Cell Reports Medicine, Volume 5

Supplemental information

A candidate loss-of-function variant

in SGIP1 causes synaptic dysfunction

and recessive parkinsonism

Marianna Decet, Patrick Scott, Sabine Kuenen, Douja Meftah, Jef Swerts, Carles Calatayud, Sandra F. Gallego, Natalie Kaempf, Eliana Nachman, Roman Praschberger, Nils Schoovaerts, Chris C. Tang, David Eidelberg, Samir Al Adawi, Abdullah Al Asmi, Ramachandiran Nandhagopal, and Patrik Verstreken

Document S1. Supplemental data for Decet et al.

Table S1. Genetic and clinical features of patients with a biallelic mutation in the SGIP1 gene, related to Figure

 1.

Characteristics	Subject III:1	Subject III:3		
Gender	Fei	nale		
Ethnicity	Arab (Arab (Omani)		
Inheritance pattern	Autosoma	Autosomal recessive		
Chromosome	1p	31.3		
Type of mutation	Homozygo	us, missense		
Exon/intron	Exc	on 22		
cDNA change	c.208	c.2080T>G		
Protein change	p.Trp	694Gly		
Protein domain	Cytop	Cytoplasmic		
Parkinsonism				
Onset age (years)	19	22		
Asymmetric onset	Yes	Yes		
Bradykinesia	Present	Present		
Rest tremor	Present	Present		
Rigidity	Present	Present		
Postural instability	Present	Present		
Levodopa response	Present	Present		
Motor fluctuations	Present	Present		
Dopaminergic drug-induced dyskinesias	Mild	Mild		
Dopaminergic drug-related worsening of	Present	Present		
behavioural problems				
Hoehn-Yahr stage	4	4		
Postural tremor	Absent	Present (mild)		
Seizures (onset age in years)	Absent	Present (Generalised		
		tonic-clonic seizures		
		from age 10)		
Intellectual and cognitive dysfunction	Present	Present		
Supranuclear vertical gaze palsy	Absent	Absent		
Pyramidal signs	Absent	Absent		
Cerebellar signs	Absent	Absent		
Autonomic signs	Absent	Absent		
Bulbar dysfunction	Absent	Absent		
Brain MRI	Normal	Normal		
Brain FDG PET (Network analysis):				
PDRP	High	High		
PDCP	Normal	High		
MSARP	Low	Low		
PSPRP	Low	Low		
Automated differential diagnosis	99.5%	99.7%		
analysis (probability of PD)				

Abbreviations: MRI= magnetic resonance imaging; MSARP= multiple system atrophy related pattern; PET= positron emission tomography; PD= Parkinson disease; PDRP= Parkinson disease-related motor pattern; PDCP= Parkinson disease-related cognitive pattern; PSPRP= progressive supranuclear palsy-related pattern.

Chromosome	Start (bp)	End (bp)	Length (Mb)
Chr1	56811604	74107645	17,3
Chr3	78657997	90485635	11,8
Chr4	108120441	114552593	6,4
Chr5	31877748	46383335	14,5
Chr20	7368303	12692140	5,3
Total			55,4

Table S2. ROH analyses revealed five homozygous genomic regions shared between the two subjects III:1 and III:3, *related to Figure 2*.

Table S3. In silico ar	nalysis of pathogenicity	prediction of the novel SGIP1	c.2080T>G (p.W694G) variant,
------------------------	--------------------------	-------------------------------	------------------------------

related to Figure 2.		
Prediction Tools	Score (range)	Interpretation
phastCons20way	0.986	Conserved
PhyloP100	7.674 (-20 to 30)	Conserved
GERP++	5.63	Uncertain
SIFT	0.001 (0 to 1)	Deleterious
PolyPhen-2	0.976 0 to 1)	Probably damaging
LRT_score	0 (0 to 1)	Deleterious
CADD	27.5	Likely deleterious
Revel	0.81 (0 to 1)	Deleterious
MUT Assesor	3 (-5.135 to 6.49)	Supporting
FATHMM	-0.45 (-16.13 to 10.64)	Uncertain
DANN	0.98 (0 to 1)	Deleterious
MetaLR	0.48 (0 to 1)	Benign
PrimateAI	0.81 (0 to 1)	Pathogenic
BayesDel	0.364 (-1.29334 to 0.75731)	Moderate Pathogenic

Figure S1. Two-step strategy to generate *dSgip1^{-/-}* **knock-out and** *dSgip1^{WT}* **knock-in** *Drosophila*, related to Figure 4.

(A) Schematic of the CRISPR/Cas9-based strategy to generate $dSgip1^{-/-}$ knock-out flies. In a second step, the cDNA of dSgip1^{WT} is inserted in the endogenous locus by PhiC31-mediated cassette exchange. HA: homology arm, HDR: Homology directed repair, IMCE: Integrase mediated exchange. See STAR methods. (B) Quantitative RT-PCR to assess dSGIP1 mRNA expression levels in adult head extracts relative to Rp49. RT-PCR primers were designed against dSgip1. Statistical significance: one-way ANOVA with Dunnett's multiple comparisons test. *** P < 0.001, **** P < 0.0001. Bars: mean ± SEM, points are individual values and n≥3.

Figure S2

Figure S2. Overexpression of Syt1 and Synj1 do not rescue the paralysis behaviour and degeneration of *dSgip1-/-* mutants, *related to Figure 5*.

(A) Time (min) before each fly of indicated genotypes shows complete paralysis. Flies were challenged by exposure to 38 °C. Number of tested flies \geq 18 per genotype, two replicates. Statistical significance: one-way ANOVA. **** P < 0.0001, ns not significant, compared to control. Bars: mean \pm SEM and points are individual values. (B) Widefield images of adult (25 day old) brains of flies of the indicated genotypes stained with toluidine blue. Arrowheads indicate degenerative vacuoles. Scale bar: 100 µm. (B') Quantification of the area occupied by degenerative vacuoles, expressed as percentage of central brain area. Number of analysed brains \geq 4 per condition. Statistical significance; Brown-Forsythe and Welch ANOVA tests with a Dunnett's T3 multiple comparisons test. * P < 0.05, ns not significant, compared to control. Bars: mean \pm SEM and points are individual values.

(A-A') Maximum intensity projection confocal images of NMJs of control and $dSgip1^{-/-}$ third instar larvae labelled with antibodies against the indicated SV-associated transmembrane proteins (A) and the quantification of the labelling intensity normalized to NMJ area (A'). Scale bar: 5 µm. (A'). 4 NMJs per animal were quantified, from \geq 5 animals per condition. Statistical significance: unpaired t-test. Welch's correction applied when the variance

between the two data sets (control and $dSgip1^{-/-}$) was different. **** P < 0.0001, ns not significant. Bars: mean ± SEM and points are individual values. (B-B') Maximum intensity projection confocal images of NMJs of control and $dSgip1^{-/-}$ third instar larvae labelled with antibodies against the indicated proteins (B) and the quantification of the labelling intensity levels normalized to NMJ area (B'). Scale bar: 5 µm. 4 NMJs per animal were analysed, from \geq 5 animals per condition. Statistical significance: unpaired t-test. Welch's correction applied when the variance between the two data sets (control and $dSgip1^{-/-}$) was different. ns not significant. Bars: mean ± SEM and points are individual values.

Figure S4. NMJs of *dSgip1*^{-/-}mutants lack multivesicular bodies, related to Figure 7.

(A-C) Transmission electron micrograph (TEM) images of NMJ boutons of third instar larvae of the indicated genotypes. Scale bar: 300 nm. (A'-C') Insets show enlarged areas of indicated active zone areas. Scale bar: 150 nm. (A"-C" and A"'-C"') TEM images of multivesicular bodies (MVBs) in control (A"-A"') and $dSgip1^{WT}$ NMJs (C"-C"') and the lack thereof in $dSgip1^{-/-}$ (B"). Scale bar: 250 nm. (D) Quantification of the number of active zones (T-bars) normalized to pre-synaptic bouton area of the indicated genotypes. Statistical significance: unpaired t-

test. ns not significant. Each data point represents a synaptic bouton. Number of animals \geq 3 per genotype. Bars: mean \pm SEM. (E) Quantification of the number of SVs (< 80 nm) normalized to pre-synaptic bouton area in TEM images of the indicated genotypes. Statistical significance: unpaired t-test. ns not significant. Each data point represents a synaptic bouton. Number of animals \geq 3 per genotype. Bars: mean \pm SEM. (F) Quantification of the number of multivesicular bodies (MVB) normalized to pre-synaptic bouton area in TEM images of the indicated genotypes. Statistical significance: unpaired t-test: ns not significant, * P < 0.05. Each data point represents a synaptic bouton. Number of animals \geq 3 per genotype. Bars: mean \pm SEM. (G) Quantification of the average diameter of SV (< 80 nm) in TEM images of the indicated genotypes. Statistical significance: unpaired t-test: ns not significant, *** P < 0.001. Each data point represents a synaptic bouton. Number of animals \geq 3 per genotype. Bars: mean \pm SEM. (H) Frequency distribution (in percentage) of the size of SVs (quantified in (G)) plotted in 5 nm bins.