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Supplementary Note 1:  
Equations to calculate Flash Entropy Similarity in MS/MS queries 

As defined before1, we calculate the unweighted entropy similarity as: 

1 −
2 × 𝑆𝐴𝐵 − 𝑆𝐴 − 𝑆𝐵

ln 4
(1) 

𝑆𝐴 = −∑𝐼𝐴,𝑖 ln 𝐼𝐴,𝑖
𝑖

(2) 

𝑆𝐵 = −∑𝐼𝐵,𝑗 ln 𝐼𝐵,𝑗
𝑗

(3) 

Here the 𝑆𝐴𝐵 is defined as the spectral entropy of a 1:1 mixed spectrum for spectra A and B. 

Therefore: 

𝑆𝐴𝐵 = −∑

{
  
 

  
 

1

2
𝐼𝐴,𝑖 𝑙𝑛 (

1

2
𝐼𝐴,𝑖) , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗

1

2
𝐼𝐵,𝑗 𝑙𝑛 (

1

2
𝐼𝐵,𝑗) , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗

(
1

2
(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗)) 𝑙𝑛 (

1

2
(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗)) ,  𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗

𝑖,𝑗

(4) 

After simplifying the formula (4), we obtain: 

𝑆𝐴𝐵 = −
1

2
∑{

𝐼𝐴,𝑖 𝑙𝑛 𝐼𝐴,𝑖 − (ln 2)𝐼𝐴,𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗
𝐼𝐵,𝑗 𝑙𝑛 𝐼𝐵,𝑗 − (ln 2)𝐼𝐵,𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗

(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) 𝑙𝑛(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) − (ln 2)(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗),  𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗𝑖,𝑗

(5) 

Where we get: 

2 × 𝑆𝐴𝐵 = 𝑙𝑛2∑𝐼𝐴,𝑖 +

𝑖

𝑙𝑛2∑𝐼𝐵,𝑗
𝑗

−∑{

𝐼𝐴,𝑖 𝑙𝑛 𝐼𝐴,𝑖  , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗
𝐼𝐵,𝑗 𝑙𝑛 𝐼𝐵,𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗

(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) 𝑙𝑛(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) ,  𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗𝑖,𝑗

(6) 

We substitute formulas (2), (3), and (6) into formula (1), to obtain the unweighted entropy similarity 

as: 

1 −
1

ln 4
(𝑙𝑛2∑𝐼𝐴,𝑖 +

𝑖

𝑙𝑛2∑𝐼𝐵,𝑗
𝑗

−∑{

𝐼𝐴,𝑖 𝑙𝑛 𝐼𝐴,𝑖  , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗
𝐼𝐵,𝑗 𝑙𝑛 𝐼𝐵,𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑗

(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) 𝑙𝑛(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) ,  𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗𝑖,𝑗

− 𝑆𝐴 − 𝑆𝐵) (7) 

This formula equals: 

1 −
1

ln 4
(𝑙𝑛2∑𝐼𝐴,𝑖 +

𝑖

𝑙𝑛2∑𝐼𝐵,𝑗
𝑗

)+ 𝑄 (8) 

Where: 

𝑄 =
1

ln 4
(∑{

𝐼𝐴,𝑖 𝑙𝑛 𝐼𝐴,𝑖  , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑖
𝐼𝐵,𝑗 𝑙𝑛 𝐼𝐵,𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 ≠ 𝑚𝑧𝐵,𝑖

(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) 𝑙𝑛(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) ,  𝑤ℎ𝑒𝑟𝑒 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗𝑖,𝑗

−∑𝐼𝐴,𝑖 ln 𝐼𝐴,𝑖
𝑖

−∑𝐼𝐵,𝑗 ln 𝐼𝐵,𝑗
𝑗

) (9) 



The formula (8) equals: 

1 −
1

2
(∑𝐼𝐴,𝑖

𝑖

+∑𝐼𝐵,𝑗
𝑗

) + 𝑄 (9) 

When the total intensity of spectrum A and B are normalized into 1, we will have unweighted 

entropy similarity equals 𝑄. Therefore, we have unweighted entropy similarity equals: 

1

ln 4
(∑(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) 𝑙𝑛(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗)

𝑖,𝑗

−∑𝐼𝐴,𝑖 ln 𝐼𝐴,𝑖
𝑖

−∑𝐼𝐵,𝑗 ln 𝐼𝐵,𝑗
𝑗

) , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗 (10) 

This formula can be simplified to: 

1

2
∑((𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) 𝑙𝑜𝑔2(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) − 𝐼𝐴,𝑖 log2 𝐼𝐴,𝑖 −𝐼𝐵,𝑗 log2 𝐼𝐵,𝑗)

𝑖,𝑗

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑧𝐴,𝑖 = 𝑚𝑧𝐵,𝑗 (11) 

If we define the function: 

𝑓(𝑥) = 𝑥𝑙𝑜𝑔2𝑥 (12) 

we obtain the unweighted entropy similarity as: 

1

2
∑(𝑓(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) − 𝑓(𝐼𝐴,𝑖) − 𝑓(𝐼𝐵,𝑗))

𝑖,𝑗

(13) 

The formula (13) equals: 

∑(𝑓 (
1

2
𝐼𝐴,𝑖 +

1

2
𝐼𝐵,𝑗) − 𝑓 (

1

2
𝐼𝐴,𝑖) − 𝑓 (

1

2
𝐼𝐵,𝑗))

𝑖,𝑗

(14) 

When normalizing the total spectral intensity to 0.5, we get an unweighted entropy similarity as: 

∑(𝑓(𝐼𝐴,𝑖 + 𝐼𝐵,𝑗) − 𝑓(𝐼𝐴,𝑖) − 𝑓(𝐼𝐵,𝑗))

𝑖,𝑗

(15) 

As previously defined1, we apply the formula (16) to obtain a weighted entropy intensity: 

𝐼′ = {
𝐼 (𝑆 ≥ 3)

𝐼𝑤 , 𝑤 = 0.25 + 𝑆 ∗ 0.25 (𝑆 < 3)
 (16) 

We calculate the formula (15) to get the entropy similarity as published before1. 

 

 

Reference: 

1. Li, Y. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule 
compound identification. Nature methods 18, 1524-1531 (2021). 

  



Supplementary Note 2 

Technical discussion of Flash Entropy Search 

 

Performance on reading reference spectral library 

Flash entropy search is implemented in Python, a language lauded for its flexibility, yet often criticized 

for its slower execution speed. Enhancing the algorithm's performance could be achieved by rewriting 

it in a low-level programming language, such as C, C#, or Java. 

While employing the Flash entropy search for scanning MS/MS spectra is fast, the process of loading 

reference MS/MS spectra from text-based files, such as the msp format, can be time-consuming. For 

instance, parsing an msp file housing approximately two million spectra sourced from MassBank.us 

can take upwards of five minutes. To solve this issue, Flash entropy search also accommodates 

loading reference MS/MS spectra from a structured reference library like the lbm2 format utilized by 

MSFINDER. This approach significantly expedites the loading process of the reference library. 

In addition, once the reference MS/MS spectra are imported, the Flash entropy search algorithm 

reorganizes these spectra and transforms the spectral data into multiple structured arrays for 

expedited library searching. Furthermore, these converted arrays can be stored and reloaded with 

high efficiency. 

For smaller spectral libraries, comprising a few million MS/MS spectra, Flash entropy search can load 

the fully reorganized arrays into memory to expedite the search process. The reloading of these 

reorganized arrays is highly efficient - for example, the process for a dataset such as MassBank.us, 

containing two million MS/MS spectra, requires merely about three seconds. 

For larger libraries that exceed memory capacity, Flash entropy search can leverage memory-mapped 

file technology to curtail loading time. This method maps the data file as virtual memory, negating the 

need to read the entire data file, thus ensuring an exceptionally efficient library loading process. 

Notably, even for reference libraries that span over one hundred gigabytes, the 'loading' time remains 

under 0.1 second. 

Reducing MS/MS library sizes 

For this report, we converted all the raw files into mzML format files, which contains more than 30 TB 

in total. Following the extraction and cleaning of the MS/MS spectra from these files, we removed any 

spectra that were empty. As result, we were left with 939 million spectra available for analysis. To 

save space and improve accessibility, we converted these spectra into a binary format that includes 

the spectral ID (in unsigned int64 format), precursor m/z (in float32 format), charge (in int16 format), 

ion number (in unsigned int16 format), and ions. Each ion is stored as a pair of mass-to-charge ratio 

(in float32 format) and intensity (in float32 format). Assuming an average of 30 fragment ions per 

spectrum, this compression reduces the average spectrum size to 256 bytes. As result, storing all 939 

million spectra required 226 GB of storage space. In addition, we allocated 92 GB disk space for 

metadata storage, culminating in a total storage requirement of roughly 318 GB. This can comfortably 

be accommodated on a 2TB SSD. 

The computer configuration required for Flash entropy search 

Generally, when searching a single spectrum with a CPU, even a library containing a billion spectra 

can be processed by a single core within seconds (Fig. 2e). In this scenario, multiple cores are not 

necessary. However, when searching bulk spectra, as demonstrated in Fig. 2d, multiple cores can 



significantly reduce the search time. Typically, the more cores utilized, the shorter the expected 

processing time. 

The efficiency of the library searching process is more dependent on CPU microarchitecture rather 

than frequency. The Flash entropy search algorithm is highly efficient. For instance, even when 

utilizing a CPU produced five years prior, Flash entropy search can execute an open search on 1 

million spectral pairs in a mere 3 milliseconds. 

Flash Entropy Search employs GPU-accelerated computing with CuPy, leveraging CUDA toolkit 

libraries to maximize the capabilities of the GPU architecture. We conducted our benchmark tests on 

an NVIDIA RTX 2060 Super GPU, which has 2,176 CUDA cores. For more modern GPUs, an even 

faster calculation speed can be anticipated. 

Typically, around 8 GB of GPU memory is required for open searching of all MS/MS spectra from 

public repositories, which contain 939 million library spectra. Given that modern graphics cards have 

larger GPU memory, it's feasible to search a spectral library that is several times larger with these 

advanced GPUs. 

We utilize the float32 number format when calculating spectral similarity with the GPU. The required 

GPU memory can be reduced by a further 50% if we use the float16 number format. This adjustment 

may lead to a minor loss in precision but results in a faster calculation. Additionally, some operations 

can be performed on the CPU to further decrease GPU memory requirements, though this approach 

may increase computation time. 

  



Supplementary Table 1 

Benchmarking different MS/MS search types and algorithms for 200 mass spectra 

against a library of 1 million spectra. 

 

Median calculation times to perform different type searches for 100 positive ESI and 100 negative 
ESI spectra against 1,000,000 MassBank.us spectra with different algorithms. 

Search type Algorithms Median time (Seconds) 

Identity search 

Native entropy similarity 0.0154 

MatchMS 0.0073 

Flash entropy search 0.0013 

Open search 

Native entropy similarity 96.1514 

MatchMS 25.9749 

BLINK 0.5647 

Flash entropy search 0.0009 

Neutral loss search 

Native entropy similarity 97.9794 

MatchMS 49.8345 

BLINK 0.7288 

Flash entropy search 0.002 

Hybrid search 
MatchMS 25.2803 

Flash entropy search 0.0128 

 

  



Supplementary Table 2 

Benchmarking different computers using Flash Entropy 

OS 
CPU Median searching time for positive spectra (ms) Median searching time for negative spectra (ms) 

Name Architecture 
Frequency 

(GHz) 
Manufacturing 

year 
Identity 
search 

Open 
search 

Neutral 
loss search 

Hybrid 
search 

Identity 
search 

Open 
search 

Neutral 
loss search 

Hybrid 
search 

Ubuntu 22.04.2 (run on 
Windows 11's WSL) 

AMD Ryzen 7 Pro 6850U x86 2.7 2022 1.85 0.65 1.29 3.28 2.00 1.09 4.77 10.59 

Ubuntu 22.04.2 (run on 
AWS's m6i.xlarge instance) 

Intel Xeon Platinum 
8375C 

x86 2.9 2021 1.75 0.60 1.38 4.45 2.01 1.24 4.92 11.79 

Ubuntu 20.04 Intel Xeon Gold 6338 x86 2 2021 1.56 0.72 1.40 5.30 1.88 1.51 4.20 12.36 

KDE neon 5.27 AMD Ryzen 9 3900X x86 3.8 2019 1.44 0.75 1.91 5.57 1.54 1.40 4.17 9.92 

Ubuntu 16.04.7 Intel Xeon E5-2699A v4 x86 2.4 2019 1.64 1.14 2.39 6.67 1.97 2.74 8.37 16.08 

Ubuntu 16.04.7 AMD EPYC 7601 x86 2.2 2017 2.25 1.23 1.89 5.17 2.24 2.62 9.10 17.25 

Ubuntu 16.04.7 AMD Opteron 6380 x86 2.5 2015 5.49 2.35 9.89 20.76 5.69 5.25 21.20 37.52 

Windows 11 AMD Ryzen 7 Pro 6850U x86 2.7 2022 3.17 1.62 3.74 8.23 3.39 3.92 17.46 26.77 

Windows 11 AMD Ryzen 9 3900X x86 3.8 2019 3.09 1.85 3.96 8.22 3.20 4.60 16.59 26.21 

MacOS 10.13.6 Intel Core i5-2500S x86 2.7 2011 4.94 1.68 2.84 8.34 5.46 2.80 7.66 20.12 

Debian 11 (run on GCP's 
t2a-standard-4 instance) 

Ampere Altra (Tau T2A) ARM 3 2022 1.15 0.67 2.09 5.96 1.30 1.99 8.49 18.09 

Ubuntu 22.04.2 (run on 
AWS's m7g.xlarge instance) 

AWS Graviton3 ARM 2.1 2021 0.66 0.51 1.45 4.32 0.79 1.33 5.40 12.04 

MacOS 11.7.7 (run on 
AWS's mac2.metal instance) 

Apple M1 ARM 3.2 2020 1.12 0.32 0.87 4.31 1.36 0.88 4.06 15.24 




