Table 1. ttx-4 mutants are defective in thermotaxis behavior

		Fı	Total number		
Strain	20C	17C	17/25C	25C	of animals
Wild type	80	20	13	7	120
ttx-4(nj1)	3	0	0	151	154
ttx-4(nj3)	5	1	0	74	80
ttx-4(nj4)	22	10	0	88	120

Animals were cultivated at 20°C. One animal was assayed per thermotaxis plate. The evaluation is shown in Materials and methods. Statistical analysis by a chi-squared test using 2×4 contingency table was performed in comparison between wild type strain and each of *ttx-4* strains. Each of *ttx-4* strains was different from wild type strain for thermotaxis (p<0.005).

Table 2. ttx-4 mutants are defective in chemotaxis to NaCl

		Tatal accepts a		
Strain	Normal	Partially defective	Defective	Total number of animals
Wild type	78	25	7	110
ttx-4(nj1)	4	35	124	163
ttx-4(nj3)	19	31	63	113
ttx-4(nj4)	38	34	28	100

Animals were cultivated at 20°C. One animal was assayed per chemotaxis plate. The evaluation is shown in Materials and methods. Statistical analysis by a chi-squared test using 2×3 contingency table was performed in comparison between wild type strain and each of ttx-4 strains. Each of ttx-4 strains was different from wild type strain for chemotaxis to NaCl (p<0.005).