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Methods

HIV sequences

We retrieved HIV-1 sequences for individuals in this study from the Los Alamos National Laboratory (LANL) HIV Sequence
Database69 (see Supplementary Table 1). We processed the sequence data as described in ref.70 to minimize the influence
of sampling noise. Processing steps included 1) removing the sequences with large deletions, 2) removing sites with high gap
frequencies (indicating rare insertions or potential alignment errors), and 3) eliminating time points with <4 sequences or ones
that were obtained >200 days after the prior sampling time. In addition, we imputed ambiguous nucleotides using the most
common nucleotides in the data at the same site within that individual.

Model

We model the evolution of a population of N individuals subject to mutation, recombination, natural selection, and genetic
drift (finite population size), following the Wright-Fisher (WF) model71–73. We assume that all individuals are haploids. Each
genotype g ∈ AL is a sequence of L alleles, with the alleles considered to be categorical variables A = {A, T, G, C, -} for
DNA or A= {A, C, . . . ,W, Y, -} for amino acids, including a gap character to represent deletions. We write the fitness of each
genotype as

fα = f(gα) = 1+
∑

i

si(gi)+
∑
i<j

sij(gi,gj) . (S1)

The si(a) are additive fitness parameters acting on each site and allele individually, while the sij(a,b) are epistatic interactions
between pairs of alleles a and b at sites i and j. We assume the underlying fitness parameters are constant in time, with
the population’s adaptation speed much faster than the rate of environmental changes. We define the probability of mutation
from allele a to b as µab per site per generation, which we assume is the same for all sites. Here we used a simple model
of recombination, in which there is a probability r per site per generation for a recombination breakpoint to occur at that
site. A recombinant sequence derived from two sequences gα and gβ with recombination breakpoint i then has the form
(gα

1 , . . . ,gα
i ,gβ

i+1, . . . ,gβ
L). We assume that the partner sequence β is always chosen randomly from the population with a

probability proportional to the frequency of that genotype.
Let z ∈ [0,1]M be the genotype frequency with the number of genotypes being M . The WF model under the fixed population

size N is defined as the following multinomial process:

P (z(tk +1)|z(tk);N) = N !
M∏

α=1

pα(z(tk))Nzα(tk+1)

[Nzα(tk +1)]! , (S2)

where pα is given by

pα(z) =
fαzα +

∑
β(µβαzβ−µαβzα)+

∑
γ

∑
β zγ [R(α | β,γ)zβ−R(β | α,γ)zα]∑

β fβzβ
. (S3)

R(α|β,γ) is the probability that the recombination of genotypes β and γ results in a genotype α.
In simulations, we used µab = µ = 10−3 and r = 10−4 per site per generation. For HIV-1 data analysis, we used mutation

rates estimated from a longitudinal virus evolution study74, along with a constant recombination rate of r = 10−5 per site per
generation, in line with past estimates of the effective recombination rate75–79. This choice for representing recombination in
HIV-1 is a simplification. In reality, HIV-1 recombination occurs in multiple steps: first, two different viruses must coinfect
the same cell. Then, genetic material from each virus can be packaged together in the same virion. When such a virion
infects a new cell, recombination can occur as the viral reverse transcriptase switches between templates. Thus, the effective
HIV-1 recombination rate involves both coinfection and template switching probabilities. Recent work has also shown that the
effective recombination rate can increase when viral load is higher, due to increased rates of coinfection80. Here we applied
only the simple recombination model in which probabilities of coinfection and template switching are combined into a single
effective recombination rate. Future work could relax this assumption and consider the effects of time-varying recombination
rates due to fluctuations in viral load.
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Diffusion limit

The properties of multinomial processes lead to the following genotype average and covariance values:∑
z′

z′
αP (z′

α | z;N) = pα(z)∑
z′

(z′
α−pα(z))(z′

β−pβ(z))P (z′
α | z;N) = Cαβ(z)/N ,

(S4)

with

Cαβ =
{
−pαpβ α ̸= β

(1−pα)pα α = β
. (S5)

Assuming that the rates of mutation and recombination and the fitness effects of mutations are small (formally, O(1/N)),
changes in genotype frequencies are not abrupt, and we can employ the diffusion approximation81 to simplify the WF model.
This results in the following Kimura’s diffusion equation (Fokker-Planck equation or Kolmogorov forward equation82):

∂tP (z; t) = 1
2

∑
α,β

∂α∂βCαβ(z)P (z; t)−
∑

α

∂αpα(z)P (z) . (S6)

The above equation leads to the Gaussian process with average drift and diffusion matrix (Eq. (S4)). To be more explicit,
assuming 1≪N and collecting the only O(1/N) terms in the stochastic process, we get the following tractable expression

P (z(t+∆t) | z(t))∝ exp
(
− N

2∆t
(∆z(t)−∆td(z(t)))⊤ C(z)−1 (∆z(t)−∆td(z(t)))

)
dα(z(t)) = Cααsα +

∑
β( ̸=α)

Cαβsβ +
∑

β

(µβαzβ−µαβzα)+
∑

γ

∑
β

zγ [R(α | β,γ)zβ−R(β | α,γ)zα] ,
(S7)

Here the covariance is also taking only the O(1/N) terms and scaled by N , therefore, Cαα = zα(1− zα) and Cαβ =−zαzβ .
In the main text, we gave the optimal selection coefficients ŝi and epistatic interactions ŝij maximizing a posterior distribution
over the above diffusion processes (Eq. (4)).

So far, we have discussed the diffusion process in the genotype distribution space. To make the expressions more transparent,
we can project the genotype frequency dynamics onto the allele frequency space (Eq. (3)), which we describe below.

Expected frequency change due to mutation

Assuming the WF process, we can analytically estimate the expected frequency change due to mutation and recombination
effects and integrate them over the generations. Define the indicator function gα

i,a that gives one if genotype α has allele a at
site i, otherwise zero, and xi,a is the allele frequency obtained by

∑
α gα

i,azα = xi,a.
Since the mutation rate is small, effectively, no more than one mutation occurs per generation for individual sequences.

Therefore, possible mutations between genotypes α and β are formally constrained by their distance such that dα,β = L−∑
i,a δ

gα
i,a

,g
β
i,a

= 1, with δx,y being Kronecker’s delta. Therefore, the expected additive frequency change in allele a at site i

due to mutation is:

ui,a =
∑

α

∑
β|dα,β=1

∑
b

gα
i,agβ

i,b(µβαzβ−µαβzα)

=
∑

b|b ̸=a

(µbaxi,a−µabxi,b) .
(S8)

Similarly, for pairwise frequencies we obtain

uij,ab =
∑

α

∑
β|dα,β=1

gα
i,agα

j,b(µβαzβ−µαβzα)

 ∑
c|c ̸=a

gβ
i,cgβ

j,b +
∑

c|c̸=b

gβ
i,agβ

j,c


=

∑
c

(
[µbcxij,ac +µacxij,cb]− [µcb +µca]xij,ab

)
.

(S9)
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Expected frequency change due to recombination

By symmetry, one can show that recombination has no effect on the expected change in individual allele frequencies70. How-
ever, correlations between mutations are naturally diluted by recombination. For pairwise frequencies, recombination decreases
correlations between mutations until they become independent. One can show that the expected change in pairwise allele fre-
quencies due to recombination is83

vij,ab =−r|i− j|(xij,ab−xi,axj,b) . (S10)

A detailed derivation is included in ref.83.

Maximum a posteriori solution over the path
Leveraging the analytically tractable transition probability under the diffusion limit (Eq. (S7)), the maximum a posteriori
estimate of the selection coefficients and epistatic interactions is83

ŝ = argmax
s

P (s|γ)
K∏

k=0
P (z(tk+1) | z(tk);s,(µab)a,b, r)

= (C int +diag(γ))−1 (
x(tK+1)−x(t0)−uint−vint) .

(S11)

Here diag(γ) is a matrix with γ on the diagonal and zeros elsewhere. P (s | γ) represents a prior distribution for the selection
and epistatic coefficients, given by the normal distribution

P (s | γ)∝ exp
(
−1

2s⊤diag(γ)s
)

. (S12)

The expected net frequency change due to mutation and recombination, denoted by uint and vint, are defined in the equation
Eq. (S8), Eq. (S9) and Eq. (S10), respectively. Further reduction based on the HCMF method is explained in the main text. We
provide the expression of the factorized covariance matrix in the following section.

Representing the integrated covariance matrix with linear interpolation by a low-rank matrix
In this section, we show the expression of the integrated covariance matrix with piece-wise linear interpolation is given as the
integration of covariance with a piece-wise constant interpolation and a sum of rank-one matrices.

By integrating them over the time t, we get the (time-) integrated covariance matrix. More specifically, we consider the
following linear interpolation, such that

Cint =
K−1∑
k=0

∆tk

∫ 1

0
dτC[k,k+1](τ)

C
[k,k+1]
e,f (τ) = x

[k,k+1]
ef (τ)−x

[k,k+1]
e (τ) x

[k,k+1]
f (τ)

x
[k,k+1]
e (τ) = (1− τ)xe(tk)+ τxe(tk+1) .

(S13)

It is straightforward to check that the following expression is identical to the diagonal of the integrated covariance matrix with
the piece-wise linear interpolation given in ref.70:

∆t0
2 Cii(t0)+ ∆tK−1

2 Cii(tK)+
K−1∑
k=1

∆tk +∆tk−1
2 Cii(tk)+

K−1∑
k=1

∆tk

6 (∆x(tk))2

=
K−1∑
k=0

∆tk

2

(
xi(tk)(1−xi(tk))+xi(tk+1)(1−xi(tk+1))

)
+

K−1∑
k=1

∆tk

6 (xi(tk+1)−xi(tk))2

=
K−1∑
k=0

∆tk

(
xi(tk)+xi(tk+1)

2 − xi(tk+1)(xi(tk)+xi(tk+1))
3 − xi(tk)2

3

)

=
K−1∑
k=0

∆tk

(
(3−2xi(tk))(xi(tk)+xi(tk+1))

6 − xi(tk)2

3

)
= (Cint)ii .

(S14)

For the off-diagonal case, the pairwise-frequency term xij(tk) is linear in time, and the result of the integral with the linear
interpolation is the same as the integral with the piecewise-constant interpolation. Therefore, we explicitly write only the
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integrals that are non-linear in time:

∆t0
2 xi(t0)xj(t0)+ ∆tK−1

2 xi(tK)xj(tK)+
K−1∑
k=1

∆tk +∆tk−1
2 xi(tk)xj(tk)−

K−1∑
k=1

∆tk

6 ∆xi(tk)∆xj(tk)

=
K−1∑
k=0

∆tk

(
xi(tk)xj(tk)+xi(tk+1)xj(tk+1)

2 −
(xi(tk+1)−xi(tk))(xj(tk+1)−xj(tk))

6

)

=
K−1∑
k=0

∆tk

(
xi(tk)xj(tk)+xi(tk+1)xj(tk+1)

3 + xi(tk)xj(tk+1)+xi(tk+1)xj(tk)
6

)
=−(Cint)ij +(integrated pairwise frequency matrix) .

(S15)

By summarizing these equations, we represent the integrated covariance matrix as:

Cint = ∆t0
2 C(t0)+ ∆tK−1

2 C(tK)+
K−1∑
k=1

tk+1− tk−1
2 C(tk)+

K−1∑
k=1

∆tk

6 ∆x(tk)∆x(tk)⊤ , (S16)

which we can readily factorize by a matrix Ξ such that Cint = ΞΞ⊤. The size of the matrix Ξ is D×d, where d =
∑K

k=0 d(tk)+
K−1 with d(tk) denoted as a rank of C(tk). In most of the evolutionary data, the size of the higher-order covariance matrix
is much larger than the effective matrix rank size; hence, typically d≪D.

Inferring fitness parameters from multiple replicate trajectories
In cases where multiple ensembles of trajectories evolve under similar conditions, it is natural to extend the path likelihood
to multiple ensembles. Suppose there are Q replicates, let q be the index of the qth replicate, (tk)Kq

k=1 be a set of sampling
time-steps for the qth replicate, and xq(tk) be the set of single and pairwise frequencies for the qth replicate.

The maximum path likelihood solution using Q replicates can be expressed as83

s = γ−1(∆x−Ξr)

r =
(

ΞΞ⊤ +γI
)−1

Ξ⊤∆x ,
(S17)

where

∆x =
Q∑

q=1
∆xq

Ξ⊤ =
(

Ξ1⊤
, . . . ,ΞQ⊤

)
∈ RD×B .

(S18)

B is the total number of samples across replicates over the evolution, formally, B =
∑Q

q Bq , where Bq is the total number of
samples of the q-th replicate over its evolution. Intuitively, the likelihood of multiple independent trajectories is equal to the
product of each of their likelihoods individually.

Gauge transformation
The effects of natural selection are determined by differences in fitness values, such as the difference between the fitness of
the wild type and a mutant. Shifting the fitness values globally by adding a constant, F (g)← F (g) + const., has no effect
on fitness differences. In the additive fitness model, it is easy to see that shifting the selection coefficient at any locus by
an arbitrary constant Ki does not alter the relative fitness landscape:

∑
i

∑
a(si(a)−Ki)δgi,a =

∑
i si(gi) + const. In other

words, the effective fitness parameters can be reduced to (q−1)L, and the degrees of freedom that can be arbitrarily adjusted
without changing the overall fitness picture are L parameters. More systematic arguments under general situations exist and are
known as gauge theory in physics and mathematical physics. These concepts have been applied to many genetic sequence-based
inference problems84–86, with recent reviews for gauge theory in more complex cases87,88. In our study, mutation effects of the
wild type or TF’s allele serve as reference values; therefore, considering any effects involved with TF’s alleles being zeros is a
reasonable choice and makes the inference results more interpretable, as inferred parameters become sparser. To fix the gauge,
we employed the following gauge transformation, which is commonly used in statistical inference for genetic sequences89,90,

si(a)← si(a)−si(aWT)+
∑

j (>i)

(
sij(a,bWT)−sij(aWT, bWT)

)
+

∑
j (<i)

(
sji(bWT,a)−sji(bWT,aWT)

)
sij(a,b)← sij(a,b)−sij(aWT, b)−sij(a,bWT)+sij(aWT, bWT) ,

(S19)
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where aWT, bWT are WT (i.e., TF) alleles at locus i and j, respectively. This choice of gauge ensures si(aWT) = sij(aWT, b) =
sij(a,bWT) = 0 for all a,b.

Further compression of Ξ
Although the size of the matrix Ξ∈RD×d is much smaller than the size of the full covariance matrix ∈RD×D with d≪D, still
keeping Ξ can be the major bottleneck. An example is HIV-1 CH848 data, where >1200 sequences were collected sequencing
more than half of the HIV-1 genome. When we naively compute Ξ storing float variables, that requires more than a terabyte
of memory. To further reduce the memory usage, we only consider alleles with nonzero frequency changes

∑
k |∆xi(tk)|> 0.

This modification is straightforwardly implemented in our program.

Heterogeneous regularization
Instead of applying constant regularization across all parameters, we use a generalized heterogeneous regularization approach
with the HCMF method: γ → γ = (γe)D

e=1. By denoting Λγ as a diagonal matrix with (Λγ)ef = γeδef , then the optimal
fitness parameter becomes ŝ = (C +Λγ)−1∆x . Consequently, the expression for the efficient expression becomes:

ŝ = Λ−1
γ (∆x−Ξ∆η)

∆η =
(

Ξ⊤Λ−1
γ Ξ+ I

)−1
(Λ−1

γ Ξ)⊤∆x .
(S20)

Theoretical error bars
The posterior distribution is given by the Bayes’ rule,

P (s|(x(tk))K
k=0)∝ exp

(
−1

2(s− ŝ)⊤Σ−1(s− ŝ)
)

, (S21)

which is a normal distribution for the fitness parameters s with mean ŝ and a precision matrix Σ−1 = (Cint +γI). In a Bayesian
inference framework, the uncertainty in the inferred fitness parameters is characterized by (Cint + γI)−1. More specifically,
considering the diagonal of the covariance matrix as the theoretical “error bar,” the standard deviation for se can be given by
((Cint + γI)−1)ee. Let ξ̃e ∈ Rd for e ∈ {1, . . . ,D} be row vectors for Ξ, then by exploiting the structure of the integrated
covariance matrix Cint = ΞΞ⊤, one can get

Var(se) = (γN)−1
(

1− ξ̃
⊤
e

(
ΞΞ⊤ +γI

)−1
ξ̃e

)
. (S22)

As the inverse in (Eq. (S22)) is easier to obtain, once the inverse is obtained, the variance of each se should be straightforwardly
obtained.

Data and code
Data and code used in our analysis is available in the GitHub repository located at https://github.com/bartonlab/
paper-hcmf. This repository also contains scripts that can be run to reproduce our figures and analysis.
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Supplementary Fig. 1. Combining evolutionary replicates improves inference accuracy. a, AUC values for identifying selection
coefficients as a function of the number of replicates. When using a single trajectory, the AUC values for beneficial and deleterious
coefficients are 0.82 and 0.81, respectively. The AUC values for the inferred selection coefficients increase to 0.93 and 0.89, respec-
tively, when combining two replicates. AUC values continue to increase as the number of replicates grows, reaching 0.98 and 0.95
for beneficial and deleterious coefficients with a set of 10 replicates. b, AUC values for identifying epistasic interactions from a single
replicate are 0.74 for positive and 0.72 for negative epistasis. Similar to the case for selection coefficients, inference accuracy steadily
improves with the addition of more replicates.
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Supplementary Fig. 2. Comparison of inferred epistatic coefficients and the sum of selection coefficients. These figures
are analogous to Fig. 4a in the main text, but for all individuals and sequencing regions that we analyzed. The tendency of strong
anticorrelation between epistasis and the sum of selection coefficients is widely observed across multiple individuals. Relatively strong
negative epistatic coefficients are often seen among significantly beneficial mutations, many of which are involved in CTL escape.
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Supplementary Fig. 3. Comparison of inferred selection coefficients in models with and without epistasis. This figure is
analogous to Fig. 5a in the main text, but across other individuals and sequencing regions that we analyzed. The inferred selection
coefficients learned with epistasis are globally consistent with those learned without epistasis. Relatively strong positive selection
coefficients are often involved in mutations in CTL epitopes.
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ID Length, L Dimension, D # of time points, K # of sequences, N Time (sec) Memory (GB)
700010040-3 303 1.4×105 8 82 6.2 2.6
700010040-5 146 3.2×104 8 74 3.5 0.7
700010058-3 90 1.2×104 4 25 2.6 0.3
700010058-5 96 1.3×105 8 52 2.4 0.4
700010077-3 203 6.5×104 5 44 3.7 0.8
700010077-5 48 3.4×103 4 32 2.3 0.3
700010470-3 367 2.2×105 6 113 10.8 4.8
700010470-5 193 5.7×104 7 104 5.9 1.4
700010607-3 239 8.5×104 4 73 5.2 1.5
700010607-5 78 9.1×103 4 76 2.3 0.4
703010131-3 744 8.7×104 9 114 50.8 19.4
703010131-5 261 9.9×104 9 76 5.0 1.9
703010159-3 477 3.5×105 8 98 15.8 7.0
703010159-5 216 7.0×104 8 93 5.5 1.6
703010256-3 463 3.5×105 6 99 14.7 6.6
703010256-5 402 2.4×105 6 110 14.1 5.5
704010042-3 875 1.3×106 6 93 51.1 21.6
704010042-5 266 1.1×105 6 85 5.1 2.1
705010162-3 508 4.0×105 5 69 12.6 5.7
705010162-5 254 9.6×104 5 60 4.9 1.4
705010185-3 292 1.3×105 5 97 7.3 2.7
705010185-5 85 1.1×104 3 49 2.3 0.4
705010198-3 204 6.3×104 3 48 4.1 0.9
705010198-5 72 7.8×103 3 47 2.2 0.3
706010164-3 485 3.7×105 6 102 19.1 7.4
706010164-5 204 6.2×104 6 98 5.1 1.5

cap256-3 204 1.3×106 6 98 5.1 1.5
703010505 1,131 2.5×106 23 578 319.1 215.3
703010848 2,694 1.4×107 31 1,205 1,736.0 395.5

Supplementary Table 1. Computational time and required memory for inferring epistatic and selection coefficients. The table
summarizes the number of polymorphic sites (length L), the effective matrix dimension to be inverted (D), the number of time points
(K), as well as the required computational time and memory size for each individual. IDs consist of the patient identifier and sequencing
region (5′ or 3′ end of the genome), separated by a dash. Computations were performed using a single CPU core with a single thread.
For comparison, lengths of around L ∼ 200 are already near computational limits even using a high-performance computing system.
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