et al., 2014, 2019; Krienen et al., 2014; 
Gratton et al., 2016) 

• Task-based FC 
(Krienen et al., 2014) 

• Task-state FC 
(Cole et al., 2019) 

• Background FC  
(Griffis et al., 2015) 

Correlation difference (CorrDiff) 
approach after FIR task regression 

(FC matrices calculated separately for 
“Condition A”, “Condition B” and 

“Rest” blocks) 
 

Changes in FC measures 
(correlation or regression 
coefficients) during one condition 
compared to another, eliminating 
the influence of spontaneous task-
independent fluctuations and co-
activations 
 

• Task-based FC 
(Poon et al., 2022; Doganci et al., 2023) 

• Task-state FC 
(Cole et al., 2013, 2019) 

• Task-modulated FC 
(Di & Biswal, 2019; Yang et al., 2020) 

• Task-related FC 
(Fornito et al., 2012; Doganci et al., 2023) 

• Task-evoked FC 
(Soreq et al., 2019) 

• Task-specific FC 
(Watanabe et al., 2014) 

• Task-dependent FC 
(Harrison et al., 2016; Xu et al., 2017; Poon 
et al., 2022) 

• Context-dependent FC 
(Dodel et al., 2005; Cole et al., 2013; 
Harrison et al., 2016) 

• Context-modulated FC 
(Cisler et al., 2014) 

• Context-specific FC 
(Yin et al., 2021) 
 

Task-modulated FC (TMFC) 
(“Condition A vs Condition B” 

contrast) 

 



36 
 

 

Supplementary Table S2 

Overview of previous TMFC simulation studies. 

Study Neural activity 
simulation 

Task design, time 
repetition (TR) 

Objectives Results Limitations 

1) Gitelman et al. 
(2003) 

• Pair of regions 
• Delta functions 

• Event-related 
• Single TR 

• Introduce 
deconvolution step in 
sPPI 

• Deconvolution step allow 
to model interactions at 
neuronal level 

• Biophysically 
simplified model 
• Single TR 

2) Kim & 
Horwitz (2008) 

• Large-scale 
(8 regions)  
• Wilson-Cowan 
model 

• Block 
• Distinct TR 

• Compare 
correlation difference 
and sPPI approaches 
• Validate 
deconvolution step 
• Investigate how TR 
and haemodynamic 
delay affect sPPI 
performance 

• PPI better reflect TMFC 
than simple correlation 
difference 
• sPPI with and without 
deconvolution produces 
similar results 
• TR and haemodynamic 
delay do not have much of 
an impact on TMFC 

• Block design 
only 

3) McLaren et al. 
(2012) 

• Pairs of regions 
• Boxcar 
functions 
 

• Event-related 
• Single TR 

• Introduce gPPI 
approach 
• Compare sPPI and 
gPPI approaches 

• gPPI is suitable for 
designs with more than two 
conditions 
• gPPI estimate TMFC 
better than sPPI 

• Biophysically 
simplified model 
• Single TR 

4) Cisler et al. 
(2013) 

• Pair of regions 
• Boxcar 
functions 

• Block 
• Event-related 
• Single TR 

• Compare sPPI, gPPI 
and BSC approaches 
for different task 
designs 

• gPPI and BSC are more 
powerful than sPPI 
• gPPI better for block 
designs 
• BSC better for event-
related designs with more 
trial repetitions 
 

• Biophysically 
simplified model 
• Single TR 

5) Abdulrahman 
& Henson (2016) 

• Pair of regions 
• Delta functions 

• Event-related 
• Single TR 

• Compare BSC 
based on Least 
squares all (LSA) and 
Least Squares 
Separate (LSA) 
approaches  

• LSS better than LSA when 
scanner noise is higher than 
trial-by-trial variability 
(especially for rapid 
designs) 

• Biophysically 
simplified model 
• Single TR 

6) Cole et al. 
(2019) 

• Large-scale 
(300 regions) 
• Non-linear 
stochastic model 
 

• Block 
• Single TR 

• Evaluate FC 
inflation induced by 
task co-activations 

• TMFC estimation by gPPI 
is inflated by task co-
activations 

• Block design 
only 
• Limited 
biophysical 
interpretability 
• Single TR 
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Supplementary Table S3 

Marginal mean comparison of the sensitivity of TMFC methods for the block design. 

Comparison  Mean SE t pbonf Prior Odds Posterior Odds Log(BF10, U) 
CorrDiff  gPPI (w/ dec)  -29.757  0.053  -559.255  < .001  0.320 ∞ 1215.642 
   gPPI (w/o dec)  -2.659  0.053  -49.975  < .001  0.320 772.877 7.791 
   sPPI (w/ dec)  -30.126  0.053  -566.197  < .001  0.320 ∞ 1248.660 
   sPPI (w/o dec)  -2.901  0.053  -54.513  < .001  0.320 6437.832 9.911 
gPPI (w/ dec)  gPPI (w/o dec)  27.098  0.053  509.281  < .001  0.320 ∞ 994.462 
   sPPI (w/ dec)  -0.369  0.053  -6.942  < .001  0.320 0.009 -3.595 
   sPPI (w/o dec)  26.856  0.053  504.742  < .001  0.320 ∞ 973.814 
gPPI (w/o dec)  sPPI (w/ dec)  -27.467  0.053  -516.222  < .001  0.320 ∞ 1024.142 
   sPPI (w/o dec)  -0.241  0.053  -4.539  < .001  0.320 0.008 -3.700 
sPPI (w/ dec)  sPPI (w/o dec)  27.226  0.053  511.684  < .001  0.320 ∞ 1003.137 
The marginal means are averaged over the levels of the signal-to-noise ratio. p values were adjusted for 10 t tests using Bonferroni 
correction. Bayesian comparisons are based on the default t test with a Cauchy (0, r = 1/20.5) prior. The posterior odds have been corrected 
for multiple testing by fixing the prior probability that the null hypothesis holds across all comparisons to 0.5. The "U" in the Bayes factor 
denotes that it is uncorrected. PPI terms were calculated with (w/) and without (w/o) the deconvolution step (dec). sPPI and gPPI matrices 
were symmetrised. Comparisons that show at least “substantial” evidence in favour of the null hypothesis (LogBF10 < 1.1) are highlighted 
in bold. 

Supplementary Table S4 

Marginal mean comparison of the sensitivity of TMFC methods for the event-related design. 

Comparison  Mean SE t pbonf Prior Odds Posterior Odds Log(BF10, U) 
BSC-FRR  BSC-LSA  37.510  0.042  889.936  < .001  0.219 ∞ 2188.752 
  BSC-LSS  -3.090  0.042  -73.316  < .001  0.219 1.241×10+8 20.155 
  gPPI (w/ dec)  -1.504  0.042  -35.686  < .001  0.219 1.061 1.578 
  gPPI (w/o dec)  36.654  0.042  869.630  < .001  0.219 ∞ 2102.823 
  sPPI (w/ dec)  -1.678  0.042  -39.810  < .001  0.219 4.088 2.927 
  sPPI (w/o dec)  36.618  0.042  868.764  < .001  0.219 ∞ 2102.619 
BSC-LSA  BSC-LSS  -40.601  0.042  -963.775  < .001  0.219 ∞ 2622.547 
   gPPI (w/ dec)  -39.015  0.042  -926.125  < .001  0.219 ∞ 2372.147 
   gPPI (w/o dec)  -0.856  0.042  -20.317  < .001  0.219 0.017 -2.556 
   sPPI (w/ dec)  -39.188  0.042  -930.251  < .001  0.219 ∞ 2397.846 
  sPPI (w/o dec)  -0.892  0.042  -21.183  < .001  0.219 0.019 -2.447 
BSC-LSS  gPPI (w/ dec)  1.586  0.042  37.650  < .001  0.219 3.273 2.704 
   gPPI (w/o dec)  39.745  0.042  943.458  < .001  0.219 ∞ 2530.145 
   sPPI (w/ dec)  1.412  0.042  33.524  < .001  0.219 0.879 1.390 
  sPPI (w/o dec)  39.708  0.042  942.592  < .001  0.219 ∞ 2530.481 
gPPI (w/ dec)  gPPI (w/o dec)  38.159  0.042  905.808  < .001  0.219 ∞ 2283.728 
   sPPI (w/ dec)  -0.174  0.042  -4.126  < .001  0.219 0.005 -3.718 
  sPPI (w/o dec)  38.122  0.042  904.942  < .001  0.219 ∞ 2283.728 
gPPI (w/o dec)  sPPI (w/ dec)  -38.332  0.042  -909.934  < .001  0.219 ∞ 2309.017 
  sPPI (w/o dec)  -0.037  0.042  -0.867  1.000  0.219 0.005 -3.790 
sPPI (w/ dec)  sPPI (w/o dec)  38.296  0.042  909.068  < .001  0.219 ∞ 2309.050 
The marginal means are averaged over the levels of the signal-to-noise ratio. p values were adjusted for 21 t tests using Bonferroni 
correction. Bayesian comparisons are based on the default t test with a Cauchy (0, r = 1/20.5) prior. The posterior odds have been 
corrected for multiple testing by fixing the prior probability that the null hypothesis holds across all comparisons to 0.5. The "U" in the 
Bayes factor denotes that it is uncorrected. PPI terms were calculated with (w/) and without (w/o) the deconvolution step (dec). sPPI and 
gPPI matrices were symmetrised. Comparisons that show at least “substantial” evidence in favour of the null hypothesis (LogBF10 < 1.1) 
are highlighted in bold.
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Supplementary Table S5 
Pairwise comparison of the sensitivity of TMFC methods for event-related designs with different event durations. 
Comparison  Mean SE t pbonf Prior Odds Posterior Odds Log(BF10, U) 

Event duration = 100 ms 
BSC-FRR  BSC-LSA  12.238  0.100  122.217  < .001  0.047 ∞ 2118.210 
  BSC-LSS  -1.757  0.100  -17.551  < .001  0.047 9.592×10+29  72.087 
  gPPI (w/ dec)  0.270  0.100  2.700  1.000  0.047 0.023 -0.721 
  sPPI (w/ dec)  0.294  0.100  2.937  1.000  0.047 0.034 -0.323 
BSC-LSA  BSC-LSS  -13.995  0.100  -139.768  < .001  0.047 ∞ 2358.555 
   gPPI (w/ dec)  -11.968  0.100  -119.517  < .001  0.047 ∞ 2489.800 
   sPPI (w/ dec)  -11.944  0.100  -119.280  < .001  0.047 ∞ 2471.492 
BSC-LSS  gPPI (w/ dec)  2.028  0.100  20.251  < .001  0.047 5.426×10+49  117.569 
  sPPI (w/ dec)  2.052  0.100  20.488  < .001  0.047 3.707×10+50  119.491 
gPPI (w/ dec)  sPPI (w/ dec)  0.024  0.100  0.237  1.000  0.047 0.002 -2.968 

Event duration = 250 ms 
BSC-FRR  BSC-LSA  48.364  0.100  482.999  < .001  0.047 ∞ 4134.168 
  BSC-LSS  -6.152  0.100  -61.441  < .001  0.047 6.244×10+211  490.728 
  gPPI (w/ dec)  1.111  0.100  11.099  < .001  0.047 2.477×10+7  20.077 
  sPPI (w/ dec)  1.010  0.100  10.089  < .001  0.047 347039.912 15.809 
BSC-LSA  BSC-LSS  -54.516  0.100  -544.440  < .001  0.047 ∞ 4464.545 
   gPPI (w/ dec)  -47.253  0.100  -471.900  < .001  0.047 ∞ 4389.013 
   sPPI (w/ dec)  -47.354  0.100  -472.911  < .001  0.047 ∞ 4364.078 
BSC-LSS  gPPI (w/ dec)  7.264  0.100  72.540  < .001  0.047 ∞ 724.413 
  sPPI (w/ dec)  7.162  0.100  71.529  < .001  0.047 2.074×10+303  701.464 
gPPI (w/ dec)  sPPI (w/ dec)  -0.101  0.100  -1.011  1.000  0.047 0.003 -2.757 

Event duration = 500 ms 
BSC-FRR  BSC-LSA  58.066  0.100  579.889  < .001  0.047 ∞ 4492.852 
  BSC-LSS  -4.311  0.100  -43.048  < .001  0.047 6.935×10+169 394.125 
  gPPI (w/ dec)  0.290  0.100  2.898  1.000  0.047 0.02 -0.85 
  sPPI (w/ dec)  -0.013  0.100  -0.133  1.000  0.047 0.002 -2.986 
BSC-LSA  BSC-LSS  -62.376  0.100  -622.937  < .001  0.047 ∞ 4834.299 
   gPPI (w/ dec)  -57.776  0.100  -576.991  < .001  0.047 ∞ 4648.812 
   sPPI (w/ dec)  -58.079  0.100  -580.022  < .001  0.047 ∞ 4700.323 
BSC-LSS  gPPI (w/ dec)  4.601  0.100  45.946  < .001  0.047 3.355×10+216  501.620 
  sPPI (w/ dec)  4.297  0.100  42.915  < .001  0.047 3.986×10+200  464.951 
gPPI (w/ dec)  sPPI (w/ dec)  -0.304  0.100  -3.032  1.000  0.047 0.042 -0.126 

Event duration = 1000 ms 
BSC-FRR  BSC-LSA  50.693  0.100  506.258  < .001  0.047 ∞ 4675.406 
  BSC-LSS  -3.012  0.100  -30.080  < .001  0.047 7.787×10+262 608.381 
  gPPI (w/ dec)  -1.846  0.100  -18.439  < .001  0.047 4.955×10+118 276.357 
  sPPI (w/ dec)  -2.028  0.100  -20.249  < .001  0.047 1.535×10+144 335.052 
BSC-LSA  BSC-LSS  -53.705  0.100  -536.338  < .001  0.047 ∞ 4917.987 
   gPPI (w/ dec)  -52.539  0.100  -524.697  < .001  0.047 ∞ 4883.486 
   sPPI (w/ dec)  -52.721  0.100  -526.507  < .001  0.047 ∞ 4907.266 
BSC-LSS  gPPI (w/ dec)  1.166  0.100  11.641  < .001  0.047 1.783×10+68  160.206 
  sPPI (w/ dec)  0.984  0.100  9.831  < .001  0.047 2.661×10+51  121.462 
gPPI (w/ dec)  sPPI (w/ dec)  -0.181  0.100  -1.810  1.000  0.047 0.296 1.604 

Event duration = 2000 ms 
BSC-FRR  BSC-LSA  14.547  0.100  145.280  < .001  0.047 ∞ 3438.020 
  BSC-LSS  -0.207  0.100  -2.068  1.000  0.047 7.783×10+192 447.200 
  gPPI (w/ dec)  -0.169  0.100  -1.690  1.000  0.047 5.743×10+122 258.715 
  sPPI (w/ dec)  -0.173  0.100  -1.731  1.000  0.047 1.001×10+133 309.296 
BSC-LSA  BSC-LSS  -14.754  0.100  -147.348  < .001  0.047 ∞ 3472.149 
   gPPI (w/ dec)  -14.717  0.100  -146.970  < .001  0.047 ∞ 3465.769 
   sPPI (w/ dec)  -14.721  0.100  -147.011  < .001  0.047 ∞ 3466.808 
BSC-LSS  gPPI (w/ dec)  0.038  0.100  0.378  1.000  0.047 1.107×10+14  35.389 
  sPPI (w/ dec)  0.034  0.100  0.337  1.000  0.047 1.072×10+12  30.752 
gPPI (w/ dec)  sPPI (w/ dec)  -0.004  0.100  -0.042  1.000  0.047 0.004 -2.591 

Event duration = 4000 ms 
BSC-FRR  BSC-LSA  0.508  0.100  5.075  < .001  0.047 ∞ 1088.693 
  BSC-LSS  -7.600×10-4  0.100  -0.008  1.000  0.047 6.450 4.915 
  gPPI (w/ dec)  -8.400×10-4  0.100  -0.008  1.000  0.047 93.701 7.591 
  sPPI (w/ dec)  -8.400×10-4  0.100  -0.008  1.000  0.047 93.701 7.591 
BSC-LSA  BSC-LSS  -0.509  0.100  -5.083  < .001  0.047 ∞ 1090.983 
   gPPI (w/ dec)  -0.509  0.100  -5.084  < .001  0.047 ∞ 1091.225 
   sPPI (w/ dec)  -0.509  0.100  -5.084  < .001  0.047 ∞ 1091.225 
BSC-LSS  gPPI (w/ dec)  -8.000×10-5   0.100  -7.989×10-4   1.000  0.047 0.006 -1.997 
  sPPI (w/ dec)  -8.000×10-5   0.100  -7.989×10-4   1.000  0.047 0.006 -1.997 
gPPI (w/ dec)  sPPI (w/ dec)  8.289×10-12   0.100  8.278×10-11   1.000  NaN NaN NaN 
p values were adjusted for 60 t tests using Bonferroni correction. Bayesian comparisons are based on the default t test with a Cauchy (0, r = 1/20.5) prior. 
The posterior odds have been corrected for multiple testing by fixing the prior probability that the null hypothesis holds across all comparisons to 0.5. The 
"U" in the Bayes factor denotes that it is uncorrected. PPI terms were calculated with the deconvolution step (w/dec). sPPI and gPPI matrices were 
symmetrised. NaN – data are essentially constant (sPPI and gPPI methods reached 100% sensitivity).  
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Supplementary Table S6 

Pairwise comparison of the sensitivity of TMFC methods for event-related designs with different interstimulus intervals. 

Comparison  Mean SE t pbonf Prior Odds Posterior Odds Log(BF10, U) 
Mean ISI = 2 s 

BSC-FRR  BSC-LSA  68.382  0.087  782.778  < .001  0.057 ∞ 5321.434 
  BSC-LSS  -5.260  0.087  -60.211  < .001  0.057 1.009×10+219 507.139 
  gPPI (w/ dec)  -10.759  0.087  -123.165  < .001  0.057 ∞ 1414.228 
  sPPI (w/ dec)  -11.257  0.087  -128.862  < .001  0.057 ∞ 1507.441 
BSC-LSA  BSC-LSS  -73.642  0.087  -842.989  < .001  0.057 ∞ 5659.180 
   gPPI (w/ dec)  -79.141  0.087  -905.943  < .001  0.057 ∞ 6077.271 
   sPPI (w/ dec)  -79.639  0.087  -911.640  < .001  0.057 ∞ 6171.758 
BSC-LSS  gPPI (w/ dec)  -5.500  0.087  -62.954  < .001  0.057 3.634×10+279  646.576 
  sPPI (w/ dec)  -5.997  0.087  -68.651  < .001  0.057 ∞ 751.354 
gPPI (w/ dec)  sPPI (w/ dec)  -0.498  0.087  -5.697  < .001  0.057 22.545 5.980 

Mean ISI = 4 s 
BSC-FRR  BSC-LSA  74.820  0.087  856.473  < .001  0.057 ∞ 5645.222 
  BSC-LSS  -4.831  0.087  -55.306  < .001  0.057 ∞ 743.103 
  gPPI (w/ dec)  -6.227  0.087  -71.286  < .001  0.057 ∞ 1139.939 
  sPPI (w/ dec)  -6.428  0.087  -73.582  < .001  0.057 ∞ 1199.142 
BSC-LSA  BSC-LSS  -79.651  0.087  -911.779  < .001  0.057 ∞ 5991.980 
   gPPI (w/ dec)  -81.047  0.087  -927.758  < .001  0.057 ∞ 6229.187 
   sPPI (w/ dec)  -81.248  0.087  -930.054  < .001  0.057 ∞ 6265.782 
BSC-LSS  gPPI (w/ dec)  -1.396  0.087  -15.980  < .001  0.057 1.443×10+53  125.261 
  sPPI (w/ dec)  -1.596  0.087  -18.275  < .001  0.057 7.937×10+70  166.117 
gPPI (w/ dec)  sPPI (w/ dec)  -0.201  0.087  -2.296  1.000  0.057 0.112 0.675 

Mean ISI = 6 s 
BSC-FRR  BSC-LSA  50.692  0.087  580.283  < .001  0.057 ∞ 4675.544 
  BSC-LSS  -3.013  0.087  -34.487  < .001  0.057 1.349×10+263 608.744 
  gPPI (w/ dec)  -1.847  0.087  -21.143  < .001  0.057 7.750×10+118 276.617 
  sPPI (w/ dec)  -2.028  0.087  -23.218  < .001  0.057 2.479×10+144 335.344 
BSC-LSA  BSC-LSS  -53.705  0.087  -614.769  < .001  0.057 ∞ 4917.987 
   gPPI (w/ dec)  -52.539  0.087  -601.426  < .001  0.057 ∞ 4883.486 
   sPPI (w/ dec)  -52.721  0.087  -603.501  < .001  0.057 ∞ 4907.266 
BSC-LSS  gPPI (w/ dec)  1.166  0.087  13.343  < .001  0.057 2.150×10+68  160.206 
  sPPI (w/ dec)  0.984  0.087  11.269  < .001  0.057 3.209×10+51  121.462 
gPPI (w/ dec)  sPPI (w/ dec)  -0.181  0.087  -2.075  1.000  0.057 0.284 1.604 

Mean ISI = 8 s 
BSC-FRR  BSC-LSA  23.827  0.087  272.755  < .001  0.057 ∞ 3316.864 
  BSC-LSS  -2.908  0.087  -33.283  < .001  0.057 ∞ 826.693 
  gPPI (w/ dec)  -0.659  0.087  -7.547  < .001  0.057 1.187×10+23 55.995 
  sPPI (w/ dec)  0.709  0.087  -8.112  < .001  0.057 2.963×10+27 66.120 
BSC-LSA  BSC-LSS  -26.735  0.087  -306.038  < .001  0.057 ∞ 3637.117 
   gPPI (w/ dec)  -24.487  0.087  -280.302  < .001  0.057 ∞ 3437.127 
   sPPI (w/ dec)  -24.536  0.087  -280.867  < .001  0.057 ∞ 3447.562 
BSC-LSS  gPPI (w/ dec)  2.248  0.087  25.736  < .001  0.057 2.922×10+296  685.502 
  sPPI (w/ dec)  2.199  0.087  25.171  < .001  0.057 4.075×10+292  676.624 
gPPI (w/ dec)  sPPI (w/ dec)  -0.049  0.087  -0.565  1.000  0.057 0.004 -2.553 

Mean ISI = 12 s 
BSC-FRR  BSC-LSA  4.492  0.087  51.403  < .001  0.057 ∞ 1037.204 
  BSC-LSS  -3.602  0.087  -41.219  < .001  0.057 ∞ 1205.696 
  gPPI (w/ dec)  0.398  0.087  4.557  0.002  0.057 3.651×10+6 17.975 
  sPPI (w/ dec)  0.211  0.087  2.411  1.000  0.057 1.384 3.189 
BSC-LSA  BSC-LSS  -8.093  0.087  -92.645  < .001  0.057 ∞ 2144.008 
   gPPI (w/ dec)  -4.093  0.087  -46.858  < .001  0.057 ∞ 945.145 
   sPPI (w/ dec)  -4.281  0.087  -49.004  < .001  0.057 ∞ 1020.727 
BSC-LSS  gPPI (w/ dec)  4.000  0.087  45.787  < .001  0.057 ∞ 1416.543 
  sPPI (w/ dec)  3.812  0.087  43.641  < .001  0.057 ∞ 1393.549 
gPPI (w/ dec)  sPPI (w/ dec)  -0.188  0.087  -2.147  1.000  0.057 0.521 2.212 
p values were adjusted for 50 t tests using Bonferroni correction. Bayesian comparisons are based on the default t test with a Cauchy (0, r 
= 1/20.5) prior. The posterior odds have been corrected for multiple testing by fixing the prior probability that the null hypothesis holds 
across all comparisons to 0.5. The "U" in the Bayes factor denotes that it is uncorrected. PPI terms were calculated with the deconvolution 
step (w/dec). sPPI and gPPI matrices were symmetrised.  
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Supplementary Table S7 

Pairwise comparison of the sensitivity of TMFC methods for event related designs with different numbers of events per 
condition. 

Comparison  Mean SE t pbonf Prior Odds Posterior Odds Log(BF10, U) 
Number of events = 20 

BSC-FRR  BSC-LSA  3.845  0.118  32.493  < .001  0.057 ∞ 809.599 
  BSC-LSS  -2.592  0.118  -21.904  < .001  0.057 6.353×10+112 262.603 
  gPPI (w/ dec)  -0.752  0.118  -6.352  < .001  0.057 2.890×10+11 29.254 
  sPPI (w/ dec)  -1.368  0.118  -11.559  < .001  0.057 6.672×10+41 99.168 
BSC-LSA  BSC-LSS  -6.437  0.118  -54.397  < .001  0.057 ∞ 1276.956 
   gPPI (w/ dec)  -4.597  0.118  -38.845  < .001  0.057 ∞ 1063.888 
   sPPI (w/ dec)  -5.213  0.118  -44.051  < .001  0.057 ∞ 1225.250 
BSC-LSS  gPPI (w/ dec)  1.840  0.118  15.552  < .001  0.057 1.950×10+61  143.990 
  sPPI (w/ dec)  1.224  0.118  10.346  < .001  0.057 4.238×10+26  64.176 
gPPI (w/ dec)  sPPI (w/ dec)  -0.616  0.118  -5.206  < .001  0.057 1.647×10+7  19.482 

Number of events = 40 
BSC-FRR  BSC-LSA  22.974  0.118  194.138  < .001  0.057 ∞ 2647.594 
  BSC-LSS  -7.619  0.118  -64.382  < .001  0.057 2.688×10+294 680.813 
  gPPI (w/ dec)  -6.653  0.118  -56.217  < .001  0.057 1.996×10+269 622.951 
  sPPI (w/ dec)  -7.089  0.118  -59.900  < .001  0.057 8.267×10+290 672.726 
BSC-LSA  BSC-LSS  -30.593  0.118  -258.520  < .001  0.057 ∞ 3204.757 
   gPPI (w/ dec)  -29.627  0.118  -250.355  < .001  0.057 ∞ 3370.030 
   sPPI (w/ dec)  -30.063  0.118  -254.038  < .001  0.057 ∞ 3362.369 
BSC-LSS  gPPI (w/ dec)  0.966  0.118  8.165  < .001  0.057 274141.661 15.386 
  sPPI (w/ dec)  0.530  0.118  4.482  0.002  0.057 0.663 2.453 
gPPI (w/ dec)  sPPI (w/ dec)  -0.436  0.118  -3.683  0.069  0.057 0.230 1.395 

Number of events = 60 
BSC-FRR  BSC-LSA  47.987  0.118  405.500  < .001  0.057 ∞ 4134.22 
  BSC-LSS  -7.653  0.118  -64.670  < .001  0.057 ∞ 817.605 
  gPPI (w/ dec)  -4.785  0.118  -40.434  < .001  0.057 3.248×10+186 432.323 
  sPPI (w/ dec)  -5.387  0.118  -45.524  < .001  0.057 1.069×10+218 504.894 
BSC-LSA  BSC-LSS  -55.639  0.118  -470.169  < .001  0.057 ∞ 4454.717 
   gPPI (w/ dec)  -52.771  0.118  -445.933  < .001  0.057 ∞ 4468.663 
   sPPI (w/ dec)  -53.374  0.118  -451.024  < .001  0.057 ∞ 4434.657 
BSC-LSS  gPPI (w/ dec)  2.868  0.118  24.236  < .001  0.057 9.794×10+76  180.143 
  sPPI (w/ dec)  2.266  0.118  19.145  < .001  0.057 4.023×10+46  110.175 
gPPI (w/ dec)  sPPI (w/ dec)  -0.602  0.118  -5.091  < .001  0.057 31.672 6.320 

Number of events = 80 
BSC-FRR  BSC-LSA  48.182  0.118  407.149  < .001  0.057 ∞ 4204.696 
  BSC-LSS  -8.349  0.118  -70.548  < .001  0.057 ∞ 1288.173 
  gPPI (w/ dec)  -4.282  0.118  -36.182  < .001  0.057 3.697×10+221  513.043 
  sPPI (w/ dec)  -4.556  0.118  -38.504  < .001  0.057 3.109×10+244  565.83 
BSC-LSA  BSC-LSS  -56.530  0.118  -477.697  < .001  0.057 ∞ 4772.541 
   gPPI (w/ dec)  -52.463  0.118  -443.332  < .001  0.057 ∞ 4599.074 
   sPPI (w/ dec)  -52.738  0.118  -445.653  < .001  0.057 ∞ 4611.084 
BSC-LSS  gPPI (w/ dec)  4.067  0.118  34.365  < .001  0.057 4.522×10+266  616.861 
  sPPI (w/ dec)  3.792  0.118  32.044  < .001  0.057 1.235×10+240  555.696 
gPPI (w/ dec)  sPPI (w/ dec)  -0.275  0.118  -2.321  1.000  0.057 0.124 0.777 

Number of events = 100 
BSC-FRR  BSC-LSA  50.693  0.118  428.371  < .001  0.057 ∞ 4675.406 
  BSC-LSS  -3.012  0.118  -25.453  < .001  0.057 9.388×10+262 608.381 
  gPPI (w/ dec)  -1.846  0.118  -15.603  < .001  0.057 5.974×10+118 276.357 
  sPPI (w/ dec)  -2.028  0.118  -17.134  < .001  0.057 1.850×10+144 335.052 
BSC-LSA  BSC-LSS  -53.705  0.118  -453.823  < .001  0.057 ∞ 4917.987 
   gPPI (w/ dec)  -52.539  0.118  -443.973  < .001  0.057 ∞ 4883.486 
   sPPI (w/ dec)  -52.721  0.118  -445.505  < .001  0.057 ∞ 4907.266 
BSC-LSS  gPPI (w/ dec)  1.166  0.118  9.850  < .001  0.057 2.150×10+68  160.206 
  sPPI (w/ dec)  0.984  0.118  8.318  < .001  0.057 3.209×10+51  121.462 
gPPI (w/ dec)  sPPI (w/ dec)  -0.181  0.118  -1.532  1.000  0.057 0.284 1.604 
p values were adjusted for 50 t tests using Bonferroni correction. Bayesian comparisons are based on the default t test with a Cauchy (0, r = 1/20.5) prior. 
The posterior odds have been corrected for multiple testing by fixing the prior probability that the null hypothesis holds across all comparisons to 0.5. The 
"U" in the Bayes factor denotes that it is uncorrected. PPI terms were calculated with the deconvolution step (w/dec). sPPI and gPPI matrices were 
symmetrised.  
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Supplementary Table S8 

Pairwise comparison of the sensitivity of TMFC methods for event-related designs with different repetition times. 

Comparison  Mean SE t pbonf Prior Odds Posterior Odds Log(BF10, U) 
TR = 500 ms 

BSC-FRR  BSC-LSA  1.200×10-4  0.067  0.002  1.000  0.057 0.013 -1.500 
  BSC-LSS  2.558×10-12  0.067  3.800×10-11  1.000  NaN NaN NaN 
  gPPI (w/ dec)  8.277×10-12  0.067  1.230×10-10  1.000  NaN NaN NaN 
  sPPI (w/ dec)  1.240×10-11  0.067  3.800×10-10  1.000  NaN NaN NaN 
BSC-LSA  BSC-LSS  -1.200×10-4  0.067  -0.002  1.000  0.057 0.013 -1.500 
   gPPI (w/ dec)  -1.200×10-4  0.067  -0.002  1.000  0.057 0.013 -1.500 
   sPPI (w/ dec)  -1.200×10-4  0.067  -0.002  1.000  0.057 0.013 -1.500 
BSC-LSS  gPPI (w/ dec)  5.719×10-12  0.067  8.496×10-11  1.000  NaN NaN NaN 
  sPPI (w/ dec)  9.843×10-12  0.067  1.462×10-10  1.000  NaN NaN NaN 
gPPI (w/ dec)  sPPI (w/ dec)  4.124×10-12  0.067  6.126×10-11  1.000  NaN NaN NaN 

TR = 700 ms 
BSC-FRR  BSC-LSA  0.018  0.067  0.262  1.000  0.057 5.802×10+57 135.870 
  BSC-LSS  3.537×10-12  0.067  5.255×10-11  1.000  NaN NaN NaN 
  gPPI (w/ dec)  8.373×10-12  0.067  1.244×10-10  1.000  NaN NaN NaN 
  sPPI (w/ dec)  5.723×10-12  0.067  8.500×10-11  1.000  NaN NaN NaN 
BSC-LSA  BSC-LSS  -0.018  0.067  -0.262  1.000  0.057 5.802×10+57 135.870 
   gPPI (w/ dec)  -0.018  0.067  -0.262  1.000  0.057 5.802×10+57 135.870 
   sPPI (w/ dec)  -0.018  0.067  -0.262  1.000  0.057 5.802×10+57 135.870 
BSC-LSS  gPPI (w/ dec)  4.836×10-12  0.067  7.183×10-11  1.000  NaN NaN NaN 
  sPPI (w/ dec)  2.185×10-12  0.067  3.246×10-11  1.000  NaN NaN NaN 
gPPI (w/ dec)  sPPI (w/ dec)  -2.651×10-12  0.067  -3.937×10-11  1.000  NaN NaN NaN 

TR = 1000 ms 
BSC-FRR  BSC-LSA  1.919  0.067  28.507  < .001  0.057 ∞ 1532.402 
  BSC-LSS  -0.002  0.067  -0.031  1.000  0.057 50785.081 13.700 
  gPPI (w/ dec)  0.005  0.067  0.075  1.000  0.057 7.830×10+7 21.040 
  sPPI (w/ dec)  0.006  0.067  0.090  1.000  0.057 2.448×10+10 26.785 
BSC-LSA  BSC-LSS  -1.921  0.067  -28.539  < .001  0.057 ∞ 1534.286 
   gPPI (w/ dec)  -1.914  0.067  -28.432  < .001  0.057 ∞ 1527.832 
   sPPI (w/ dec)  -1.913  0.067  -28.417  < .001  0.057 ∞ 1526.842 
BSC-LSS  gPPI (w/ dec)  0.007  0.067  0.106  1.000  0.057 9.450×10+22  55.767 
  sPPI (w/ dec)  0.008  0.067  0.122  1.000  0.057 1.074×10+25  60.501 
gPPI (w/ dec)  sPPI (w/ dec)  0.001  0.067  0.015  1.000  0.057 0.005 -2.391 

TR = 2000 ms 
BSC-FRR  BSC-LSA  50.693  0.067  753.009  < .001  0.057 ∞ 4675.406 
  BSC-LSS  -3.012  0.067  -44.742  < .001  0.057 9.388×10+262 608.381 
  gPPI (w/ dec)  -1.846  0.067  -27.427  < .001  0.057 5.974×10+118 276.357 
  sPPI (w/ dec)  -2.028  0.067  -30.119  < .001  0.057 1.850×10+144 335.052 
BSC-LSA  BSC-LSS  -53.705  0.067  -797.751  < .001  0.057 ∞ 4917.987 
   gPPI (w/ dec)  -52.539  0.067  -780.436  < .001  0.057 ∞ 4883.486 
   sPPI (w/ dec)  -52.721  0.067  -783.128  < .001  0.057 ∞ 4907.266 
BSC-LSS  gPPI (w/ dec)  1.166  0.067  17.315  < .001  0.057 2.150×10+68  160.206 
  sPPI (w/ dec)  0.984  0.067  14.623  < .001  0.057 3.209×10+51  121.462 
gPPI (w/ dec)  sPPI (w/ dec)  -0.181  0.067  -2.692  1.000  0.057 0.284 1.604 

TR = 3000 ms 
BSC-FRR  BSC-LSA  35.399  0.067  525.831  < .001  0.057 ∞ 3969.703 
  BSC-LSS  -8.106  0.067  -120.404  < .001  0.057 ∞ 968.845 
  gPPI (w/ dec)  -18.961  0.067  -281.653  < .001  0.057 ∞ 2354.457 
  sPPI (w/ dec)  -19.332  0.067  -287.163  < .001  0.057 ∞ 2427.579 
BSC-LSA  BSC-LSS  -43.505  0.067  -646.235  < .001  0.057 ∞ 4370.359 
   gPPI (w/ dec)  -54.360  0.067  -807.484  < .001  0.057 ∞ 4916.715 
   sPPI (w/ dec)  -54.731  0.067  -812.994  < .001  0.057 ∞ 5003.281 
BSC-LSS  gPPI (w/ dec)  -10.855  0.067  -161.249  < .001  0.057 ∞ 1414.757 
  sPPI (w/ dec)  -11.226  0.067  -166.759  < .001  0.057 ∞ 1498.276 
gPPI (w/ dec)  sPPI (w/ dec)  -0.371  0.067  -5.510  < .001  0.057 0.167 1.073 
p values were adjusted for 50 t tests using Bonferroni correction. Bayesian comparisons are based on the default t test with a Cauchy (0, r = 1/sqrt(2)) prior. 
The posterior odds have been corrected for multiple testing by fixing the prior probability that the null hypothesis holds across all comparisons to 0.5. The 
"U" in the Bayes factor denotes that it is uncorrected. PPI terms were calculated with the deconvolution step (w/dec). sPPI and gPPI matrices were 
symmetrised. NaN – data are essentially constant (sPPI, gPPI and BSC-LSS methods reached 100% sensitivity).
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Supplementary Table S9 

Parameters for the large-scale Wilson-Cowan neural mass model. 

Parameter Description Value 

τE Excitatory time constant 2.50 ms 
τI Inhibitory time constant 3.75 ms 

wEE Excitatory to excitatory synaptic weight 16.0 
wIE Inhibitory to excitatory synaptic weight 12.0 
wEI Excitatory to inhibitory synaptic weight 15.0 
wII Inhibitory to inhibitory synaptic weight 3.0 
aE Slope of excitatory response function 1.5 
aI Slope of inhibitory response function 1.5 
bE Position of maximum slope of excitatory response function 3.0 
bI Position of maximum slope of inhibitory response function 3.0 
cE Amplitude of excitatory response function 1.0 
cI Amplitude of inhibitory response function 1.0 
G Global coupling parameter 2.00 – 3.00 

(2.63*) 
d Signal transmission delay between brain regions 25 ms 

PE Excitatory background drive 0.700 – 0.800 
(0.758*) 

PI Inhibitory background drive 0 
τou Time scale of the Ornstein-Uhlenbeck process  

(background noise) 
5.0 ms 

σou Standard deviation of the Ornstein-Uhlenbeck process 
(background noise) 

(1.0 – 6.0)×10-3 
(3.5×10-3*) 

dt Integration time step 0.1 ms 
dtds Downsampled time step 5.0 ms 

* – The tuning parameters were chosen based on the maximum similarity between the ground-truth synaptic weight matrix 
and the task-modulated functional connectivity (TMFC) matrix estimated using the direct correlation difference (CorrDiff) 
approach for block design time series without scanner measurement noise. 
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Supplementary Table S10 

Weighting factors for the construction of symmetrical and asymmetrical synaptic weight matrices. 

Symmetrical matrices 

Condition Rest  Condition A  Condition B 

Module №1 №2 №3 №4 №1 №2 №3 №4  №1 №2 №3 №4 

№1 0.97 0.01 0.01 0.01 0.83 0.15 0.01 0.01 0.83 0.01 0.01 0.15 

№2 0.01 0.97 0.01 0.01 0.15 0.83 0.01 0.01 0.01 0.83 0.15 0.01 

№3 0.01 0.01 0.97 0.01 0.01 0.01 0.83 0.15 0.01 0.15 0.83 0.01 

№4 0.01 0.01 0.01 0.97 0.01 0.01 0.15 0.83 0.15 0.01 0.01 0.83 

Asymmetrical matrices 

Condition Rest  Condition A  Condition B 

Module №1 №2 №3 №4 №1 №2 №3 №4  №1 №2 №3 №4 

№1 0.97 0.01 0.01 0.01 0.83 0.15 0.01 0.01 0.83 0.01 0.01 0.15 

№2 0.01 0.97 0.01 0.01 0.01 0.83 0.15 0.01 0.15 0.83 0.01 0.01 

№3 0.01 0.01 0.97 0.01 0.01 0.01 0.83 0.15 0.01 0.15 0.83 0.01 

№4 0.01 0.01 0.01 0.97 0.15 0.01 0.01 0.83 0.01 0.01 0.15 0.83 

 

Supplementary Table S11 

Fixed parameters for the Ballown-Windkessel haemodynamic model. 

Parameter Description Value 

κ Rate of vasodilatory signal decay 0.65 1/s 
γ Rate of flow-dependent autoregulatory feedback 0.41 1/s 
τ Haemodynamic transit time 0.98 s 
α Grubb’s exponent 0.32 
ρ Resting net oxygen extraction fraction 0.34 
V0 Resting volume fraction 0.02 

 

Supplementary Table S12 

Variable parameters for the Ballown-Windkessel haemodynamic model. 

Parameter Description Mean value SD 

κ Rate of vasodilatory signal decay 0.65 1/s 0.0150 
γ Rate of flow-dependent autoregulatory feedback 0.41 1/s 0.0080 
τ Haemodynamic transit time 2.5 s 0.2344 
α Grubb’s exponent 0.32 0.0060 
ρ Resting net oxygen extraction fraction 0.34 0.0096 
V0 Resting volume fraction 0.02 - 
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