Roles of Ca^{2+} in human neutrophil responses to receptor agonists

Joseph T. O'FLAHERTY,* Adriano G. ROSSI,† David P. JACOBSON and Jimmy F. REDMAN Wake Forest University Medical Center, Department of Medicine, Section on Infectious Diseases, Winston-Salem, NC 27103, U.S.A.

Previous studies have concluded that cytosolic Ca²⁺ ($[Ca^{2+}$]) transients are essential for neutrophils (PMN) to degranulate and make superoxide anion when challenged with the receptor agonists N-formyl-methionyl-leucyl-phenylalanine, platelet-activating factor and leukotriene B₁. This view is based on the profound unresponsiveness of PMN that have their [Ca²⁺], fixed at resting levels by removing storage Ca²⁺ and loading the cells with $\geq 20 \mu$ M of a Ca²⁺ chelator, quin2 AM. We too observed this unresponsive state in PMN loaded with $10-32 \mu$ M-quin2 AM, fura-2 AM or 1,2-bis-(2aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA). When loaded with $\leq 1 \mu M$ fura-2 AM, however, Ca²⁺depleted PMN failed to alter $[Ca^{2+}]$, appreciably, yet still had substantial degranulation and superoxide-anion-generating responses to the receptor agonists. Function thus did not require $[Ca^{2+}]$, transients. Moreover, Ca^{2+} -depleted PMN had $20-35\%$ decreases in receptor numbers for each of the three agonists, and chelator loading of these cells decreased receptor availability by 30–50%. All receptor losses were reversed by incubating PMN with Ca²⁺ at 37 °C, but not at 4 °C, and agonist binding at 4 °C was not influenced by the presence or absence of extracellular Ca^{2+} . Ca^{2+} thus caused PMN to up-regulate their agonist receptors at 37 °C, and the effect persisted at 4 °C regardless of ambient Ca²⁺. We conclude that Ca^{2+} acts in at least three ways to regulate responses to receptor agonists. First, some pool of (probably cellular) Ca^{2+} maintains receptor expression. Second, $[Ca^{2+}]$, transients potentiate, but are not required for, function. The $[Ca^{2+}]$, pool may or may not be the same as that influencing receptors. Finally, another pool(s) of $Ca²⁺$ signals or permits responses. This last pool, rather than $[Ca^{2+}]$, transients, appears essential for the bioactions of standard Ca^{2+} -mobilizing stimuli.

INTRODUCTION

Calcium plays a poorly understood role in cellular responses $[2]$. Studies with human polymorphonuclear neutrophils
 $[2]$. Studies with human polymorphonuclear neutrophils (PMN) exemplify the current situation. PMN contribute to host defences by releasing granule-bound microbiocidal enzymes and superoxide anion (Q_2^-) . Agents stimulating these responses
preparation (Q_2^-) . Agents stimulating these responses tracellular Ca²⁺, and thereby increase the concentration of
tracellular Ca²⁺, ([Ca²⁺¹]) in which cases the concentration of cytosolic Ca²⁺ ([Ca²⁺]_i) [3–23]. Moreover, PMN in which $[Ca^{2+}]$ _i is driven to high levels by artificial means (e.g. with Ca²⁺)_i ionophores, or, in permeabilized cells, high levels of ambient mophores, or, in permeabilized cens, ingli levels of almoent
 F_a^{2+} promptly degranulate and make O_2 [3,12,13,15,24-27]. Finally, $[Ca^{2+}]$. blocked PMN do not respond to Ca^{2+} -mobilizing agonists $[3-7,9-15,17-24]$. On the other hand, some agents activate PMN without altering $[Ca^{2+}]$, $[3,5,6,8,9,12,20,21,23]$; some Ca^{2+} -mobilizing agonists elicit function independently of $[Ca²⁺]$ _i in PMN primed with other stimuli [3,9,11,24]; and some agents elevate $[Ca^{2+}]_1$, but do not further stimulate PMN [28,29].
The consensus is therefore that PMN have $[Ca^{2+}]_1$ -transientindependent as well as $[Ca^{2+}]_i$ -transient-dependent responseeliciting pathways, and $[Ca^{2+}]$, rises are necessary, although not $\sum_{i=1}^{\infty}$ degrees and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ sufficient, for the degranulating and O_2 -generating actions of standard receptor agonists such as N -formylmethionyl-leucylphenylalanine (fMLP), platelet-activating factor (PAF) and leukotriene B_4 (LTB₄) [3-12,14-23,25-29]. However, this last conclusion rests on the complete unresponsiveness of $[Ca^{2+}]$. blocked PMN, i.e. cells that are suspended in Ca^{2+} -free media, stripped of calcium by Ca^{2+} ionophores and/or millimolar EGTA treatments, and loaded with large amounts of Ca^{2+} chelators.
Such PMN may be deprived of other Ca^{2+} pools needed for

assembly of complex responses. We show here that PMN depleted solintly of complex responses. We show nere that I will depicted
 $\int \int \frac{2^{2} + 6y}{2}$ gentler methods (e.g. incubation with 1 ω M-EGTA) and σ generic methods (e.g. includitor with μ μ -LOTA) and loaded with small amounts of a different intracellular chelator, fura-2 AM, are unable to alter $[Ca²⁺]$, appreciably, yet behavior, the 42 Kivi, are unable to anter $\lfloor Ca \rfloor_1$ appreciably, yet
to fMLP, particle and oxidative-metabolism responses to fMLP, PAF and LTB₄. Moreover, these PMN had decreased numbers of receptors for each of the three agonists. Ca^{2+} thus regulates receptor availability in PMN, and this effect may contribute to depressing cell responses. In any event, Ca^{2+} acts at various sites in the PMN response mechanism, and the unresponsiveness of $[Ca^{2+}]_i$ -blocked PMN cannot be ascribed simply to the absence of $[Ca^{2+}]_i$ transients.

EXPERIMENTAL

Materials

We prepared the present $\overline{3}$ and $\overline{3}$ and $\overline{3}$ and $\overline{3}$ and $\overline{3}$ we prepared Γ H_IPAF (50 CI/mol) and Γ IB₄ [30,31], and purchased the following: $[{}^3H]LTB_4$ (180 Ci/mmol) and $[{}^3H]$ fMLP (53.6 Ci/mmol) (DuPont–New England Nuclear, Boston, MA, U.S.A.); PAF (Bachem Biosciences, Philadelphia, PA, U.S.A.); fMLP (Peninsula Laboratories, San Carlos, CA, U.S.A.); fura-2 AM, quin2 AM, $1,2$ -bis- $(2$ -aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA) and fura-2 and quin2 pentapotassium salts (Molecular Probes, Junction City, OR, U.S.A.); fatty acid-free type II BSA, cytochalasin B (CB) and type IV cytochrome c (Sigma Chemical Co., St. Louis, MO, U.S.A.); superoxide dismutase (SOD) (Diagnostic Data, Mountain View, CA, U.S.A.); silicone oil (General Electric, Waterford, NY, U.S.A.); and Ready Safe scintillation fluid (Beckman Instruments, Fullerton, CA, U.S.A.). Our modified Hanks' buffer
contained 154 mM-NaCl, 0.75 mM-Na₂HPO₄, 5.4 mM-KCl,

 \mathcal{A}_1 , cytosol free Ca2" concentration; PMN, polymorphonuclear neutrophilic leucocytes; fMLP, N-formylmethionyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-leucyl-l Abbreviations used: $[Ca^{2+}]$, cytosol free Ca^{2+} concentration; PMN, polymorphonuclear neutrophilic leucocytes; fMLP, N-formylmethionyl-leucylphenylalanine; PAF, platelet-activating factor (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine); LTB₄, leukotriene B₄; BAPTA, 1,2-bis-(2aminophenoxy)ethane-NNN'N'-tetra-acetic acid; CB, cytochalasin B; O_2 , superoxide anion; SOD, superoxide dismutase.

^{*} To whom correspondence should be addressed.

[†] Present address: Department of Applied Pharmacology, University of London, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, U.K.

0.74 mm-KH₂PO₄, 25 mm-Tris and 1 μ m-EGTA (pH 7.4). CaCl₂ was added to this buffer where indicated. Agonists and ³Hlabelled ligands were taken up in Hanks' buffer supplemented with BSA (2.5 mg/ml) and added to PMN suspensions so that the final BSA concentration was $125 \mu g/ml$.

Methods

Normal human donor blood was drawn into syringes containing EDTA (10 mM) plus heparin (10 units/ml), diluted with equal volumes of Ca2+-free normal saline, and centrifuged over Ficoll/Hypaque discontinuous gradients [30]. The isolated granulocyte layer was twice exposed to hypo-osmotic medium (24 ml of 0.1 % NaCl; 25 s each; 4 °C) and washed in Ca²⁺-free normal saline to obtain a final preparation of $> 95\%$ PMN, < 5 platelets per 100 PMN, and no erythrocytes. Then 5×10^7 PMN were incubated in our standard Ca^{2+} -free EGTA (1 μ M)-containing Hanks' buffer at 37 °C for 30 min. Where indicated, fura-² AM, quin2 AM or BAPTA was added at the start of this incubation. PMN were then washed twice in this buffer $(4^{\circ}C)$ and processed further as needed in each individual assay. As determined with fura-2 (pentapotassium salt), our $(1 \mu M - EGTA$ containing) Hanks' solution had < 17 nm-Ca²⁺.

Bioassays

For degranulation, 1.3×10^6 PMN in 0.5 ml of Hanks' buffer were incubated with 0 or 1.4 mm-Ca²⁺ for 16-18 min (37 °C), treated with 2.5 μ g of CB for 2–4 min, challenged for 5 min, placed on ice, and centrifuged (200 g; 5 min; 4° C). Isolated supernatants were assayed for lysozyme, β -glucuronidase and lactate dehydrogenase [30]. Results are reported as net enzyme release, i.e. the percentage of total cellular enzyme released by stimulated PMN minus that released by BSA-treated PMN. stimulated PMN minus that released by BSA-treated PMN.
None of the stimuli or chelators caused net release of the cytosol marker, lactate dehydrogenase. Net lysozyme and β -glucuronidase release therefore represented degranulation rather than cell lysis. IYSIS.
on Ω = 107 PMN in 1 ml of buffer were incubated with 0 or

FOI O_2 , TO' FININ In 1 mil 01 bullet were included with 0 or 1.4 mm- \bar{Ca}^{2+} for 16–18 min (37 °C), treated with 5 μ g of CB for 2–4 min, and challenged for 10 min in the presence of 50 nmol of τ mm, and chancing to 10 mm in the presence of 50 mmol or
tochrome c with or without 50 μ g of SOD. Differences in A_{550} between stimulated PMN suspensions containing 0 or 50 μ g of SOD were monitored with a split-beam U 2000 Hitachi spectrophotometer. Results are given as the maximal rate (nmol/min) of $\sum_{i=1}^{\infty}$ solition at $\sum_{i=1}^{\infty}$ for $\sum_{i=1}^{\infty}$ for $\sum_{i=1}^{\infty}$ molarithm and $\sum_{i=1}^{\infty}$ molarithm and $\sum_{i=1}^{\infty}$ $\sigma_{\rm p}$ absorption coefficient of $\sigma_{\rm p}$ for the difference between $\sigma_{\rm p}$ to the difference between $\sigma_{\rm p}$ absorption coefficient of 21000 for the difference between oxidized and reduced cytochrome c . R^2 and reduced cytochrome c.
 ϵ_R Ca²⁺ transients, form 2 AM-prelogal PMN (107) in 1 ml

For ca. transients, $\lim_{n \to \infty} \frac{2 \text{ A}}{n}$ -preformed FNIN (10) in 1 min of buffer were incubated with 0 or 1.4 mm -Ca²⁺ for 16-18 min (37 °C), treated with 5 μ g of CB for 2–4 min, and challenged for 2.5 min. Suspensions were alternatively excited at 340 and 380 nm and monitored at 510 nm [30]. $[Ca^{2+}]$ ₁ was estimated by comparisons with standard $Ca^{2+}/EGTA/fura-2$ (pentapotassium salt) solutions. To determine cell content of fura-2 and quin2, chelator-loaded PMN suspensions were treated with 0.1 $\%$ Triton $X-100$ plus 5 mm-Ca²⁺ and assayed for intensity of fluorescence (fura-2: 340 nm excitation, 510 nm emission; $\text{quin2: } 339 \text{ nm}$ excitation, 492 nm emission). Results were compared with stan- α dard α , α and α further α per active were compared with stan- $\frac{1}{3}$ buttons of fura-2 and

Ligand binding

 $\frac{1}{2}$ buffer were in the buffer with $\frac{1}{2}$ or $\frac{1}{2}$ o 1.4 mm-ca2 μ for μ m μ m μ in μ buffer were includated with μ or 1.4 mm-Ca²⁺ for 20 min, diluted with 8 vol. of 4 °C buffer (Ca^{2+}) concn. as in the original incubation), centrifuged (400 g ; 4 min; 4 °C); and resuspended in 4 °C buffer (Ca²⁺ as in the original incubation). All binding was done at 4 °C. Either 2.5 × 10⁶ (for

LTB_i) or 5×10^6 PMN (for PAF or fMLP) were incubated for 40 min (for LTB_a) or 60 min (for PAF or FMLP) in 1 ml of buffer containing 10 pm-[3 H]LTB₄ with or without 100 nm-LTB₄, 10 pM-[3H]PAF with or without 100 nM-PAF, or 63.2 pM-[3H] fMLP with or without 6.32 μ M-fMLP. Suspensions were centrifuged (12000 g; 1 min; 4 °C) through 400 μ l of silicone oil and separated into pelleted material and supernatant fluids. Pellets and 200 μ l samples of supernates were incubated with 0.5 ml of methanol for 10 min, mixed with 2 ml of Ready Safe scintillant, and counted for ³H radioactivity. LTB₄ and PAF specific binding under these conditions had reached equilibrium, and was fully reversible and readily saturated [30,31]. We found that the binding of 63.2 pM-[3H]fMLP reached apparent equilibrium within ⁶⁰ min. Equilibrium binding was proportional to PMN cell counts between 10⁶ and 4×10^7 cells/ml, reversed by $> 95\%$ within 90 min of adding 6.32 μ M-fMLP, and saturated with increasing amounts of fMLP. Scatchard analyses used the LIGAND program and data from PMN incubated with $\frac{1}{2}$ -log incrementally increasing concentrations of $[{}^{3}H]fMLP+fMLP$ $(63.2 \text{ pM} - 6.32 \text{ \mu M})$, [³H]PAF + PAF (10 pM-100 nM plus 200 nM), and $[{}^{3}H]LTB_{4} + LTB_{4}$ (10 pm-1 μ m).

RESULTS

$Ca²⁺$ transients

 $P(M)$ were loaded with 1 M -fure 2 AM in our C_2 ²⁺ free PMN were loaded with μ M-tura- λ AM in our Ca²⁺-tree

Fig. 1. $[Ca^{2+}]$, in agonist-stimulated PMN

Cells were loaded with $1 \mu M$ (left panels) or 0.1 μM (right panels) fura-2 AM in Ca²⁺-free buffer, washed twice and resuspended $(10^7$ cells/ml) in this buffer, incubated with 0 (broken lines) or 1.4 mm-(continuous lines) Ca²⁺ for 16-18 min, treated with 5 μ g of CB/ml for 2–4 min, and challenged with 1 μ M-fMLP, -PAF or -LTB₄. Note the different ordinate scale for the upper right panel. Data are means $(\pm s.\text{E.M.})$ where included) for 5-7 experiments.

Fig. 2. Effects on Ca^{2+} of PMN degranulation (lysozyme release, left panels; β -glucuronidase release, right panels) responses

 μ_{max} , $\mu_{\$ ells were loaded with 0 or 32 μ M-quin2 AM (final concn. 2 nmol/10⁷ PMN) in Ca²⁺-free buffer, washed twice and resuspended $(2.5 \times 10^6$ cells/ml) in this buffer, incubated with 0 (Ca²⁺-depleted or quin2loaded) or 1.4 mm- (Ca^{2+} -repleted) Ca^{2+} for 16–18 min, treated with $5 \mu g$ of CB/ml for 2-4 min, and challenged with the indicated stimuli. The responses of quin2-loaded PMN were fully restored to levels of Ca^{2+} -repleted PMN by a 20 min incubation with 1.4 mm- $Ca²⁺$ (results not shown). Note the different ordinate scale for each panel. Data are means (\pm s.e.m. where included) for 7–9 experiments.

Fig. 3. Effects of Ca²⁺ on PMN O₂⁻-generation responses Ca2+-repleted, Ca2"-depleted and quin2-loaded P

a²⁺-repleted, Ca²⁺-depleted and quin2-loaded PM as described in Fig. 2 legend. Cells were incubated with 5μ g of CB/ml for 2-4 min and challenged with the indicated stimuli. The responses of quin2-loaded Ca^{2+} -depleted PMN were fully restored to the levels of Ca^{2+} -repleted PMN by a 20 min incubation with 1.4 mm-Ca²⁺ (results not shown). Data are means (\pm s.e.m. where included) for 7-10 experiments.

Table 1. Effects of Ca^{2+} on $O₂$ release by stimulated PMN

PMN were loaded with 32μ M-quin2 AM, 32μ M-fura-2 AM or 10 μ M-BAPTA, washed twice, incubated with 0 or 1.4 mM-Ca²⁺ for 16-18 min, treated with CB for 2-4 min, and challenged with 1 μ MfMLP, 1 μ M-PAF or 100 nM-LTB₄. Results are given as the maximal rate (nmol/min per 10⁷ PMN) of O_2 ⁻ release, as means \pm s.E.M. for \geqslant 4 experiments.

Table 2. Effects of Ca^{2+} on lysozyme release by stimulated PMN

PMN were loaded with 32 μ M-quin2 AM, 32 μ M-fura-2 AM or 10 μ M-BAPTA, washed twice, incubated with 0 or 1.4 mM-Ca²⁺ for 16-18 min, treated with CB for 2-4 min, and challenged with 316 nm- σ -10 nm, we have written for $2⁻⁴$ nm, and chaircing deviation σ in σ -WILF, 200 IIM-FAF OF TOUTIM-LID₄. RESULTS are given as net $\frac{1}{2}$ as means $\frac{1}{2}$ lysozyme release (%), as means \pm s.e.m. for 3–8 experiments. Net β -glucuronidase release was similarly effected by Ca²⁺ and the chelators.

 $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ $\frac{m}{2}$ cells this, $\frac{m}{2}$ $\frac{1}{200}$ pmolecular and had a baseline $\frac{20}{100}$ and $\frac{20}{100}$ of $\$ ontained /00 pmol of fura-2 and had a baseline $[Ca^{2+}]_i$ of $(2+\xi)$ and $(2+\xi)$ in $(2+\xi)$ in $(2+\xi)$ 3 ± 5 nM (mean \pm S.E.M.). [Ca²⁺], rose minimally (to < 35 nM) in response to 100 pm-1 μ m of fMLP, PAF or LTB₄ (Fig. 1, lefthand panels, broken lines). Hence these PMN were $Ca²⁺$ -depleted. Contrastingly, the same PMN, when incubated for response to 100 pm-1 μ or 1 mLP, PAF or L1 B₄ (Fig. 1, left-
hand panels, broken lines). Hence these PMN were Ca²⁺-
depleted. Contrastingly, the same PMN, when incubated for
20 min with 1.4 mm-Ca²⁺ (37 °C), were and panels, broken lines). Hence these PMN were Ca²⁺-
depleted. Contrastingly, the same PMN, when incubated for
20 min with 1.4 mm-Ca²⁺ (37 °C), were Ca²⁺-repleted: their
resting [Ca²⁺], was 69 + 15 nm, and this r resting $[Ca^{2+}]$, was 69 ± 15 nm, and this rose to > 425 nm within 15 s of challenge with 1 μ M of the receptor agonists (Fig. 1, left- \cdot and panels, continuous lines). Ca^{2+} -repleted PMN showed essentially normal dose-response curves over an agonist range of 10 100 1000 loaded with 0.1 μ M-fura-2 AM (80 pmol/10⁷ PMN), except that: loaded with 0.1 μ M-fura-2 AM (80 pmol/10⁷ PMN), except that: (a) fura-2 fluorescence was difficult to detect and more variable; (b) $\lbrack Ca^{2+}\rbrack$, rose to ~40-50 nm following stimulation of Ca²⁺depleted PMN with 1 μ M of the agonists; and (c) the responses of Ca²⁺-repleted PMN developed somewhat more slowly and were more sustained (Fig. 1, right-hand panels). Evidently, then, fura-2 tends to buffer $[Ca^{2+}]_i$ changes and thereby may help to fix $[Ca²⁺]$, at or near to baseline values (see [10]). In any case, $Ca²⁺$ depleted PMN loaded with $\ge 0.1 \mu$ M-fura-2 AM exhibit little or no change in [Ca²⁺], after fMLP, PAF or LTB₄ challenge.

Fig. 4. Effects of fura-2 on PMN degradation (lysozyme release, continuous lines in upper panels; β -glucuronidase release, broken lines) and $O_2^$ generation (lower panels) responses

 P_{max} and P_{max} /matrix P_{max} with well to and with 0.52μ m-tuta-2. And the definition; ashed twice and resuspended $(2.0 \times 10^{-1} \text{ cm})$ in this buffer, and challenged with μ M-fMLP, λ -PAF or -LTB₄. All responses were restored to the
 μ M-fMLP, λ -repleted PM₃. All responses were restored to the levels of Ca^{2+} -repleted PMN by a 20 min incubation with 1.4 mm- Ca^{2+} (results not shown). Data are means \pm s.e.m. for 5–11 experiments.

Table 3. Effects of Ca^{2+} on the specific binding of receptor agonists to

 $P(N)$ were loaded (27.86) with no chelator, $22 \times \text{cm}^2$ AM MN were loaded (37 °C) with no chelator, 32μ M-quin2 AM, 32 μ M-fura-2 AM or 10 μ M-BAPTA for 30 min, washed twice (4 °C), incubated (37 °C) with 0 or 1.4 mm-Ca²⁺ for 20 min, resuspended in 4° C buffer containing Ca^{2+} as in the original incubation, and assayed (4 °C) for the specific binding of the indicated agonist. cally are given as the percentage of recovered radiolabel specifi-
 \ddot{m} ally bound per 5×10^6 PMN (means \pm s.e.m.; $n \ge 10$): *indicates b' < 0.05 compared with the corresponding values for PMN incubated with no chelator and 1.4 mM-Ca²⁺; **indicates P < 0.05 compared with the corresponding values for PMN incubated with no chelator and 0 mm-Ca^{2+} . Statistical significance of differences was analysed by Student's paired t test.

Fig. 5. Effects of Ca^{2+} on PMN binding of LTB,

Cells were loaded with 0 (upper panels) or 10μ M- (lower panels) BAPTA in Ca²⁺-free buffer, resuspended $(5 \times 10^6 \text{ cells/ml})$ in this same buffer, incubated at 37 °C with 1.4 mm- (continuous lines) or 0 (broken lines) Ca²⁺ for 20 min, centrifuged (400 g; 4 min; 4 °C), resuspended in 4 °C buffer containing 1.4 mm- or $0 \text{ } Ca^{2+}$ as in the $\frac{1}{2}$ original include formulation, and as in the $\frac{1}{2}$ $\sum_{i=1}^{\infty}$ displacement curves for the binding $(1, 0, 1, 0, 1, 0)$ on the left give displacement curves for the binding of 10 pm-1 μ M-[³H]LTB_a plus LTB_a (means \pm s.e.m.). Panels on the right give Scatchard plots for high-affinity binding and use data corrected for non-specific and low-affinity binding with the LIGAND program. Low-affinity binding parameters did not vary significantly between the treatment groups. Data are means for 11 experiments.

Functional responses

Relative to Ca²⁺-repleted PMN, Ca²⁺-depleted PMN had $\frac{350}{4}$ decreases in agenct induced degranulation and Ω - θ –13% decreases in agoinst-induced degrandiation and θ_2 generation responses. After loading with 32μ M-fura-2 AM, 32 μ M-quin2 AM or 10 μ M-BAPTA, Ca²⁺-depleted PMN were virtually unresponsive to fMLP, PAF and LTB₄ (Figs. 2 and 3). $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ all inhibition (Tables 1). a α -repiction of the fatter cens reversed an immortion (Tables 1). and 2). These results agree with studies showing that Ca^{2+} depleted chelator-loaded PMN are unresponsive to receptor agonists $[3-24]$. In further study of this inhibition, however, we found that Ca²⁺-depleted PMN loaded with $\leq 1 \mu$ M-fura-2 AM had little loss in responsiveness beyond that achieved with Ca^{2+} depletion alone (Fig. 4). In particular, Ca²⁺-depleted PMN loaded with 0.1–1 μ M-fura-2 AM did not raise [Ca²⁺], appreciably (Fig. 1), yet released substantial amounts of lysozyme, β -glucuronidase and O_2^- after treatment with 1 μ M (Fig. 4) or 10–100 nM (results not shown) of fMLP, PAF and LTB₄. The profoundly unresponsive state produced by high concentrations of intracellular Ca^{2+} chelators thus cannot be fully explained by the blockage of Ca^{2+} transients.

Agonist binding

calist dinging
Calculation of PMON had 2000 decreases in their specific in the specific specific in the specific specific spe $Ca²$ -depieted PMIN had $20-33\%$ decreases in their specific

Table 4. Effects of Ca^{2+} on PAF and LTB₄ high-affinity binding to PMN

PMN were Ca²⁺-depleted and chelator-loaded, washed twice, incubated with 0 or 1.4 mm-Ca²⁺ at 37 °C for 20 min, resuspended in the same buffer at 4 °C, and incubated (4 °C) with various concentrations of the indicated agonist. Results are given as receptor numbers per cell (R_1) and association constants (K_a) (\pm s.e.m.; $n \geq 10$), as determined by the LIGAND program. LIGAND indicated that each agonist bound to high- and low-affinity sites under all conditions ($P < 0.05$, F-distribution). Results are for high-affinity binding sites only. Low-affinity binding parameters showed no significant differences between the treatment groups.

ator loading of these PMN further decreased binding; and exogenously added Ca^{2+} reversed all binding defects (Table 3). Scatchard analyses of binding data for LTB₄ (Fig. 5) revealed
Catchard analyses of binding data for LTB₄ (Fig. 5) revealed hat Ca^{4+} -depleted PMN (with or without chelator loading) had
20-50.2/- fough-bigh-affinity binding sites than did Ca^{2+} -repleted 20–50 $\%$ fewer high-affinity binding sites than did Ca²⁺-repleted
PMN (Table 4). The K, for these sites (Table 4) as well as the R PMN (Table 4). The K_a for these sites (Table 4) as well as the R_t and K_a for low-affinity binding (results not shown) did not K_a for low-all integrating the variable cells. The variable cells. EXTIDIT SIGNIFICANT CHANGES AMONG the VARIABLY processed cells. Similar changes in high-affinity binding occurred with PAF (Table 4). Again, low-affinity PAF binding was not altered by these treatments (results not shown). With fMLP, in contrast, Ca²⁺-depletion (with or without chelator loading) produced up
 $\frac{\text{Ca}^{2+}}{\text{Delectric}}$ binding affinity binding to 50% decreases in the R, of both high- and low-affinity binding sites (Table 5). High-affinity fMLP binding, however, was exceedingly small, highly variable, and therefore not significantly different in Ca²⁺-depleted and Ca²⁺-repleted cells. We conclude that the depletion of cell Ca^{2+} or, alternatively, the lack of extracellular Ca^{2+} (Ca²⁺-depleted PMN were necessarily suspended in Ca²⁺-free buffer) decreased the number of receptors available to fMLP, PAF and LTB₄.

Temperature-dependency of the Ca2+ effect $F_{\rm eff}$ this, 107 PMN (with or with order loading) were checked chemical chemical were chemica

For this, 10^7 PMN (with or without chelator loading) were incubated at 37 \degree C for 20 min in 1 ml of buffer containing 1.4 mm or no Ca²⁺, then diluted with 8 vol. of 4 $\rm{^{\circ}C}$ buffer which contained 0 or 1.4 mm-Ca²⁺ (as in the initial incubation), washed twice and suspended in 4 °C Ca²⁺-free buffer; then incubated at 4 °C with

709

Table 6. Temperature-dependency of the Ca^{2+} effect of agonist binding

PMN were loaded with no chelator, 32μ M-quin2 AM, 32μ M-fura-2 AM or 10 μ M-BAPTA in Ca²⁺-free buffer and washed twice and resuspended $(10^7$ /ml) in this buffer. For fMLP and PAF, PMN were incubated at 37° C with 1.4 mm (+) or 0 (-) Ca²⁺ for 20 min, transferred to 8 vol. of 4 °C buffer $(Ca^{2+}$ as per initial incubation), washed twice in 4 °C Ca²⁺-free buffer ([EGTA] = 1 μ M), resuspended $(5 \times 10^6$ /ml) in the latter buffer (4 °C), incubated (4 °C) with 1.4 mm $(+)$ or (0) (-) Ca²⁺ for 10 min, and assayed for specific binding. For LTB₄, PMN were processed through the 20 min 37 °C incubation just described, centrifuged, resuspended $(5 \times 10^6/\text{ml})$ in 4 °C buffer, and incubated (4 °C) with 1.4 mm-Ca²⁺ (+) or 5 mm-EGTA (-) for 10 min before assaying LTB, binding. Results are the mean percentage of ligand specifically bound, \pm s.e.m. for ≥ 10 experiments: * indicates $P > 0.05$ (Student's paired t test) compared with values for PMN loaded with the same chelator and incubated with 1.4 mm- $Ca²⁺$ during the 37 °C and 4 °C incubations.

 1.4×10^{24} for 10^{10} min, and finally assayed for the specific for the specifi $\frac{1.4 \text{ mm}}{65\%}$ for 10 min, and finally assayed for the specific binding of [³H]agonist. The protocol yielded PMN that had been incubated with 1.4 mm (+) or no (-) Ca^{2+} at 37 °C and then with 1.4 mm (+) or no (-) Ca²⁺ at 4 °C, i.e. $+/+, +/-, -/+$ and $-/-$ preparations. Results with fMLP and PAF were unequivocal. Only PMN exposed to Ca²⁺ at 37 °C (+/+ and $t/$ –) bound the ligands normally (Table 6). LTB, binding to these PMN, perhaps because of the extensive cell-processing procedures, was erratic regardless of the treatment regimen. Accordingly, we used a second protocol. In this, 10^7 PMN (with or without chelator loading) were incubated in 1 ml of buffer containing 1.4 mm or no Ca^{2+} at 37 °C for 20 min, resuspended $(2.5 \times 10^6 \text{ cells/ml})$ in 4 °C buffer, incubated with 1.4 mm-Ca²⁺ or 5 mm-EGTA at 4 $^{\circ}$ C for 10 min, and assayed for the specific binding of $[{}^{3}H]LTB_{4}$. This defined PMN on the basis of their 37 °C exposure to 1.4 mm (+) or no (-) Ca²⁺ and 4 °C exposure

Table 5. Effects of Ca^{2+} on fMLP-binding parameters in PMN

PMN were prepared as indicated in Table 4. R_t and K_a (\pm s.e.m.; $n \ge 11$) were determined b

to 1.4 mm-Ca²⁺ (+) or 5 mm-EGTA (-) as $+/+$, $+/-$, $-/+$ and $-/-$. Again, the 4 °C incubation did not alter results, and only PMN treated with Ca²⁺ at 37 °C (+/+, +/-) showed normal LTB₄ binding (Table 6). Extracellular Ca^{2+} itself thus does not promote agonist binding, and the Ca^{2+} effect appears to be due to receptor changes that occur at 37 °C and persist at 4° C.

DISCUSSION

Stimulated PMN issue numerous excitatory signals, among which elevated $[Ca^{2+}]$, is regarded as essential for the degranulating, $O₂$ -generating and many other bioactions of standard receptor agonists. PMN loaded with either $\geq 25 \mu$ M-quin2 AM $[6,7,9,11,12,14,17-21]$ or $> 10 \mu M$ of a BAPTA analogue, MAPT AM [15,22], and then suspended in medium containing excess EGTA do not raise $[Ca^{2+}]_1$, release granule enzymes or generate O_2 ⁻ when challenged with diverse Ca^{2+} -mobilizing humoral stimuli. We observed the same unresponsiveness in PMN loaded with 32 μ M-fura-2 AM, 32 μ M-quin2 AM or 10 μ M-BAPTA (Figs. 2 and 3, Tables ¹ and 2). However, functional losses did not correlate with the blockage of $Ca²⁺$ transients: PMN depleted of Ca^{2+} and loaded with 0.1-1 μ M-fura-2 AM were unable to raise $[Ca^{2+}]$. (Fig. 1), yet released appreciable amounts of lysozyme, β glucuronidase and $O₂$ ⁻ (Fig. 4). Our data therefore disagree with quin2 and MAPT AM studies [6,7,9,11,12,14,15,17-22] which conclude, for example, that the release of granule enzymes and/or O_2 ⁻ by PMN require $[Ca^{2+}]_i$ levels to rise above 100 nm for fMLP [12], 200 nm for C5a [18] and 300 nm for $LTB₄$ [12]. They are much more in accord with the results of Grinstein & Furuya [13], who found that electropermeabilized PMN responded to fMLP even when $[Ca^{2+}]$, was fixed at 100 nm by an EGTA-based buffer system. Discrepancies between our findings and other studies on intact PMN probably reflect procedural differences. We incubated PMN with 1 μ M-EGTA for 30 min to remove mobilizable Ca²⁺ pools, whereas previous studies used $Ca²⁺$ ionophores and/or millimolar EGTA to accomplish this. Furthermore, we assayed $[Ca^{2+}]$, with fura-2, whereas the cited studies used quin2. Fura-2 has much better intrinsic fluorescence properties, and therefore is used at 10-30-fold lower levels than quin2. The relatively harsh $Ca²⁺$ -stripping methods and/or high quin2 levels (quin2 and fura-2 have similar Ca^{2+} affinities) may have displaced Ca^{2+} from pools other than those contributing to $[Ca²⁺]$, or, alternatively, produced less specific inhibitory effects. In any case, it seems clear that PMN can mount exocytotic and $O₂$ -generation responses to the receptor agonists in the absence of appreciable Ca^{2+} transients.

Ambient Ca^{2+} promotes fMLP, PAF and LTB, binding in various systems [33-38]. We found the cation to have similar influences on PMN-specific binding of each agonist (Table 3), and moreover to exert its effects temperature-dependently. Thus $Ca²⁺$ -depeleted PMN (with or without chelator loading) lost agonist-specific binding capacity; this was reversed by incubating PMN with Ca²⁺ at 37 °C, but not at 4 °C; and Ca²⁺-repleted PMN bound agonists at 4 °C irrespective of ambient Ca^{2+} (Table 6). Since extracellular Ca²⁺ equilibrates with PMN at 37 °C, but not at 4 °C [10,39], our results strongly implicate intracellular Ca2+ in agonist binding. Nevertheless, the data of Table 6 cannot exclude a possibility that Ca²⁺ worked outside of the cell. Any such effect, however, would have to occur only at 37 °C and effect changes that persisted at 4° C independently of extracellular $Ca²⁺$: the cation could not act merely by bridging polar areas of ligand/receptor complexes, altering ligand confirmation or state of aggregation, or inducing other changes that require its continuing presence and are so strictly temperature-dependent. Moreover, intracellular Ca^{2+} chelators enhanced the effects of

 $Ca²⁺$ -depletion (Table 5). The data suggest, then, that $Ca²⁺$ acts at some intracellular site to up-regulate agonist receptor numbers (Fig. 5, Tables 4 and 5). This may occur by one of three mechanisms. First, receptors commonly move between internal and surface sites [40]. PMN contain granule-associated fMLP receptors, which shuttle to the plasmalemma [41,42]. Cell Ca^{2+} might promote these receptor dynamics [33] to cause a net accumulation of cell-surface receptors. On the other hand, PMN do not appear to have internal receptors for PAF and $LTB₄$ [43,44], and the effect of Ca^{2+} on PAF and LTB₄ binding occurs with cell-free membrane preparations $[35-39]$. Ca²⁺-induced mobilization of spare receptors does not seem capable of explaining all of our results. Second, bivalent cations promote Nprotein/receptor interactions [45-47]. Such interactions convert low-affinity (or non-binding) fMLP, PAF and LTB, receptors into higher-affinity (or binding) states $[48-50]$. $Ca²⁺$ -depleted PMN may have fewer receptors configured with N-proteins and therefore lower numbers of detectable agonist-binding sites. Third, protein kinase C appears to augment $LTB₄$ -receptor expression in resting PMN [51]. Cellular Ca^{2+} helps to activate this enzyme [1,2], and thereby might exert a tonic effect on receptor expression. This or other Ca²⁺-sensitive elements could act analogously on PAF and fMLP receptors. Regardless of its exact mechanism, however, we note that Ca^{2+} promotes the expression of the same high- (for PAF, LTB_a), and low- (for fMLP) affinity receptors that are involved in PMN activation [43,44,52]. Hence the decreased responsiveness of Ca^{2+} -depleted PMN may reflect in part these receptor losses. Since $LTB₄$ and PAF form during PMN stimulation and may then proceed to mediate function, $LTB₄$ - and PAF-receptor losses may act collaterally to decrease PMN responses to other agonists besides LTB₄ and PAF. Nevertheless, losses of receptors for the primary stimulus or secondary mediators probably cannot explain all of the Ca^{2+} influence on function: loading Ca^{2+} -depleted PMN with high levels of fura-2 AM, quin2 AM or BAPTA caused profound losses of responsiveness, but only relatively small decreases in receptor numbers (Fig. 4, Tables 4 and 5). Ca^{2+} therefore seems necessary not only for receptor expression but also for postreceptor events involved in agonist-induced exocytosis and oxidative metabolism.

In conclusion, our data indicate three roles for $Ca²⁺$ in stimulus transduction. First, $Ca²⁺$ maintains the full expression of agonist receptors. This Ca²⁺ is readily removed at 37 °C, but not at 4 °C, is influenced by fura-2 AM, and thereby is distinguishable from extracellular Ca²⁺ itself. Second, $[Ca²⁺]$, transients enhance function, perhaps by potentiating the effects of other, more important, response-eliciting signals. The sources of this $Ca²⁺$ are sensitive to gentle depletion methods as well as to low levels of fura-2. The relationship of this Ca^{2+} pool to that regulating receptor expression is uncertain. Finally, a pool of intracellular $Ca²⁺$ either triggers or permits function. This pool is relatively insensitive to all but the highest levels of intracellular Ca^{2+} chelators, and it, rather than rises in $[Ca^{2+}]_i$, appears essential for cell responses to $fMLP$, PAF , $LTB₄$ and probably other similarly acting receptor agonists.

This work was supported by National Institutes of Health Grants HL-27799 and HL-26257. We thank Jean Kimbrell for document preparation.

REFERENCES

- 1. Exton, J. H. (1985) J. Clin. Invest. 75, 1753-1757
- 2. Berridge, M. J. & Irvine, R. F. (1989) Nature (London) 341, 197–205
3. Campbell, A. K. & Hallett, M. B. (1983) J. Physiol. (London) 338.
- 3. Campbell, A. K. & Hallett, M. B. (1983) J. Physiol. (London) 338, 537-550
- 4. Pozzan, T., Lew, D. P., Wollheim, C. B. & Tsien, R. Y. (1983) Science 221, 1413-1415
- 5. Korchak, H. M., Vienne, K., Rutherford, L. E., Wilkenfeld, C., Finkelstein, C. & Weissmann, G. (1984) J. Biol. Chem. 259, 4076-4082
- 6. Di Virgilio, F., Lew, D. P. & Pozzan, T. (1984) Nature (London) 310, 691-693
- 7. Lew, P. D., Wollheim, C. B., Waldvogel, F. A. & Pozzan, T. (1984) J. Cell Biol. 99, 1212-1220
- 8. Naccache, P. H., Molski, T. F. P., Borgeat, P. & Sha'afi, R. I. (1985) J. Cell. Physiol. 122, 273-280
- 9. Grzeskowiak, M., Della Bianca, V., Cassatella, M. A. & Rossi, F. (1986) Biochem. Biophys. Res. Commun. 135, 785-794
- 10. von Tscharner, V., Deranleau, D. A. & Baggiolini, M. (1986) J. Biol. Chem. 261, 10163-10168
- 11. Rossi, F., Grezeskowiak, M. & Della Bianca, V. (1986) Biochem. Biophys. Res. Commun. 140, 1-11
- 12. Lew, P. D., Monod, A., Waldvogel, F. A. & Pozzan, T. (1987) Eur. J. Biochem. 162, 161-168
- 13. Grinstein, S. & Furuya, W. (1988) J. Biol. Chem. 263, 1779-1783
- 14. Truett, C. P., III, Verghese, M. W., Dillon, S. B. & Snyderman, R. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1549-1553
- 15. Korchak, H. M., Vosshall, L. B., Haines, K. A., Wilkenfeld, C., Lundquist, K. F. & Weissmann, G. (1988) J. Biol. Chem. 263, 11098-11105
- 16. Rossi, A. G., McMillan, R. M. & Maclntyre, D. E. (1988) Agents Actions 24, 272-282
- 17. Dewald, B., Thelen, M. & Baggiolini, M. (1988) J. Biol. Chem. 263, 16179-16184
- 18. Gennaro, R., Pozzan, T. & Romeo, D. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1416-1420
- 19. Sklar, L. A. & Oades, Z. G. (1985) J. Biol. Chem. 260, 11468-11475
- 20. Lew, D. P., Andersson, T., Hed, J., Di Virgilio, F., Pozzan, T. & Stendahl, 0. (1985) Nature (London) 315, 509-511
- 21. Fillman, M., Lew, D. P., Stendahl, 0. & Andersson, T. (1989) J. Clin. Invest. 84, 886-891
- 22. Jaconi, M. E. E., Lew, D. P., Carpentier, J.-L., Magnusson, K. E., Sjogren, M. & Stendahl, 0. (1990) J. Cell Biol. 110, 1555-1564
- 23. Richter, J., Andersson, T. & Olsson, I. (1989) J. Immunol. 142, 3199-3205
- 24. Lew, P. D., Monod, A., Waldvogel, F. A., Dewald, B., Baggiolini, M. & Pozzan, T. (1986) J. Cell Biol. 102, 2197-2204
- 25. Smolen, J. E. & Stoehr, S. J. (1985) J. Immunol. 134, 1859-1865
- 26. Smolen, J. E., Stoehr, S. J. & Boxer, L. A. (1986) Biochim. Biophys. Acta 886, 1-17
- 27. Smolen, J. E., Stoehr, S. J., Traynor, A. E. & Sklar, L. A. (1987) J. Leukocyte Biol. 41, 8-13

Received ¹¹ February 1991/19 March 1991; accepted 27 March 1991

- 28. Apfeldorf, W. J., Melnick, D. A., Meshulam, T., Rasmussen, H. & Malech, H. L. (1985) Biochem. Biophys. Res. Commun. 132,674 680
- 29. Ward, P. A., Cunningham, T. W., McCulloch, K. K., Phan, S. H., Powell, J. & Johnson, K. J. (1988) Lab. Invest. 58, 37-47
- 30. ^O'Flaherty, J. T., Redman, J. F., Jacobson, D. P. & Rossi, A. G. (1990) J. Biol. Chem. 265, 21619-21623
- 31. ^O'Flaherty, J. T., Redman, J. F. & Jacobson, D. P. (1990) J. Cell. Physiol. 142, 299-308
- 32. ^O'Flaherty, J. T., Jacobson, D. & Redman, J. (1988) J. Immunol. 140, 4323-4328
- 33. Niedel, J., Wilkinson, S. & Cuatrecasas, P. (1979) J. Biol. Chem. 254, 10700-10706
- 34. Andersson, T., Dahlgren, C., Lew, P. D. & Stendahl, 0. (1987) J. Clin. Invest. 79, 1226-1233
- 35. Valone, F. H. & Ruis, N. M. (1986) Biotechnol. Appl. Biochem. 8, 465-470
- 36. Hwang, S.-B. (1987) Arch. Biochem. Biophys. 257, 339-344
- 37. Hwang, S.-B. (1988) J. Biol. Chem. 263, 3225-3233
- 38. Miki, I., Watanabe, T., Nakamura, M., Seyama, Y., Ui, M., Sato, F. & Shimizu, T. (1990) Biochem. Biophys. Res. Commun. 166,342-348
- 39. Lagast, H., Lew, P. D. & Waldvogel, F. A. (1984) J. Clin. Invest. 73, 107-115
- 40. Doyle, D. & Baumann, H. (1979) Life Sci. 24, 951-966
- 41. Fletcher, M. P. & Gallin, J. I. (1983) Blood 62, 792-799
- 42. Fletcher, M. P. & Gallin, J. I. (1980) J. Immunol. 124, 1585-1588
- 43. ^O'Flaherty, J. T., Kosfeld, S. & Nishihira, J. (1986) J. Cell. Physiol. 126, 359-370
- 44. O'Flaherty, J. T., Surles, J. R., Redman, J., Jacobson, D., Piantadosi, C. & Wykle, R. L. (1986) J. Clin. Invest. 78, 381-388
- 45. ^O'Flaherty, J. T., Chabot, M. C., Redman, J., Jr., Jacobson, D. & Wykle, R. L. (1989) FEBS Lett. 250, 341-344
- 46. Heidenreich, K. A., Weiland, G. A. & Molinoff, P. B. (1982) J. Biol. Chem. 257, 804-810
- 47. Abramson, S. N. & Molinoff, P. B. (1984) Biochem. Pharmacol. 33, 869-875
- 48. Koo, C., Lefkowitz, R. J. & Snyderman, R. (1983) J. Clin. Invest. 72, 748-753
- 49. Ng, D. S. & Wong, K. (1986) Biochem. Biophys. Res. Commun. 141, 353-359
- 50. Sherman, J. W., Goetzl, E. J. & Koo, C. H. (1988) J. Immunol. 140, 3900-3904
- 51. ^O'Flaherty, J. T. & Jacobson, D. (1989) Biochem. Biophys. Res. Commun. 163, 1456-1460
- 52. Sklar, L. A., Mueller, H., Omann, G. & Oades, Z. (1989) J. Biol. Chem. 264, 8483-8486