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In this paper we study the transitions between steady states in metabolic systems. In order to deal with this task we divided
the total metabolite concentration at steady state, a., into two fractions, a (the Output Transient Mass) and (the Input
Transient Mass). These masses allow us to define two new Transition Times, Tr (Output Transition Time) and T (Input
Transition Time), which are related with the course of output and input mass to the system respectively. We show the
equivalence between these terms and the Total Transition Time, TT, previously defined [Easterby (1986) Biochem. J. 233,
871-875]. Next, we define a new magnitude, the Output Passivity of a transition, p, which quantifies a new aspect of the
transition phase that we call the passivity of the output progress curve. With these magnitudes, all of them being
experimentally accessible, several features of the transient state can be measured. We apply the present analysis to (a) the
case of coupled enzyme assays, which allows us to reach conclusions about the progress curves in these particular
transitions and the equivalence between r,, and Ts, and (b) some experimental results that allow us to discuss the biological
significance of the Output Passivity in the transition between steady states in metabolic systems.

INTRODUCTION

Traditionally studies on metabolic regulation have been fo-
cused on the steady state, but less attention has been paid to the
study of the transitions between those steady states. Studies in
this field have dealt with the time scale of metabolic transitions
towards steady state in a coupled enzymic assay. The approach
to this problem has followed two paths. The first one is coping
with the quantification of the total duration of the transition by
measuring the t99. This t99 has the physical meaning of the
Relaxation Time of the system, which is the time necessary to
reach 99 % of the final steady state (Storer & Cornish-Bowden,
1974; Easterby, 1981; Brooks et al., 1984). The second one refers
to the problem by using a relative magnitude such as the Transit
Time, Transition Time or Transient Time, r (Hess & Wurster,
1970; Barwell & Hess, 1970; Reich & Sel'kov, 1981; and more

specifically, Easterby, 1981, 1984, 1986). is generally defined as

the ratio at steady state of the total metabolite concentrations, a,

of a given system over its flux, J:

T = o/J

Being defined in this way, r is not the absolute time needed to
reach the steady state but reflects a temporal characteristic of the
system as it evolves towards the steady state.

Acerenza et al. (1989) have extended the Metabolic Control
Analysis to the study of transition states. Our group has described
the Control of Transition Time in a reconstituted glycolytic
system (Torres et al., 1989) and has developed Control Analysis
to account for the general description of the Control ofTransition
Time in metabolic systems (Melendez-Hevia et al., 1990).

There is another important aspect of metabolic motions,
namely the shape of the progress curves (Reich & Sel'kov, 1981),
which has remained practically unexplored. The shape is
represented by the appearance of the dynamics of the metabolic
system. In fact two processes with the same or different t99 values
can have very different shapes, this being a crucial distinction in
the response of metabolic systems.
Our aim in the present paper is to cope with this aspect of

transitions between steady states. In order to describe it we define
two new Transition Times, Tr and Tp. These Transition Times are

respectively associated with the course of the final product of the
system and the input of mass to the system, during the transition
towards the steady state. By using these terms we introduce a

new concept, the Output Passivity of a transition, p, which gives
information about this aspect of the transitions between steady
states. Finally, we apply this approach to the case of coupled
enzyme assays and to the study of transitions between two
different steady states in a reconstituted rabbit muscle glycolytic
system described by us elsewhere (Torres et al., 1989).

THEORY

Transition Masses
Let us consider a pathway bounded by two metabolites, X0

and X , containing any number of enzymes and pools between
them as illustrated in Scheme 1.
The following analysis is performed under the assumption

that -all metabolite transformations are monomolecular or

pseudomonomolecular and take place with a stoichiometry of
1: 1. The mechanism of each enzyme is unspecified, allowing any
degree of reversibility and saturation. The constancy of the
concentrations of X0 and Xp might be thought of as being based
on the same assumptions as apply to an 'ordinary' enzyme assay
generating an initial rate; this could include the concentration of

XP being zero, so that the last step is virtually irreversible, but
this is not a necessary feature of the system. Alternatively, the
concentrations of X0 and Xp can be maintained by some other
mechanism outside the system under consideration.

Eo El E E.
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will have a certain value different from zero, and Vout(O) will be
zero owing to the absence of substrate of the last enzyme. Fig.
l(a) shows the typical evolution of the input and output rates
along the transition phase towards the steady state. VJn(t), owing
to the reversibility or feedback, decreases with time, while Vout(t)
increases, both approaching asymptotically to V.', which is the
flux of the system at steady state. When t = t9 all the rates of the
system (JV.) and the metabolite concentrations remain practically
unchanged.
The total mass having entered during an interval of time t,

M0(t), is given by: ft
MTeinthe Vin(t) -fdt

This may be written in the alternative form:

where

and

Fig. 1. Evolution curves of input and output rates in a transition from
'empty' system to steady state

The system is as that represented in Scheme 1. The initial conditions
are all enzymes present and all metabolites absent. (a) At t = 0 a
fixed concentration of X0 is applied and its rate of disappearance,
Vin(t), is recorded as well as the rate of production of Xp, Vo9t(t) (see
the text). At t = t99 the system reaches the steady state where
Vin(99) = Vo.M(t99) = V'S. At this moment 6(t99) = fi and 8(t99) = 8.
These curves were obtained by computer simulation of a system as
represented in Scheme 1. (b) Progress curves of the system are
represented. Conditions were as for panel (a) (see the text).

Starting with an 'empty' system, i.e. with the concentration of
all intermediate metabolites, Sp, zero at t = 0, the present
treatment will apply to a system that evolves towards the steady
state asymptotically: the system tends to an asymptotically
stable node. Initially the rate of input of X0 to the system, Vin(0),

(la)
i(t)

Min(t) = VJ0(t) t-J t - d ViJ = a(t) + 43(t)

a(t) = V,.(t) * t

f4(t) =- t . d V,.
JVi(O)

(lb)

Both a(t) and ,J(t) have a graphical and physical meaning that
can be observed in Fig. 2(a). a(t) is the area of the inner rectangle
defined by the value of Vk.(t) and t. Physically it represents the
total mass having entered the system until a given time t if
the input rate takes the constant value VJ.(t). Accordingly /,(t)
represents the additional mass that has entered the system in
comparison with a(t) and that we must add to a(t) to have M10(t).
The same analysis can be done considering the rate of output

VKut(t) (see Fig. 2b). Accordingly we reach the equivalent ex-

pression:
(- = ()-mout(t)= Vout(t) -t- t

0
where

and

t *dV.., = y(t)-d(t)

y(t) = VJKj0(t) * t

Vout(t)

8(t) = | t * d Vout

(2a)

(2b)

where M00,(t) and V..,(t) are the total mass having come out from
the system and the rate of output of Xp from the system
respectively.
At any time, t, y(t) is the area of the rectangle defined by the

value of Vl'0(t) and t. On their own d(t) is the area inside the
rectangle y(t) situated above the progress curve of Vj'u(t). The
physical meaning of these magnitudes has a direct translation in
terms of mass, as was shown in the case of Mi(t).

c sVsI
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Fig. 2. Graphical analysis and physical interpretation of the input and output evolution curves and their corresponding progress curves

(a) Negative variation of Vjn(t) is represented. At any time fl(t) is equal to the total area under the curve, Min(t), minus a(t). Once the system reaches
the steady state 8(t) remains constant and equal to f8. Physically Min(t) represents the total mass having entered the system and ft the inner mass

associated with the decreases in 1'n(t) along the transition. (b) VOut(t) increases with time from zero at t = 0 to V.9 at t = tgg. At any time y(t) is
equal to 8(t) plus Mout(t), the total area under the Vout(t) curve. Physically Mout(t) represent the total mass having left the system at any time. After
the steady state d(t) = 8, remaining constant.
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Mass partition
Mass conservation requires that at any time the total mass

input, Min(t), is accounted for either as intermediate, free or
enzyme-bound, a(t), or as a product, MUP(t). In our system,
where the rate of input is allowed to vary, this condition is met
by the following equation:

Min(t) = M'ut(t) +o(t) (3)
where o(t) represents the total mass inside the system at any
time t.

Replacing M1j(t) and M0ut(t) by their values according to eqns.
(la) and (2a) and re-arranging we obtain:

O-(t) = x(t) + (t)- y(t) + d(t) (4)
At steady state (t= tg)

a(t99) = Y(t99) = VI. 99

Therefore eqn. (4) becomes:

where
C= 8+fl

o- = limo-(t), d= lim8(t) and /1 = limfl(t)
t-.t99 t-t99 t-t99

Eqn. (5) tells us that the total mass inside the system at steady
state, a-, can be expressed as the summation of two terms, 4 and
fi-

So far we have considered the evolution starting from the
'empty' system. However, in conditions when the initial con-
centration is not zero eqn. (3) becomes:

MA0(t) = MOU4t)+ (t)+o0
From this equation, operating in the same way as above, we
reach the equivalent to eqn. (5), but more general:

-= 6+,8+0o- (6)
where represents the inner mass to the system at initial time
t = 0.
We call a the 'Output Transient Mass'. This is so because its

value expresses the part of the total mass accumulated inside the
system along the transition as a consequence of the limitations in
the output rate of mass from the system. The term a thus
contains some information about the shape of the output
transition. On the other hand fi, whose magnitude is related to
the shortening of the transient phase owing to the changes in the
input rate of mass to the system, will be called the 'Input
Transient Mass'. /1 informs us on the effect of any activation or
inhibition that acts on the first enzyme and that provokes the
particular transient observed.
The above considerations are based on the assumption that

the Min(t) curve was convex (Fig. lb; see also Melendez-Hevia
et al., 1990). The same reasoning is also of application to
transitions where the MJ0(t) curve is concave, i.e. if the interaction
increases the VJn(t) (positive effector) on the first enzyme. It is
worth noting that in these conditions fi is negative, which would
imply that a is greater than the inner mass of the system, a-. This
reasoning illustrates very well the fact that a is an ideal mass that
does not necessarily have physical existence but has a meaning as
a transient feature.

Meaning and equivalence of Transition Times
Starting from the definition of o- as the summation of fi and 8,

as shown in eqn. (5), we can obtain the corresponding Transition
Times associated with ,6 and d.

Dividing eqn. (5) by Vs. we obtain:

where
To, = Tj+ 5

Ta = a-/ VJ,' r = d/ Vl. and 6 = /3/ VK

(6a)

(6b)

Eqn. (6a) shows that Tr can be decomposed in two terms, each
one related to the transition of the input and output mass of
the system respectively. The two new terms r, and Tp are
Transition Times, and according to the physical meaning of a
and , we can call T. the Output Transition Time and T the Input
Transition Time. As was stated above, the Transition Time, re,,
refers to the steady state, giving us limited information about the
transition. The important point of eqn. (6a) is that the two new
terms T. and Tro, into which we divide rT, are now related, by
definition, to the transition phase and therefore contain in-
formation on certain features of the transition. For example,
consider in Fig. 1 two transitions that evolve to the final steady-
state flux V.' with the same relaxation time, t99. In this case
comparison of the r, values now informs us on which output
progress curve has a greater convexity, or in other words which
system accumulates more mass inside the system along the
transition.

Easterby (1986) divides the Total Transition Time, rT, into
various terms, considering the effect of feedback (and reversi-
bility) on the first enzyme in the transition response:

TT = TI+TEI+F (7)
where rI and TEI refer to the intermediate pools, free and enzyme-
bound respectively. On its own, TF is a Transition Time associated
with the variations in the rate of input of material to the
pathway, being defined as:

cv8s
t-dVi(t)

J Vin(O)
F VSS

Note that in eqn. (7) T1 plus TEI are just our Tr. On the other
hand it is clear that TF is the same, but with opposite sign, as the
above described T1a (see eqns. lb and 6b):

TF = fl/Jss = -f (8)
Then by replacing T. by its value according to eqn. (6a) and TF

from eqn. (8) in eqn. (7), we obtain:

TT = T8 (9)
Thus, in conditions in which the input rate is allowed to vary,

T. is the Total Transition Time.
These ideas and the meaning of the magnitudes involved in the

definition of r, and > can be illustrated in the progress curves of
Mjn(t) and M08j(t) (see Fig. lb). At steady state the difference
between M1n and M.., accounts for the mass of all molecular
species inside the system, o-. Therefore the asymptote to the
M.UP(t) curve intersects the abscissa at TT, which, as was shown in
eqn. (9), is r. By the same reasoning the intercept with the
ordinate gives -d. On the other hand, the asymptote to the
M1n(t) curve intersects the ordinate in , in such a way that /3 plus
a gives a-. The intercept with the abscissa gives - Tf6; accordingly
TX + Tf = Tr,. It is evident that T, and j will be different in general,
reflecting in their values the different courses of the input and
output progress curves respectively.
An interesting result is obtained when we consider the case

where the first enzyme is irreversible. Here the only transition we
can observe is that associated with the output flux production,
M.Ut. Therefore the Input Transient Mass, /3, is zero, and
accordingly with eqn. (5):

Combination of eqns. (6a) and (9) tells us then that:
(10)

An experimental consequence of this conclusion is that in such
systems the intercept of the MAut asymptote with the abscissa
gives the T. and intercept with the ordinate the corresponding ac
value.
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Output Passivity
Characterization of the passivity of transitions. In the above

paragraph two transitions with the same relaxation time, t99,
were compared by using the Transition Time -r. We concluded
that in that case the comparison of the rT values permits us to
differentiate between the progress curves. However, in the general
case where the Relaxation Times are different, the mere com-
parison of the r< values does not allow us to distinguish among
transitions. In these circumstances it is convenient to introduce a
new parameter.

In order to analyse the transitions between steady states we
introduce the Output Passivity of a given transition, p, defined
as: ,p T9

p=~ =
Vss t99 t99

Vb

V.

Time

(11)

The physical meaning of this expression and the concept of
passivity involved in it can be easily understood by examining
Fig. 1. This dimensionless magnitude, p, represents the ratio of
a (the area inside the rectangle delimited by Vss and t99 situated
above the progress curve of output flux) over the total area
V. tgg (Fig. I a), or alternatively the ratio ofthe Output Transition
Time Tr, over the total duration of the transition tgg (Fig. lb).
From its definition it is clear that p has values between zero and
unity. p equal to zero corresponds to a transition in which VJ't
reaches the V.' values at a time t = 0, which correspond to a t.
of zero. This situation appears when at t = 0 the system is exactly
full, and accordingly no mass accumulates in the system: T. = 0.
In this case the system has a passivity of zero, i.e. the system
reacts instantaneously to the change that provokes the evolution
to the new steady state. The opposite extreme situation occurs
when p is equal to unity: VJu remains zero during all the
transition, and once the t99 is reached Vku suddenly increases to
VIS. Here the passivity of the transition is maximum and the
system only reacts at the end of the transition. In this condition
,r equals t99. It can be seen that in both cases TJ appears as the
minimum value allowed to t99.
The Output Passivity of a transition, p, includes in its definition

some responses of the system that change according to the shape
of the progress curves of the output flux. Therefore, to evaluate
the response shape of a given transition, we must measure the
features that participate in the definition of p. Experimentally
this can be done easily by recording T4 and t99.

Transition between steady states. Hitherto the transitions
studied have been those from an 'empty' system to one 'full' of
intermediate pools. The transitions from one given steady state
to another are more interesting and realistic. Consider the
situation where a metabolic system in a steady state a is modified
in the value of a certain parameter, and then a transition occurs
from steady state a to another steady state b. In accordance with
the definition of 8, a general expression for this transition can be
easily derived: JVb

8ab t - d Vout
Va

In this expression 86ab represents the increment in a when the
system evolves from the steady state a to steady state b (see Fig.
3a). On their own Va and V. are the corresponding Vut at each tgg
in the steady states a and b respectively.
The previous definition can be divided in the following way:

OtdV.ut J|t- dVut-- tJ d Vout = 8b - a

Dividing by V. and multiplying the second right term by Va/ Va
we obtain: V-

(T8)ab = (T8)b V (Ta)a (12)

(b)

Time

Fig. 3. Graphical interpretation of the Output Transient Mass, 6, and the
Output Transition Time, T6, during transition between steady states

System in steady state a starts a transition (arrow) to steady state b.
At the transition point the flux through the pathway is increased,
resulting in an increase in the steady-state a pool concentration.
Panel (a) shows the plot of VOjt) versus time in accordance with
Fig. 1(a). Panel (b) shows the plot ofXp mass production versus time
as in Fig. 1(b).

An equivalent equation is derived for (Trf)ab:

('rl)ab = (T)b V (T)a
Vb

Easterby (1986) has obtained a similar expression for Total
Transition Time. The important point here is that (T)ab and (Tfl)ab
can be estimated from the transitions for the establishment of
each steady state from the 'empty' starting point. Consistently,
only a limited number of steady states need be known, enabling
us to calculate (T )ab and (T,6)ab in passage between any pair of
these states (see Fig. 3b). It is worth noting also that the values
obtained from eqns. (12) and (13) are different in general from
those values (T8)ba and (T6)ba corresponding to the transition from
steady state b to steady state a. Furthermore it is easy to obtain
the relation between them:

(T=)ab K (TI)ba and (Trf)ab V (T=)baVb Vb

Regarding the quantification of the passivity responses in
transitions between steady states it is obvious that in these cases

this response can be measured by the same procedure as described
above. The corresponding equation for the Output Passivity of
the transition from steady state a to steady state b is now:

8ab (TS)ab
PabV(t) t

(t(t9)b 99)ab

1991

(13)

(a)
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6b
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821

(a)

81

II

Time (t99)2 (tgg)1

" Time

Fig. 4. Comparison of transient response between two different metabolic
systems

Panels (a) and (b) show the evolution curves for two systems that
evolve from 'empty' to the same final steady-state flux, VJ', but
spending different times in the transition, (tq9)l being greater than
(t99)2. System 1 has a a less than system 2 and therefore the transition
time (T,), is less than (r8)2. According to the definition of the Output
Passivity, P2 is greater than p1.

where ab, (T,)ab and (t99)Gb represent the 8, T. and t99 values of the
transition between the steady states a and b respectively and Vi
is the flux at steady state b. Since the terms (Td).b and (tgg),b are,
in general, different from those of (T,,)ba and (tg9)ba, the Output
Passivity of the transition from steady state a to steady state b,
Pab will be different from that corresponding to the transition
from steady state b to steady state a.
Some results concerning the transitions between steady states

are discussed in the following section.

RESULTS

Applications of the analysis
The present analysis is applied to two cases that show different

behaviour in the response shape.

Coupled enzyme assays. It is a common practice for
enzymologists to use auxiliary enzymes as a means to assay the
activity of an enzyme when its product is not detectable by
conventional techniques. Much work has been done on this
subject, dealing with different aspects of the process such as the
transient duration of the transition towards the steady state
(Easterby, 1973; McClure, 1969) and its optimization
(Garcia-Carmona et al., 1981; Brooks et al., 1984). Application
of the present analysis to this problem gives us new insight into
this question.

Let us consider the simplest example, which is described
schematically as: vO V1IK,

X0 S Xp
where X0 is the initial substrate, Xp is the measurable product
and S1 is the single intermediate (product of the reaction under
study). V' is the rate of the reaction under study and V, and K1
are respectively the maximum rate and the Michaelis constant of
the coupling enzyme. The usual assumption is that the first
enzyme catalyses a zero-order reaction, i.e. it is an irreversible
reaction; Vk must necessarily be much greater than V' and
consequently the steady-state concentration of Si will be small
and less than K1, so the auxiliary enzyme catalyses a first-order
reaction. In this type of system Easterby (1973) and Garcia-
Carmona et al. (1981) have derived the following equations:

vout= V (1-ee/T)

99g 4.6-T

where T, the Transition Time, is equal to K1/ VI and VOU, is the rate
of production of Xp at any time t.
As has been shown above in systems where the first enzyme is

irreversible (eqn. 10), T,, = TT = T,,, which are the experimentally
accessible parameters from the output progress curves.

It is evident from the above expression that as T. becomes
smaller (or greater) the Relaxation Time becomes shorter (or
longer). However, this fact does not mean that the Output
Passivity of the transition changes. In fact an interesting con-
clusion from this model is that the Output Passivity obtained by
using eqn. (11) gives us a constant value, independent of T and
t99 and equal to 0.21. Therefore we have a situation in which for
different values of VJ and K1 both tgg and Tr have different values
but in all cases the passivity of the transition is the same. This
illustrates very well that the Output Passivity of a transition
measures a different response from the Relaxation Time or the
Transition Time.

These coupled enzyme assays therefore show only one type of
response passivity in its transitions. But this is not a general
behaviour.

Glycolytic transitions. In a previous paper (Torres et al., 1989)
Control of Flux and Total Transition Time, T., were investigated
with a reconstructed rabbit muscle glycolytic system in vitro as an
experimental model. We determined the steady-state flux and
Total Transition Time in two conditions of concentration of an
external stimulator of the system (fructose 2,6-bisphosphate).
The system contained hexokinase, which is affected by a feedback
inhibition by glucose 6-phosphate. From these results we can
now draw new conclusions regarding the response of the system
along the transition. In conditions of low fructose 2,6-bisphos-
phate concentration, i.e. 2gM (condition a), (T,r)a was 11 + 0.1 min,
Jj was 0.025 + 0.002 ,tmol of final product/min and (t9)a was
25 + 0.8 min. In conditions of saturation with this effector,
i.e. 10 /M (condition b), (,r)b was 7+0.1 min, J, was
0.047 + 0.0017,umol of final product/min and (99)b was
20 + 0.3 min. From these data we can calculate the corresponding
p values, which are Pa = 0.44 and Pb = 0.35 for transitions to
steady state a and steady state b respectively. These results
inform us that the transition to steady state a has more passivity
than transition to steady state b when both systems start from the
'empty' situation. As can be seen in this case p has different
values depending on the particular transition, which will be the
general behaviour.

DISCUSSION

The terms introduced in the present analysis (a-, 4, fi, rT and TI6),
all of which are experimentally accessible, give us information on
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either the output or the input progress curves. Thus a is calculated
from 'r, which can be obtained from the output progress curves
VJut(t) (Torres et al., 1989; Melendez-Hevia et al., 1990). On its
own fi, because of the experimental difficulties in some cases in
establishing the V'.(t) curve, can be determined from the values
of a and d. A simpler way to determine ao would probably be an
actual extraction of the intermediates and summing up of their
concentration (trichloroacetic acid precipitation would liberate
both free and enzyme-bound pools). Usually ,l will be positive
(reversibility or negative feedback on the first enzyme) but could
also be negative (activation of the first enzyme) or zero [Vk.(t)
constant] as considered above. In any cases, if our interest is to
know about the transition from one steady state to another, the
useful term is d. However, f8 is the interesting term if we want to
know about the interactions acting on the first enzyme that are
responsible for the changes in the duration of the transition
(reversibility, product inhibition, feedback loops etc.).
Having reached this point, two important observations should

be made. One refers to the distinction between the Relaxation
Time, tg, and the Transition Time, r,, in order to assay the
duration of transitions. The absolute time scale of transitions is
strictly described by the Relaxation Time, t99, or any other
fraction of the time needed to reach the actual final steady state.
However, the Transition Time, T., does not give us exact
indication of the duration of the transition but gives only a
relative measure referred to the final steady state. In fact its
actual meaning as the ratio of the total metabolite concentration,
oc, over the flux through the system at steady state, V.K, is the
mean time that a molecule takes to be converted through the
system at steady state. The second observation refers to the
differences among the two terms referred to above, T. and t9g, and
the qualitative characterization of the dynamics of the system
along the transition from one steady state to another, which we
describe by means of the Output Passivity, p. This analysis
illustrates the differences between the response time t99 and the
Output Passivity, p, showing how this last parameter gives us
some information on the shape of the transient curve.
These different aspects are well illustrated in Fig. 4(b). In this

Figure, in spite of the fact that (T8)1 is less than (Tr)2, the longer
transition is transition 1 because its Relaxation Time (t99)1 is
greater than (t99)2. The sole comparison of r, values could lead to
wrong conclusions about the speed of reaching the steady state.
On the other hand comparison of the passivity response should
be done by comparing the values of p. In Fig. 4(a) the two
transitions evolve towards the same steady state flux, J' .

Transition 1 has a lower value of a but the t99 value is greater
than in transition 2: 81 < 82 and (t,)1 > (t9)2. Accordingly (T.),
is less than (T8)2 and p1 will be less than P2. These results inform
us that the response of system 2 during the transition has more
passivity to the movement than system 1: the output flux of
system 2 remains far away from the final steady-state flux longer
than the first one. Therefore, with regard to the passivity of the
transition, system 2 shows greater resistance to reaching the
steady state than system 1, in spite of the fact that the duration
of transition 1 is greater than the duration of transition 2.
The results shown in the Results section illustrate this new

aspect of the metabolic regulation, which is the passivity of the
transition between steady states. Until now some attention has
been focused on the absolute time scale of transition processes.
The importance of the temporal length of the transition between
steady states is obvious. A given system can change from one
state to another fast or slowly in absolute terms (i.e. low or high
values of t,,), but in any case the path along this transition can
be (see Fig. 4a) either low (p near unity) or high (p near zero).
This aspect could be of crucial importance in the fitness of the
cellular metabolism of species or tissues.
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