Cell Reports Medicine, Volume 5

Supplemental information

A living organoid biobank of patients
with Crohn's disease reveals molecular

subtypes for personalized therapeutics

Courtney Tindle, Ayden G. Fonseca, Sahar Taheri, Gajanan D. Katkar, Jasper Lee, Priti
Maity, Ibrahim M. Sayed, Stella-Rita Ibeawuchi, Eleadah Vidales, Rama F.
Pranadinata, Mackenzie Fuller, Dominik L. Stec, Mahitha Shree Anandachar, Kevin
Perry, Helen N. Le, Jason Ear, Brigid S. Boland, William J. Sandborn, Debashis
Sahoo, Soumita Das, and Pradipta Ghosh



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

A Living Organoid Biobank of Crohn’s Disease Patients Reveals Molecular

Subtypes for Personalized Therapeutics
Authors:

Courtney Tindle'?*, Ayden G. Fonseca'?*, Sahar Taheri®*, Gajanan D. Katkar', Jasper Lee?, Priti Maity'-2, lorahim M.
Sayed*, Stella-Rita Ibeawuchi®, Eleadah Vidales'?, Rama F. Pranadinata'?, Mackenzie Fuller'?, Dominik L. Stec'?,

Mahitha Shree Anandachar?, Kevin Perry'-2, Helen N. Le®, Jason Ear’, Brigid S. Boland®', William J.
Sandborn®t, Debashis Sahoo® ¢, Soumita Das**t and Pradipta Ghosh'? 51

Affiliations:
"Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093.

2HUMANOID™ Center of Research Excellence (CoRE), University of California San Diego, La Jolla, CA, 92093.
SDepartment of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La

Jolla, CA, 92093.

‘Department of Pathology, University of California San Diego, La Jolla, CA, 92093.
SDepartment of Medicine, University of California San Diego, La Jolla, CA, 92093.

SDepartment of Pediatrics, University of California San Diego, La Jolla, CA, 92093.

* Equal contribution

Keywords: Patient-derived organoids, inflammatory bowel disease, barrier integrity, host-microbe interaction, therapeutics

tSenior corresponding authors:

Brigid S. Boland, M.D.; bboland@health.ucsd.edu
William J. Sandborn, M.D.; wsandborn@health.ucsd.edu

Debashis Sahoo, Ph.D.; dsahoo@ucsd.edu

Soumita Das, Ph.D.; sodas@ucsd.edu

fLead contact:

Pradipta Ghosh, M.D.; prghosh@ucsd.edu

1|Page



INVENTORY OF SUPPLEMENTARY MATERIALS

e Supplemental Figure and Legends (Figure S1-S12)
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Benchmarking PDOs as tools for disease modeling: An objective comparison of adult stem cell derived
CD-PDOs (this work) against UC-PDOs and other IBD-PDOs from various laboratories.

A. Schematic showing the overall rationale and study design for the transcriptomic studies on healthy and CD-PDOs.

B. A factorial map generated by performing the Hierarchical Clustering on principal components (HCPC) analysis is plotted
onto the first two dimensions. HCPC was used to compute hierarchical clustering on principal components indicates the
division of the H (healthy), UC- and CD-PDOs into three distinct clusters (see Figure 2B): gray and yellow, which are
differentiated from healthy controls (green). For simplification, CD-PDO annotations are removed, and only UC-PDOs are
highlighted. All 10 UC-PDOs analyzed here, were found in the gray cluster with CD-PDOs; none were found in the yellow
cluster.

C. Top: Schematic outlines the strategy used to objectively assess the ability of CD-PDOs to recapitulate the microdissected
epithelium from the colons of UC or CD patients, whose disease activities were clinically determined to be active or inactive
disease (GSE179128). Bottom: Violin plots show the composite score of the PDO-derived top DEGs in the microdissected
colonic epithelium. Values in parenthesis indicate unique patients. List of DEGs is provided in Table S4.

D. Top: Schematic outlines the strategy used to objectively assess the ability of UC-PDOs to recapitulate the microdissected
epithelium from the colons of UC or CD patients, whose disease activities were clinically determined to be active or inactive
disease (GSE179128). Bottom: Violin plots show the composite score of the PDO-derived top DEGs in the microdissected
colonic epithelium. Values in parenthesis indicate unique patients.

E-G. Top: Schematics outline the strategy used to objectively assess the ability of colonoids, generated either of adult stem
cells of healthy or IBD-afflicted colons (E-F) or iPS-cells from healthy or IBD-afflicted patients (G) to recapitulate the
microdissected epithelium from the colons of UC and CD patients, whose disease activities were clinically determined to be
active or inactive disease (GSE179128). Botfom: Violin plots show the composite score of the organoid-derived top
upregulated DEGs in each study (indicated with a PMID#) in the microdissected colonic epithelium. Values in parenthesis
indicate unique patients.
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Analysis of differentially expressed genes (DEGs) and cellular processes and pathways in the CD-
PDOs (gray or yellow clusters) vs healthy PDOs.

A-B. Two-dimensional PCA plots showing clustering of the healthy control PDOs (green) and CD-(molecular) subtypes
(gray or yellow) samples.

C-F. Enriched pathways from the differential gene expression analyses by DESeq2 with log2 fold changes (LFC)=1 and
false discovery rates (FDR) = 0.05. Reactome pathway analysis of Up/Down-regulated genes in the gray/yellow cluster.
The vertical axes are the enriched pathways, and the horizontal axes are the number of DE genes in each enriched
pathway.
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Analysis of differentially expressed genes (DEGs) and cellular processes and pathways in gray vs
yellow CD-PDOs.

A. Unsupervised hierarchical clustering of the top 500 most genes with the highest variance used in clustering by PCA in
Figure 2B. C1 shows the genes that describe the cluster of gray samples or characterize the CD-PDOs in the gray
cluster. C2 shows the genes that describe the CD-PDOs in the yellow cluster. C3 shows the genes that describe the healthy
PDOs in the green cluster. C1C2_C3 shows the genes that describe both gray and yellow CD-PDO samples but not the
PDOs in the healthy green cluster. C1C2C3 shows the genes that describe all clusters.

B. Two-dimensional PCA plots showing clustering of the gray and yellow CD-molecular subtypes

C-D. Enriched pathways from the differential gene expression analyses between gray and yellow CD-Subtypes by DESeq2
with log2 fold changes (LFC) =1 and false discovery rate (FDR) = 0.05. Reactome pathway analysis of Up/Down-regulated
genes in the gray cluster.
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Two molecular subtypes of CD show shared and unique epithelium-intrinsic defects.

A. Schematic shows the pseudo-spatial distribution of developing epithelial cells along the crypt-villus (base-top) axis. The
axis score was derived by using the expression of selected crypt-villus axis markers as defined previously [S1,[S2].

B-C. Violin plots show composite score of the set of genes that define crypt-axis score in CD-PDOs, grown either as 3D
cultures (B) or differentiated into 2D EDMs (C). Statistical significance was determined by Welch'’s t-test. H, healthy; G, gray
cluster; Y, yellow cluster.

D-E. Violin plots show composite score of the set of genes that define terminally differentiated CEACAM7+ brush border
epithelium in CD-PDOs, grown either as 3D cultures (D) or differentiated into 2D EDMs (E). Statistical significance was
determined by Welch’s t-test. H, healthy; G, gray cluster; Y, yellow cluster.

F-G. Violin plots show LGR5 expression (F) or the expression of a composite score of genes that define a population of
intestinal stem cells (G; ISC-llIl, MHCII+/LGR5+) in 3D cultures of CD-PDOs. Statistical significance was determined by
Welch'’s t-test. H, healthy; G, gray cluster; Y, yellow cluster.
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Integration of transcriptomic information with cellular properties, therapeutic response, and genomics.

A-C. Schematic in A shows the two cell types analyzed in panels A-C. Violin plots show MUC2 expression (A) or the
expression of a composite score of genes representing Paneth and goblet cells (B; LYZ:MUCZ2 and REG3A:MUC2 ratios)
and WFDC?2 expression (C) in 3D cultures of CD-PDOs. Statistical significance was determined by Welch'’s t-test. H, healthy;
G, gray cluster; Y, yellow cluster.

D-F. Violin plots show the expression of tight junction genes (OCLN and TJPT) (D), DNA damage response-related genes
(E) and genes that function as mitotic checkpoint (F) in 3D cultures of CD-PDOs. Statistical significance was determined by
Welch’s t-test. Red = insignificant p values. H, healthy; G, gray cluster; Y, yellow cluster.

G. Differential expression genes (DEGs) between healthy controls and CD-PDOs were used as gene signature on various
publicly available transcriptomic datasets with documented outcome ("responders” vs. "non-responders”) of a
therapeutic intervention.

H. Violin plots show composite score of DEGs in the dataset GSE16879 before (left), after (middle) treatment with the anti-
TNFa drug, Infliximab. Violin plots show composite score of DEGs in the GSE115390 dataset (right) where patients with
refractory CD received autologous hematopoietic stem cell transplant (HSCT) as the therapeutic modality. R, responder
samples; NR, non-responder. Statistical significance was analyzed by Welch’s t-test.

I. Bar plots show sample order obtained using our signatures (PDO DEGs; see Table S4) can distinguish responders (R)
from non-responders (NR) of therapeutic interventions: (i) before, and after anti-TNFa (GSE16879), (ii) before stem cell
transplant (GSE115390), and (iii) with infliximab or adalimumab treatments (E-MTAB-7604).IFX, infliximab;
ADA, adalimumab. ROC AUC values are displayed.

J. The levels of expression of a list of 208 unique genes nearest to the 5743 CD risk-associated SNPs identified through
GWAS [S3] that were present also in the current dataset were analyzed. The violin plots show the differences between
CD-(molecular)subtypes (gray or yellow cluster). Statistical significances in all panels were determined by Welch’s t-test.
The gray samples have more of the genes downregulated than the yellow ones.

K. Dot plots show the absolute log2 fold change of control samples compared to the CD samples in the four sub-datasets
(rows), the differential expression status of CD-associated risk genes (columns) present in all four sub-datasets, and the
statistical significance of those genes based on the padj value. The dots' magnitude is absolute (log2 fold change), their
shape is the differential expression status, and their colors show the adjusted p-value of the comparison. Blue font = UP in
CD over healthy. Red font = DOWN in CD over healthy. Yellow and Gray arrows point to the genes that are uniquely
differentially expressed in yellow/gray cluster.
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Figure S6 [Related to Figure 2].
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Genomic analysis of CD-PDOs.
A. Table summarizing the current understanding of the contributions of genetics in CD.

B. Schematic showing the key steps in carrying out genomic analyses on healthy and CD-PDOs. See methods
for details.

C-H. Violin plots display the frequency of SNPs, either in specific genes (C-D; e.g., RET, POU5F1) or in sets of
genes that are involved in various pathways (E-H). Panels on the left compare healthy vs all CD-PDOs, whereas
panels on the right compare healthy PDOs against the two molecular subtypes of CD, gray and yellow. Statistical
significance was determined by Mann Whitney test (C left, D-H), and one way ANOVA (C right). The gene list
for SNP analysis is provided as Table S5.
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Figure S7 [Related to Figure 3]

NSNP (B1)- and stricturing (B2) CD-PDOs show dysmorphic growth.
A-B. Representative images of the 4 major types of organoid structures encountered in 3D cultures of CD-PDOs
by light microscopy. Scale bar = 50 ym. L = lumen. Stacked bar plots in B shows the quantification of the
proportion of each type of organoid structure in various CD subtypes [B-/eft, all CD subtypes combined; B-right,
separated into CD subtypes]. Statistical significance was assessed by one way ANOVA. Only significant p values
are displayed (n = 3-8 in each group).
C-l. Quantitative morphometrics were carried out on CD-PDOs using IMARIS. Various parameters were
quantified and are represented as violin plots: voxel counts (D), number of nuclei (E), bounding box B (F) and
bounding box C (G) and finally, ellipticity (H) and sphericity (1).
See Table S2 for subjects used in each assay.
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Figure S8 [Related to Figure 3]

Characterization of the gut barrier integrity in monolayers derived from CD-PDOs.

A-C. Violin plots display the quantification of no. of desmosomes/cell-cell contact (A), the length of TJ (B) and
the frequency of abnormal defects/TJ structure (C) observed by TEM (in Figure 3C-E). Statistical significance
was assessed by one way ANOVA (n = 7-13 fields analyzed in each subtype of PDO).

D. Schematic shows two different approaches used to assess barrier integrity of healthy vs CD EDMs.

E. Violin plots show the fold change in FITC dextran leakage in CD-EDMs compared to healthy controls [see
Figure 3J for each clinical subtype of CD].

F. Violin plots show the fold change in TEER in CD-EDMs compared to healthy controls. No statistically
significant changes were observed. See Figure 3 for the visualization of these analyses based on each molecular
subtype [31-J] or clinical subtype [3K-L] of CD.

See Table S2 for subjects used in each assay.
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Figure S9 [Related to Figure 4]

CD-PDOs retain evidence of altered cell composition.

A-D. Violin plots show the relative abundance of transcripts of MUC2 (A; a marker of goblet cells), LYZ (B; a marker of
Paneth cells), CHGA (C; a marker of enteroendocrine cells) and Sl (D; sucrose isomaltase, a marker of brush border cells)
in CD-PDOs vs healthy controls [left, all CD subtypes combined; right, separated into CD subtypes]. Statistical significance
was assessed by Mann-Whitney test (A-D left), one way ANOVA (A-D middle) and Welch'’s t-test (A-D right). Only significant
p values are displayed (n = 6-15 subjects in each group).

E. Violin plots show the ratio of LYZ and MUC2 transcripts (assessed by gPCR) in CD-PDOs vs healthy controls [see Figure
4B-left all CD subtypes combined; Figure 4B-right, separated into the two molecular CD subtypes]. Statistical significance
was assessed by Mann-Whitney analyses. Only significant p values are displayed (n = 6-15 subjects in each group).

F. Violin plots show the results of quantification of images in Figure 4C, wherein FFPE of CD-PDOs of IDICD subtypes
were analyzed for goblet (MUC2; green) and Paneth (Lysozyme; red) cells by confocal immunofluorescence. expressed as
ratio of lysozyme to MUC2 in CD-PDOs vs healthy controls [F-left, all CD subtypes combined; F-right, separated into the
clinical subtypes of CD]. Statistical significance was assessed by using unpaired t-test (F-/eft) and one way ANOVA (F-
right). Only significant p values are displayed (n = 3-5 subjects in each group).

G. Schematic summarizing the cell type assessment analysis.

See Table S2 for subjects used in each assay.
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Figure S10 [Related to Figure 4]
CD-PDOs retain evidence of high oxidative stress and proliferation.
A-B. Schematic (A) summarizes the assessment of oxidized guanine nucleoside products from damaged DNA/RNA by
ELISA. Violin plots (B) show the relative abundance of these products in the 3 clinical subtypes of CD-PDOs vs healthy
controls. Statistical significance was assessed by Mann-Whitney test. Only significant p values are displayed (n = 5-10
subjects in each CD group and n = 3 healthy subjects). See Figure 4F for the display of findings as all CD combined or
separated into the two molecular subtypes of CD.
C-D. Schematic (C) summarizes the proliferation assays performed wherein BrdU-incorporation over 24 h is assessed on
four-day old CD-PDOs grown in 96-well plates prior to assessment by ELISA. Violin plots (D) show BrdU incorporation in
the 3 clinical subtypes of CD-PDOs vs healthy controls. Statistical significance was assessed by one way ANOVA. Only
significant p values are displayed (n = 5-8 subjects in each group. H, healthy; NSNP, non-stricturing, non-penetrating; S,
stricturing; P, penetrating. See Figure 4G for the display of the findings as all CD combined or separated into the two
molecular subtypes of CD.
E-F. Schematic summarizes the assessment of Ki67 expression in PDOs by immunofluorescence staining followed by
confocal microscopy (E) and Ki67 particle analysis (F). Statistical significance was assessed by one way ANOVA. Only

significant p values are displayed (n = 2-5 subjects in each group). See Figure 4H for the display of the findings as all CD
combined or separated into the two molecular subtypes of CD.
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It is noteworthy that the penetrating (P, B3) CD-PDOs showed significantly higher BrdU incorporation (D), but
no significant increase in Ki67 staining (F). Because BrdU labels cells during the S phase [S4] and is seen in all
phases of cell cycle, whereas Ki67 labels cells in all phases except GO [S5], findings suggest that penetrating
(P, B3) CD-PDOs may have more cells in GO phase.

See Table S2 for subjects used in each assay.
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Figure S11 [Related to Figure 4]
CD-PDOs retain evidence of high apoptosis.

A. Schematic (A-left) summarizes the TUNEL assays performed wherein four-day old CD-PDOs prior to fixation and staining
with anti-BrdU (red) and DAPI (nuclei; blue) and analysis by confocal imaging. Representative images (A-right) are shown.
Scale bar = 150 ym

B-C. Violin plots show densitometry analysis of BrdU incorporation (red pixels) in the nuclei [B-lef, all CD subtypes
combined; B-right, separated into the clinical subtypes of CD; C, separated into the molecular subtypes of CD]. Statistical
significance was assessed by Mann-Whitney (B-leff) and one way ANOVA (B-right, C). Only significant p values are
displayed (n = 5-6 subjects in each group).

D. Findings of TUNEL assays performed wherein four-day old CD-PDOs are challenged with recombinant TNFa for 16 h
prior to fixation and staining with anti-BrdU and analysis by confocal imaging. Violin plots show densitometry analysis of
BrdU incorporation (red pixels) in the nuclei. Statistical significance was assessed by one way ANOVA (n = 5-6 subjects in
each group).

See Table S2 for subjects used in each assay.
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Figure $12 [Related to Figure 5].

Barrier defects in NSNP CD-PDOs can be repaired using prebiotics and postbiotics.

A-B. Reversal of the defects in the integrity of the gut barrier observed in NSNP-CD using either prebiotics (A;
E. coli Nissel, EcN) or postbiotics (B; Hylak Forte®). Violin plots display the fold change in TEER compared to
untreated control EDMs. Statistical analysis was performed using paired student t-test.
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