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SUMMARY
The dynamics of the gut mycobiome and its association with cardiometabolic health remain largely unex-
plored. Here, we employ internal transcribed spacer (ITS) sequencing to capture the gut mycobiome compo-
sition and dynamics within a nationwide human cohort of 12,641 Chinese participants, including 1,946 par-
ticipants with repeatedmeasurements across three years.We find that the gutmycobiome is associatedwith
cardiometabolic diseases and related biomarkers in both cross-sectional and dynamic analyses. Fungal
alpha diversity indices and 19 mycobiome genera are the major contributors to the mycobiome-cardiometa-
bolic disease link. Particularly, Saccharomyces emerges as an effectmodifier of traditional risk factors in pro-
moting type 2 diabetes risk. Further integration of multi-omics data reveals key metabolites such as g-lino-
lenic acid and L-valine linking the gut mycobiome to type 2 diabetes. This study advances our understanding
of the potential roles of the gut mycobiome in cardiometabolic health.
INTRODUCTION

The fungal microbiome, known as the mycobiome, is omni-

present in our living environment and has played a central role

in the evolution of life.1 Despite fungi comprising a small propor-

tion of the human gut microbiota, alterations in the fungal com-

munity are suggested to be correlated with various health condi-

tions and diseases, such as host immunity,2 gastrointestinal

diseases,3 and cancer.4 Yet, vast majority of the prior clinical ev-

idence about human microbiome and health has been focused

on gut bacteria but not fungi. The gut mycobiome research re-

mains in its infancy stage, representing a rather underestimated

field. Whether and how the gut mycobiome may influence the

disease progression and health status in humans are largely

unknown.

Cardiometabolic diseases, such as type 2 diabetes (T2D), hy-

pertension, and dyslipidemia, are highly prevalent globally.5

Recent interest has focused on understanding the role of the

gut mycobiome in these diseases.6 Studies in mice have shown

that disturbances in the intestinal fungi, induced by antifungal

treatments, may contribute to both intestinal and extra-intestinal

pathologies.7 In humans, there are several studies examining the
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association of the gut mycobiome with cardiometabolic dis-

eases, but with small sample sizes and conflicting results.8–12

For example, some studies report alterations in the mycobiome

in individuals with T2D9,10 and hypertension11,12 while others

suggest these changes may be limited.8 Furthermore, gut fungal

composition varies across geographic regions.13 Previous

studies, limited by geographic scope and sample size, may not

have captured the full variation in fungal composition, which

may confound the relationship between the gut mycobiome

and cardiometabolic health. Therefore, it is essential to conduct

large-scale mycobiome profiling among participants with

diverse dietary and geographic backgrounds to understand the

role of the gut mycobiome in cardiometabolic health.

Here, we conducted a nationwide population-based myco-

biome mapping involving a deeply phenotyped cohort of

12,641 adult participants from 15major provinces/municipalities

across China. We aimed to provide a comprehensive under-

standing of the intricate association of the gut mycobiome with

multiple host environmental phenotypes, particularly focusing

on cardiometabolic health. To capture the temporal dynamics

of the gut mycobiome and validate its association with cardio-

metabolic diseases, we further conducted a long-term follow-up
ber 15, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Conceptual outline of the study

and analysis workflow

(A) Overview of sampling regions and metadata.

This study utilized data from the sub-cohorts of the

China Health and Nutrition Survey (CHNS), referred

to as CHNS-1 (n = 10,695) and CHNS-2 (n = 1,946).

CHNS-1 encompassed participants from 15 prov-

inces or municipalities across China, while CHNS-2

drew from 4 provinces within the country. Notably,

there was no overlap in participants between

these two cohorts. All participants contributed

ITS2 sequencing data and metadata. Moreover,

repeated measurements of mycobiome (n = 1,946)

and metabolome (n = 996) data are accessible for

CHNS-2 participants.

(B) Overview of analysis workflow. In the CHNS-1

cohort, we initially conducted a comprehensive

portrayal of the inter-individual variation of the gut

mycobiome and identified its associated factors.

Subsequently, we delved deeper into investigating

the connection between the gut mycobiome and

cardiometabolic health. In the CHNS-2 cohort, our

analysis focused on exploring the long-term vari-

ability of the gut mycobiome and dynamic interplay

between the gut mycobiome and cardiometabolic

diseases. Furthermore, we uncovered the key

metabolites potential linking the gut mycobiome

to cardiometabolic diseases through multi-omics

integration.

See also Table S1.
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analysis in a cohort of 1,946 participants over a three-year

period. Furthermore, to gain potential biological insights, we in-

tegrated serum metabolome data and used mediation analysis

to explore the specific metabolites that may medicate the asso-

ciation of the gut mycobiome with cardiometabolic diseases.

RESULTS

Study design and cohort descriptions
In the present study, we profiled the gut mycobiome within a

cohort of 12,641 Chinese adult participants (Figure 1A). These in-

dividuals were drawn from two independent sub-cohorts of the

China Health and Nutrition Survey (CHNS), identified as

CHNS-1 andCHNS-2. Overall characteristics of the study partic-

ipants are shown in Table S1. The CHNS is a nationally represen-

tative longitudinal cohort within China, distinguished by its utili-

zation of a meticulously designed multistage, random cluster

approach, and the implementation of standardized experimental

protocols.14

The CHNS-1 cohort consisted of individuals from 15 promi-

nent provinces or municipalities across China (Figure 1A). Within

this cohort, detailed metadata and gut mycobiome profiles were

available for a total of 10,695 participants (mean age [standard

deviation, SD] 51.3 ± 15.5 years, 54% were women). In the

CHNS-1 cohort, we provided a comprehensive depiction of

the gut mycobiome’s variability and investigated the intricate

associations between various host environmental phenotypes

and the gut mycobiome’s variation (Figure 1B). Next, we

further investigated the gut mycobiome signatures of cardiome-
2 Cell Reports Medicine 5, 101775, October 15, 2024
tabolic health. Subsequently, our analysis was extended to the

CHNS-2 cohort, which consisted of individuals from four prom-

inent provinces in China (Figure 1A), and featured with repeated

measured clinical metadata (n = 1,946 pairs), gut mycobiome

data (n = 1,946 pairs), and serum metabolome data (n = 996

pairs) spanning a median period of 3.02 years (interquartile

range: 3–3.07). The inclusion of the CHNS-2 cohort facilitated

an exploration of the long-term variability of the gut mycobiome

and uncovered the key metabolites that may link the gut myco-

biome to cardiometabolic diseases (Figure 1B).

Overall gut mycobiome community profile
We profiled the gut mycobiome by sequencing the internal tran-

scribed spacer 2 (ITS2) region. A total of 761 genera (processed

via QIIME [Quantitative Insights Into Microbial Ecology] 215) were

detected in the CHNS-1 cohort, and 630 were identified in the

CHNS-2 cohort. After filtering out genera of low prevalence

(<10% prevalence in the respective cohort), 54 genera were re-

tained in the CHNS-1 cohort, and 75 in the CHNS-2 cohort.

Among these retained genera, 53 genera were shared across

both the CHNS-1 and CHNS-2 cohorts.

In the CHNS-1 cohort, the two most predominant phyla in the

gut mycobiome were Ascomycota and Basidiomycota (Fig-

ure 2A), consistent with previous data from the US,16 Europe,17

and China.18 The prevalence and relative abundance of the 54

included genera are presented in Table S2. Additionally, the in-

ter-correlation of included fungal genera is depicted in Figure S1.

We identified five genera (Aspergillus, Candida, Cladosporium,

Penicillium, and Saccharomyces) present in at least 50% of



Figure 2. Landscape of the gut mycobiome and key factors explaining the gut mycobiome inter-individual variation

(A) Taxonomic tree illustrating the genera with a prevalence greater than 10% in the CHNS-1 cohort (n = 10,695). Nodes (n = 54) within the inner to outer circles

depict fungal taxa from phylum to genus levels, with genus-level nodes colored based on their respective phylum assignments. Reads that could not be

confidently assigned to known taxa due to insufficient matching with reference sequences were labeled with the highest taxonomic rank that could be assigned,

followed by ‘‘spp.’’

(B) Distribution of fungal taxa that are present in at least 50% of samples at a minimum relative abundance of 0.1%.

(C) Variance in the mycobiome composition explained by phenotype categories was assessed through multivariate PERMANOVA analysis (n = 10,695). In this

analysis, 54 genera with a prevalence greater than 10% were retained. The p value was determined through 999 permutations and subsequently adjusted for

multiple testing. Notably, only the statistically significant results (FDR<0.05) are depicted in the figure.

See also Figures S1 and S2 and Tables S2 and S3.
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samples at a minimum relative abundance of 0.1%. These

genera also showed enrichment in other cohorts.16,17,19 The dis-

tribution of these genera across geographic regions and urban-

ization gradients is depicted in the Figure 2B and S2A, respec-

tively. We observed a noticeable increase in the relative

abundance of fungal Saccharomyces with an increase in urban-

ization score (Figure S2A). Linear mixed-effects model revealed

that the relative abundance of Saccharomyces increased by

0.029 (95% confidence interval [CI], 0.024 to 0.035) with per in-

crease in urbanization quintile. Additionally, Saccharomyces

exerted the strongest inverse association with fungal diversity
(Figure S2B). Co-abundance network analysis found thatBlume-

ria, Debaryomyces, and Candida formed central nodes in fungal

networks (Figure S2C and Table S3).

Factors explaining inter-individual gut mycobiome
variation
In the CHNS-1 cohort, we used PERMANOVA (permutational

multivariate analysis of variance) analysis individually to assess

the contributions of each environmental and host factor to the

inter-individual variability in fungal composition and found that

52 factors displayed associations with the fungal variation (false
Cell Reports Medicine 5, 101775, October 15, 2024 3
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discovery rate [FDR]<0.05, Figure 2C). These factors included

demography (5 factors), urbanization (2 factors), dietary and life-

style factors (24 factors), anthropometric factors (5 factors),

blood parameters (4 factors), diseases (5 factors), medications

(5 factors), and other environmental factors (2 factors).

The geographic region emerged as the dominant factor asso-

ciated with variations in the gut mycobiome, explaining 3.7% of

the observed variability (Figure 2C). Urbanization, whether

defined categorically (urban or rural) or continuously (urbaniza-

tion score), along with staple foods such as rice and wheat

intake, as well as exposure to smoking, ranked prominently

among contributors to inter-individual variation in the gut myco-

biome (Figure 2C).

Gut mycobiome signatures of cardiometabolic health
To elucidate the distinctive fungal profiles associated with cardi-

ometabolic health, we examined the relationships between

58 fungal features (including 54 genera and 4 alpha diversity

indices) and 3 cardiometabolic disorders, along with 8 clinical

biomarkers, including measures of glycemic control, lipid levels,

and blood pressure in the CHNS-1 cohort. The prevalence of

these cardiometabolic conditions in the cohort is as follows:

T2D at 11.1%, hypertension at 28%, and dyslipidemia at

32.4%. Notably, 46.6% of the T2D participants also suffer from

hypertension, and 51.7% suffer from dyslipidemia. This compre-

hensive analysis yielded a total of 48 significant associations

(FDR<0.05). Higher fungal alpha diversity indices showed pro-

tective associations with multiple cardiometabolic diseases (Fig-

ure 3A) and related biomarkers (Figure 3B). Furthermore, the

abundance of eight specific genera exhibited noteworthy alter-

ations in at least one of the cardiometabolic disease groups (Fig-

ure 3C). For instance, Saccharomyceswas positively associated

with T2D risk (OR [odds ration] = 1.14; 95% CI, 1.06 to 1.21).

Saccharomyces was also positively associated with HbA1c

(p = 0.0013), although this association did not remain significant

after correcting for multiple comparisons (FDR = 0.07). Saccha-

romyces was found to be enriched in participants with type 1

diabetes20 andmultiple sclerosis21 and has the potential to exac-

erbate gut inflammation as indicated by an animal study.22

Candida exhibited a positive correlation with dyslipidemia

(OR = 1.08; 95% CI, 1.03 to 1.12), concurrently displaying posi-

tive association with triglycerides (TGs) and systolic blood pres-

sure (SBP), while manifesting an inverse association with high-

density lipoprotein cholesterol (HDL-C) in our study. Importantly,

the inverse association of alpha diversity indices with cardiome-

tabolic diseases persisted after further adjusting for sequencing

depth (Table S4). Interestingly, 16 fungal taxa exhibited an asso-

ciation with TG (Figure 3B), underscoring the potential role of the

mycobiome in lipid metabolism and overall cardiometabolic

health.

Our subsequent analyses revealed compelling evidence of a

synergistic interaction between the gut Saccharomyces and

environmental factors on T2D risk (pinteraction = 0.012). The tradi-

tional risk score combines multiple factors, including age,

gender, waist circumference, BMI, and SBP, to estimate an indi-

vidual’s overall risk of developing T2D. We divided participants

into four groups based on the median levels of T2D traditional

risk score and Saccharomyces abundance. Comparing with par-
4 Cell Reports Medicine 5, 101775, October 15, 2024
ticipants with lower levels of both traditional risk score and

Saccharomyces, the adjusted odds ratio (95% CI) for T2D was

1.30 (1.03–1.65) for those with higher Saccharomyces levels

but with low traditional risk score (Figure 3D). It further increased

to 4.28 (3.48–5.27) for participants exhibiting both higher levels

of traditional risk scores and Saccharomyces (Figure 3D). Over-

all, these results suggest Saccharomyces may emerge as an ef-

fect modifier of traditional risk factors in promoting T2D risk.

Temporal variability of the gut mycobiome over time
To assess the temporal variability of the gut mycobiome, we un-

dertook a dynamic analysis of fungal composition. This analysis

focused on genera with prevalence higher than 10% in the par-

ticipants with repeated mycobiome profiling data across an

average period of 3.02 years (interquartile range: 3–3.07) in the

CHNS-2 cohort. There was a slight increase in the inter-individ-

ual variation of the gut mycobiome over time (Figure 4A). The dif-

ferences in fungal composition were more pronounced between

individuals than within individuals (p < 0.0001; Figure 4A). We

found that age exhibited inverse association with intra-individual

variation in gut fungal composition across the baseline and

follow-up (Figure 4B). Importantly, this association persisted

even after adjusting for sequencing depth, as indicated by

the Spearman partial correlation coefficient (corr = �0.058,

p = 0.01). When considering individual fungal genera, 45.3%

(34 out of 75) showed significant alterations in abundance over

time (Figure S3A). Specifically, among core taxa, there was

a reduction in the abundance of Aspergillus, Penicillium, and

Debaryomyces, while Candida exhibited an increased over the

follow-up period. Additionally, we detected an average 1.57-

fold reduction in observed OTUs (operational taxonomic units)

at the amplicon sequence variant (ASV) level during the follow-

up compared to the baseline (Figure 4C). This observation was

validated by a linear mixedmodel adjusted for sequencing depth

(adjusted beta = �5.96, 95% CI: �8.79 to �2.40). A consistent

decrease was also detected for other alpha diversity indices

(Figure S3B).

We further discerned four distinct fungal clusters by applying

Dirichlet mixture modeling on the fungal composition data at

both time points (Figure S4A). We found that cluster 4 (C4) was

remarkably different from the remaining clusters, primarily char-

acterized by the dominance of Saccharomyces (Figure 4D and

S4B). Characteristics of the participants at baseline, stratified

by fungal clusters, are presented in Table S5. Through transition

trajectory analysis, we investigated the dynamic changes in par-

ticipants’ fungal pattern over time and found that only a small

proportion of participants exchanged within the cluster 3 and

cluster 4 (Figure 4E). Those individuals who transitioned to clus-

ter 4 during the follow-up period exhibited lower alpha diversity

indices compared to those who transitioned to alternative clus-

ters, which was found to be independent of their fungal cluster

status at baseline (Figure 4F).

Dynamic interplay between the gut mycobiome,
cardiometabolic diseases, and serum metabolites
To investigate the dynamic interplay between the gut myco-

biome and human health in a longitudinal context, we fitted a

generalized estimating equation model to account for the



Figure 3. Gut mycobiome signatures associated with cardiometabolic health

(A) Boxplots illustrating observed OTUs in participants with different cardiometabolic diseases compared with those without (n = 10,695). Significance was

obtained by logisticmixed-effects regressionmodel, with adjustment for age, gender, andBMI. The logisticmixed-effectsmodel included a random intercept and

random coefficient for provinces or megacities, accounting for the variability in gut fungal composition across different regions.

(B) Associations of mycobiome with indicators of cardiometabolic diseases (n = 10,695). The analysis was conducted using linear mixed-effects regression

model, with adjustment for age, gender, and BMI. The linear mixed-effects model included a random intercept and random coefficient for provinces or

megacities, accounting for the variability in gut fungal composition across different regions. Associations are colored by direction of Z-scored effect (red, positive;

blue, negative). Notably, only the statistically significant results (FDR < 0.05) are depicted in the figure.

(C) Associations of fungal genera (per SD unit) with cardiometabolic diseases (n = 10,695). Odds ratios and 95% CI were calculated using logistic mixed-effects

regression model described above. Notably, only the statistically significant results (FDR < 0.05) are depicted in the figure.

(D) Left, boxplots illustrating Saccharomyces in participants with type 2 diabetes compared with those without. Right, interaction between Saccharomyces and

traditional risk factors in relation to the risk of type 2 diabetes (n = 10,695). The traditional risk score combines multiple factors, including age, gender, waist

circumference, BMI, and SBP, to estimate an individual’s overall risk of developing T2D.

See also Table S4.
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dynamic nature of the gut mycobiome and status of host cardi-

ometabolic diseases in the CHNS-2 cohort. In comparison to

participants assigned to fungal enterotype of cluster 4 (domi-

nance of Saccharomyces), those assigned to cluster 3 demon-

strated a significantly lower risk of cardiometabolic diseases,

with odds ratio of 0.45 (0.29–0.71) for T2D and 0.67 (0.49–0.91)

for hypertension (Figure 4G).

To gain a deeper understanding of the distinctive variations in

serum metabolites between fungal enterotype of cluster 4 and

the other clusters, we utilized the LightGBM (light gradient-

boosting machine) algorithm to construct machine learning clas-

sifiers. These classifiers aimed to differentiate individuals with
the fungal enterotype of cluster 4 from those with each of the

other fungal enterotypes, based on their serum metabolome.

Receiver operating characteristic curve analysis demonstrated

that the classification for cluster 3 and cluster 4 showed the high-

est performance, with a mean 10-fold cross-validation area un-

der the curve (AUC) of 0.90 (Figure 5A).

Through further analysis using orthogonal projection to latent

structures discriminant analysis (OPLS-DA), we pinpointed 212

metabolites that contributed to the differentiation of cluster 3

and cluster 4 (Table S6). These distinguished metabolites were

predominantly associated with fatty acid and amino acid meta-

bolism and their derivatives. By reconstructing a classifier using
Cell Reports Medicine 5, 101775, October 15, 2024 5



Figure 4. Dynamic interplay between the gut mycobiome and cardiometabolic diseases

(A) Comparison of inter-individual Bray-Curtis distance of fungal composition between baseline and follow-up, and the within-pair Bray-Curtis distances across

the two time points (n = 1,946).

(B) Correlation between age and intra-individual variation in gut fungal composition across the baseline and follow-up (n = 1,946).

(C) Comparison of the fungal alpha diversity (observedOTUs) between baseline and follow-up. The y axis refers to the observedOTUs at the ASV level (n = 1,946).

(D) Distribution of fungal taxa that are present in at least 50% of samples at a minimum relative abundance of 0.1% across different fungal clusters (n = 1,946

pairs).

(legend continued on next page)
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these OPLS-DA-identified metabolites at the baseline, we

achieved a similar classification accuracy for cluster 3 and clus-

ter 4 as that of the primary all-metabolites-based model (AUC =

0.90; Figure 5B). Importantly, this classifier was successfully vali-

dated with follow-up participants who were distinct from the

baseline participants (AUC = 0.84; Figure 5B). These follow-up

participants transitioned from cluster 1 or cluster 2 at baseline

to cluster 3 or cluster 4 during the follow-up phase. Additionally,

our analysis employing the Wilcoxon rank-sum test highlighted

significant differences in the abundance of 132 metabolites be-

tween the two groups (Figure 5C).

Metabolites as functional link mediating the association
of mycobiome with T2D
In the CHNS-2 cohort, to investigate the intricate interplay

among the gut mycobiome, serummetabolites, and cardiometa-

bolic health, we firstly performed aweighted gene co-expression

network analysis. This analysis grouped the OPLS-DA-identified

metabolites into 15 distinct metabolite modules based on the

similarity of metabolism profiles. The distribution of identified

metabolites across different metabolism modules is presented

in Figure S5A. The inter-correlations among these metabolite

modules ranged from weak to moderate (Figure S5B). The ma-

jority of thesemodules, specifically 9 out of the 15, displayed sig-

nificant differences between two distinct fungal patterns, de-

noted as cluster 3 and cluster 4 (Figure S5C). This underscores

the substantial variations in metabolic profiles associated with

these fungal patterns. Additionally, four metabolite modules

(M2, M9, M12, and M14) exhibited significant associations with

risk of T2D or hypertension (Figure S5D).

We then hypothesized that serum metabolite modules might

mediate the impact of the gut mycobiome on cardiometabolic

diseases. We found that two metabolite modules (M14 and

M9) emerged as mediators of the effects of the gut mycobiome

on T2D, with mediated effects of 37% and 16%, respectively

(Figure S6A). Importantly, we did not identify any significant

inverse effect, where gut fungi might influence metabolites

through their impact on the disease. Furthermore, a majority of

the metabolites belonging to the M9 andM14modules exhibited

significant differences between the T2D cases and controls (Fig-

ure 6A). The inter-correlations among these metabolites ranged

from weak to moderate (Figure S6B).

For the individual core fungal taxa andmetabolites belonging to

the M9 and M14 modules, we uncovered three significant results

in themediation analyses, with forwardmediation effects showing

an FDR <0.05 and reverse mediation effects showing an FDR

>0.05. These results highlight the potential role of two fungi

(Saccharomyces and Blumeria) in the development of T2D via

several metabolites (g-linolenic acid, L-valine, and LPE (lysophos-
(E) Transition of all participants between the fungal clusters from the baseline to

(F) Distribution of alpha diversity across different fungal pattern transitions. The

boxplot. Key combinations highlighted: C1-C4, C2-C4, C3-C4, and C4-C4. Othe

(G) Dynamic interplay between mycobiome and human cardiometabolic disease

the difference between other fungal clusters and cluster 4. Themodels were adjus

generalized estimating equation model’s working correlation matrix. Additionall

provinces or megacities.

See also Figures S3 and S4 and Table S5.
phatidylethanolamine) (Figure 6B). A noteworthy instance was the

mediation effect of L-valine, which accounted for 45% of the total

effect ofBlumeriaonT2D (FDRmediation = 0.02, Figure 6C). L-valine,

one of the branched-chain amino acids (BCAAs), exhibited a

positive correlation with Blumeria and was found to be elevated

in individuals with T2D in our study (Figure 6A). Consistently,

L-valine has previously been implicated in causing insulin resis-

tance in animal studies23,24 and has shown a positive association

with T2D in human cohort studies.25

Another example was g-linolenic acid, which displayed a pos-

itive correlation with the abundance of Saccharomyces and was

found to be enriched in T2D patients in our study (Figure 6A). It

acted as a mediator of Saccharomyces in the progression of

T2D (FDRmediation = 0.04), with a mediation effect of 16% (Fig-

ure 6D). Taken together, our findings provide potential functional

insights underlying the relationships between the gut myco-

biome and human cardiometabolic diseases.

DISCUSSION

Here, we systematically characterized the gut mycobiome

composition and dynamics in a large nationwide cohort of Chi-

nese adults. Leveraging a rich array of phenotypic measure-

ments, our research builds upon existing knowledge by uncover-

ing robust correlations between gut mycobiome composition

and cardiometabolic health. Moreover, we observed temporal

variability in both individual and fungal patterns of the gut myco-

biome over three years, emphasizing its inherently dynamic na-

ture. Additionally, we found the dynamic interplay between the

gut mycobiome and cardiometabolic diseases. Finally, our in-

vestigations revealed the potential functional role of metabolites

as mediators in the association between the gut mycobiome and

T2D. These findings provide deep insights into the intricate inter-

actions between the gut mycobiome and the host, shedding light

on its relevance to cardiometabolic health.

Several prior studies have reported associations of the gutmy-

cobiome with geographic locations and dietary and lifestyle fac-

tors, including milk, fruit, vegetable, fish, sugar, and alcohol con-

sumption.13,17 Our substantially expanded sample size and

comprehensive phenotype data have enabled us to extend the

investigation, thereby enhancing the scope of previous knowl-

edge. Our investigation underscores the considerable impact

of dietary and lifestyle factors on fungal variation, highlighting

the contribution of staple food consumption (specifically wheat

and rice) and physical activity. Both rice and wheat, as funda-

mental components of the Chinese diet, contribute substantially

to caloric intake and represent distinct dietary patterns.26

Fungi are common inhabitants of the intestinal barrier surface.

Animal studies have shown that the gut mycobiome is influenced
follow-up (n = 1,946).

numbers of participants in each fungal pattern were marked on the top of the

rs shaded in gray.

s (n = 1,946). Generalized estimating equation model was employed to assess

ted for age, gender, and BMI and used independent correlation structure as the

y, the models included both a random intercept and a random coefficient for
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Figure 5. Association of the gut mycobiome

with serum metabolites

(A) Comparing the performance of metabolome-

based classifiers (LightGBM) in categorizing par-

ticipants’ fungal clusters at the baseline (n = 911).

Performance of the classifiers was assessed by

area under the receiver operating characteristic

curve (AUC) across 10-folds, with cluster 4 as the

reference group, and each of other groups and

their combinations as the comparison group. Here,

the numbers of participants included in the cluster

1 to 4 were 518, 227, 85, and 80, respectively.

(B) Receiver operating characteristic curve for

the orthogonal projections to latent structures

discriminant analysis (OPLS-DA)-selected metab-

olites in categorizing participants into either cluster

3 or cluster 4 groups within the discovery (n = 165)

and validation cohorts (n = 138). The effectiveness

of these selected metabolites in predicting fungal

clusters was assessed using the machine learning

model (LightGBM).

(C) Fold change of differential metabolites between

the fungal cluster 3 and cluster 4 (n = 165). The

identified metabolites are visualized as dots, with

colors corresponding to their respective cate-

gories. The dot size indicates the importance of the

metabolite in distinguishing fungal clusters during

the OPLS-DA analysis.

See also Figure S5 and Table S6.
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by the environment and correlates with metabolic outcomes in

response to diet.27 Dysbiosis in fungal communities can affect

mucus production, epithelial function, and immune defense,

potentially contributing to the development of metabolic dis-

eases.6 While higher levels of gut bacterial alpha diversity have

consistently been associated with improved health status,28,29

evidence for fungal diversity remains limited. In the present

study, we found that fungal alpha diversity was inversely associ-

ated with multiple cardiometabolic diseases and risk factors. A

recent study8 reported that fungal alpha diversity was lower in

participants with T2D and hypertension based on public fecal

metagenomes. However, the association was not significant,

likely due to the small sample size (n < 350) and technical chal-

lenges in detecting fungi using metagenomic methods.3 We

also observed that gut Saccharomyces was associated with

T2D but not with dyslipidemia or hypertension, suggesting that

Saccharomyces might influence T2D through mechanisms that

were independent of those typically associated with dyslipide-

mia or hypertension. This was consistent with previous research,

which also found that no single fungal genus was consistently

associated with different cardiometabolic diseases.8

There was a mycobiome-dependent association between the

traditional risk factors and T2D, where a stronger association

was observed in individuals with enrichment of Saccharomyces.

These findings suggest the importance of considering Saccharo-

myces as a potential effect modifier of traditional risk factors in

the prevention of T2D risk. Importantly, the link between Saccha-
8 Cell Reports Medicine 5, 101775, October 15, 2024
romyces and T2D is further supported by

results from our independently conducted

dynamic analysis. This reinforces the
potential role of Saccharomyces as a predictive biomarker of

T2D. It is crucial to note that these findings warrant further inves-

tigation to elucidate the underlying mechanisms and biological

pathways by which Saccharomyces may influence T2D risk.

Additionally, considering the potential role of Saccharomyces

in modifying the impact of traditional risk factors may open ave-

nues for personalized approaches to diabetes prevention and

management.

Our mediation analysis provided evidence that several metab-

olites may play a mediating role in the relationship between the

gut mycobiome and T2D. Of particular interest, we demon-

strated that L-valine, a BCAA, may mediate the association be-

tween Blumeria and T2D. BCAAs are synthesized in bacteria,

plant, and fungi and are well-known contributors to insulin resis-

tance.23,24 Additionally, g-linolenic, an omega-6 fatty acid, ex-

hibited a positive association with T2D, aligning with previous

findings.30 Furthermore, our observations suggest that g-lino-

lenic acid might mediate the impact of Saccharomyces on

T2D. These associations between specific fungi andmetabolites

with T2D provide valuable insights into the potential mechanism

by which gut mycobiota may contribute to the pathogenesis of

the complex metabolic disorders. Further investigations into

these specific pathways may shed light on therapeutic targets

and interventions for T2D and potentially other cardiometabolic

diseases. Nevertheless, additional studies are needed to vali-

date and elucidate the underlying mechanism of these intriguing

findings.



Figure 6. Functional metabolites mediate the effect of the gut mycobiome on type 2 diabetes

(A) Association of serummetabolites with type 2 diabetes (n = 165). Boxplot shows the distribution of mycobiome-relatedmetabolites abundance among the type

2 diabetes cases and healthy controls. Significancewas examined by logistic regression, with adjustment for age, gender, andBMI. The names of themetabolites

are color-coded based on their belonging to specific metabolite modules: purple represented M9, and yellow corresponded to M14.

(B) Sankey diagram showing the significant mediation linkages (FDR < 0.05) where fungal genera acted as effect factors, metabolites as mediators, and type 2

diabetes as outcome (n = 165).

(C) Mediation linkages among the Blumeria, L-Valine, and type 2 diabetes (n = 165). The proportion of mediation effect is displayed at the center of the ring chart.

(D) As in (C), but for Saccharomyces, g-linolenic acid, and type 2 diabetes (n = 165).

See also Figure S6.
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In summary, our study offers a comprehensive characteriza-

tion of the gut mycobiome composition and dynamics in a

nationwide Chinese cohort. By extensively mapping the gut my-

cobiome to environmental factors, we have created a valuable

resource for unraveling the factors associated with inter-individ-

ual variation of the gut mycobiome. We reveal the inter-connec-

tions between the gut mycobiome and cardiometabolic health,

underscoring gut Saccharomyces as a potential predictive

biomarker of T2D risk. This study advances our understanding

of the roles of the gut mycobiome in cardiometabolic health

and provides potential targets for intervention and therapeutics

aimed at modulating the gut mycobiome.

Limitations of the study
Our study has several limitations. Firstly, our findings regarding

the associations of the gut mycobiome with cardiometabolic

health are observational, without the establishment of causation.

Future research is needed to confirm the potential causal rela-
tionships. Secondly, while mediation analysis has been utilized

in observational microbiome studies,31–33 further animal studies

are necessary to elucidate the underlying mechanisms and po-

tential causal direction. Thirdly, current fungal databases are still

immature, particularly for less-studied and non-culturable fungi,

which results in many reads being classified as ‘‘unknown/un-

classified.’’ Additionally, primer design can introduce biases

affecting amplification efficiency.3 Future research should prior-

itize developing validatedmethodologies, including refining DNA

extraction techniques, improving the quality of fungal databases,

and creating more effective primers. Finally, all participants

included in the present study are Chinese, so caution should

be exercised in extrapolating our findings to other ethnic groups.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead

contact, Prof. Ju-Sheng Zheng (zhengjusheng@westlake.edu.cn).
Cell Reports Medicine 5, 101775, October 15, 2024 9

mailto:zhengjusheng@westlake.edu.cn


Article
ll

OPEN ACCESS
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The raw ITS sequencing data have been deposited in the Genome

Sequence Archive (GSA) (https://ngdc.cncb.ac.cn/gsa/) at the acces-

sion number CRA013806.

d Due to informed consent regulations, phenotypic data for the cohort are

available upon request from the CHNS (https://www.cpc.unc.edu/

projects/china/).

d The computer codes for main analyses in this study are deposited in

GitHub under https://github.com/wenutrition/CHNS-fungi-cardiometabolic-

diseases. The DOI at Zenodo is https://doi.org/10.5281/zenodo.13353503.

The software and packages used for this analysis are listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this

work is available from the lead contact upon request.
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My�sliwiec, M. (2016). Higher diversity in fungal species discriminates chil-

dren with type 1 diabetes mellitus from healthy control. Patient Prefer.

Adherence 10, 591–599. https://doi.org/10.2147/PPA.S97852.

21. Shah, S., Locca, A., Dorsett, Y., Cantoni, C., Ghezzi, L., Lin, Q., Bokoliya,

S., Panier, H., Suther, C., Gormley, M., et al. (2021). Alterations of the gut

mycobiome in patients with MS. EBioMedicine 71, 103557. https://doi.

org/10.1016/j.ebiom.2021.103557.

22. Chiaro, T.R., Soto, R., Zac Stephens, W., Kubinak, J.L., Petersen, C., Go-

gokhia, L., Bell, R., Delgado, J.C., Cox, J., Voth, W., et al. (2017). A mem-

ber of the gut mycobiota modulates host purine metabolism exacerbating

colitis in mice. Sci. Transl. Med. 9, eaaf9044. https://doi.org/10.1126/sci-

translmed.aaf9044.

23. Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Niel-

sen, T., Jensen, B.A.H., Forslund, K., Hildebrand, F., Prifti, E., Falony,

G., et al. (2016). Human gut microbes impact host serum metabolome

and insulin sensitivity. Nature 535, 376–381. https://doi.org/10.1038/

nature18646.

24. Neinast, M., Murashige, D., and Arany, Z. (2019). Branched Chain Amino

Acids. Annu. Rev. Physiol. 81, 139–164. https://doi.org/10.1146/an-

nurev-physiol-020518-114455.

25. Morze, J., Wittenbecher, C., Schwingshackl, L., Danielewicz, A., Rynkie-

wicz, A., Hu, F.B., and Guasch-Ferré, M. (2022). Metabolomics and
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lightgbm Python package v.3.2.1 sklearn https://lightgbm.readthedocs.io/en/stable/

ropls R package v.1.26.4 bioconductor https://bioconductor.org/packages/

release/bioc/html/ropls.html

WGCNA R package v.1.70.3 CRAN https://cran.r-project.org/web/

packages/WGCNA/index.html

mediation R package v.4.5.0 CRAN https://cran.r-project.org/web/packages/

mediation/index.html

QIIME 2 Bolyen et al.15 https://qiime2.org/

The computer code for main analyses This paper https://github.com/wenutrition/CHNS-

fungi-cardiometabolic-diseases

Zenodo: https://doi.org/10.5281/zenodo.13353503
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study cohorts
The present study was based on data from the China Health and Nutrition Survey (CHNS). CHNS is nationwide longitudinal cohort

within China, distinguished by its utilization of amultistage, randomcluster design.14 This intricate design ensures the comprehensive

coverage of a diverse range of critical public health risk factors, health outcomes, dietary and lifestyle components, as well as de-

mographic and economic factors. The CHNS rounds have been completed in 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009,

2011, 2015 and 2018. Notably, during the 2015 and 2018 rounds of the CHNS, stool samples were collected for the measurement

of the gut mycobiome. In this study, we included two sub-cohorts of the CHNS, identified as CHNS-1 and CHNS-2. In the CHNS-1

cohort, a total of 10,865 participants from 12 provinces (Guangxi, Guizhou, Heilongjiang, Henan, Hubei, Hunan, Jiangsu, Liaoning,

Shandong, Shanxi, Yunnan, Zhejiang) and 3 municipalities (Beijing, Chongqing, Shanghai) provided stool samples for the measure-

ment of ITS rRNA. After excluding participants with low depth of sequencing reads (<20,000, n = 32) and those without detailedmeta-

data (n = 138), 10,695 participants (mean age 51.3 ± 15.5 years, 54% were women) were included in the CHNS-1 cohort. They were

utilized to comprehensively profile the variations in the mycobiome and establish associations between the gut mycobiome and car-

diometabolic health.
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After adopting the same inclusion and exclusion criteria as used in the CHNS-1 cohort, we included an additional sub-cohort of

independent participants (CHNS-2) from four prominent provinces in China (Liaoning, Guangxi, Jiangsu, Hubei), with repeatedly

collectedmetadata (n = 1,946 pairs, mean age 56.5 ± 13.7 years, 55%werewomen), mycobiome data (1,946 pairs), andmetabolome

data (n = 996 pairs) over a period of 3 years. This sub-cohort was utilized to explore the inherent long-term variability of the gut

mycobiome and to provide a deeper biological insight into the intricate interplay between the gut mycobiome, metabolome and car-

diometabolic diseases.

Ethical approval
The CHNS protocol was approved by the Institutional Review Boards of the Chinese Center for Disease Control and Prevention (No.

201524), the Westlake University (No. 20220429ZJS002), the University of North Carolina at Chapel Hill, USA, and the US National

Institute for Nutrition and Health (No. 07–1963). Informed consent was obtained from all participants.

METHOD DETAILS

Metadata collection
We collected phenotypes across a diverse range of categories, including demographic factors, dietary and lifestyle components,

anthropometric factors, chronic diseases, medications, blood parameters, urbanization-related indices, and various other environ-

mental factors. Demographic, medication, lifestyle, and dietary data were collected through standard questionnaires during home

visits over three consecutive days. Habitual dietary intakes were evaluated using three successive 24-h dietary recalls, including

two on weekdays and one on a weekend day. Trained investigators guided participants in reporting the specific types and quantities

of all foods consumedwithin the preceding 24 h.36 Physical activity was assessed as a total metabolic equivalent (MET) for task hours

per week.37 Anthropometric factors were measured on-site by trained staff.

We utilized the urbanization index as a comprehensive measure to assess the degree of urbanization within each community. This

index comprises 12 community indicators, encompassing factors such as population density, economic activity, presence of tradi-

tional and modern markets, transportation and health infrastructure, sanitation facilities, communication access, availability of social

services, cultural diversity, and housing conditions. Each of these 12 components was computed based on the presence of relevant

infrastructure, the percentage of households utilizing these services within the community, and assigned a maximum score of 10

(ranging from 0 to 10). The methodology for scoring algorithms, threshold values are elaborated elsewhere.38

Following an overnight fasting, blood samples were collected via venipuncture. All samples were analyzed in a national central lab

in Beijing (medical laboratory accreditation certificate ISO 15189:2007) with strict quality control. Blood glucose levels were

measured using a glucose oxidase phenol 4-aminoantipyrine peroxidase kit (Randox, Crumlin, UK) and a Hitachi 7,600 Analyzer

(Hitachi, Tokyo, Japan). Glycated hemoglobin (HbA1c) was measured via high-performance liquid chromatography system (model

HLC-723 G7; Tosoh Corporation, Tokyo, Japan). All blood lipid measures were on the Hitachi 7,600 automated analyzer (Hitachi Inc.,

Tokyo, Japan).

Assessments of cardiometabolic diseases
Type 2 diabetes (T2D) cases were ascertained based on fasting blood glucoseR7.0 mmol/L or HbA1cR 47.5 mmol/mol (6.5%), or

being currently under medical treatment for T2D during the collection of stool samples, according to the American Diabetes Asso-

ciation criteria for the diagnosis of diabetes.39 Dyslipidemia cases were ascertained based on TCR 240mg/dL (6.2 mmol/L) or TGR

200mg/dL (2.3mmol/L) or LDL-CR 160mg/dL (4.1mmol/L) or HDL-C as <40mg/dL (1.0mmol/L), according to the guidelines for the

prevention and treatment of dyslipidemia in Chinese adults.40 Hypertension was defined as systolic blood pressure over 140 mmHg,

diastolic blood pressure over 90 mmHg, or taking antihypertensive medicine.41

Fecal sample collection and gut mycobiome analyses
Stool samples were collected by the participants themselves, who received instructions for the collection and storage process, and

were immediately frozen at�20�C refrigerators after collection. All stool samples were transported through a cold chain to the central

laboratory within 1–2 days and stored at �40�C until processing.

Total fungal genomic DNA was extracted using the E.Z.N.A. soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) according to man-

ufacturer’s instructions. The quality and concentration of extracted DNA were determined using 1.0% agarose gel electrophoresis

and aNanoDropND-2000 spectrophotometer (ThermoScientific Inc., USA). The hypervariable region of ITS2was amplified using the

primer pairs ITS3F (GCATCGATGAAGAACGCAGC) and ITS4R (TCCTCCGCTTATTGATATGC)34 by an ABI GeneAmp 9700 PCR

thermocycler (ABI, CA, USA). The PCR reactionmixture including 4 mL of 53 Fast Pfu buffer, 2 mL of 2.5mMdNTPs, 0.8 mL of forward

and reverse primer (5 mM), 0.4 mL of Fast Pfu polymerase, and 10 ng of template DNA. The volume was then brought up to 20 mL with

ddH2O. The PCR was carried out under the following conditions: initial denaturation for 3 min at 95�C, followed by 35 cycles of

denaturing for 30 s at 95�C, annealing for 30 s at 55�C, and extension for 45 s at 72�C, and single extension at 72�C for 10 min,

and finally hold at 10�C. The PCR product was extracted from a 2% agarose gel and purified using the AxyPrep DNA Gel Extraction

Kit (Axygen Biosciences, Union City, CA, USA) according to manufacturer’s instructions, and quantified using Quantus Fluorometer

(Promega, USA).
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The gut mycobiome was profiled by sequencing of Internal Transcribed Spacer (ITS). The hypervariable region of ITS2 was ampli-

fied using the primer pairs ITS3F (GCATCGATGAAGAACGCAGC) and ITS4R (TCCTCCGCTTATTGATATGC) by an ABI GeneAmp

9700 PCR thermocycler (ABI, CA, USA). Purified amplicons were pooled in equimolar amounts and paired-end sequenced on

NovaSeq 6000 platform (Illumina, San Diego,USA) according to the standard protocols by Majorbio Bio-Pharm Technology Co.

Ltd. (Shanghai, China). We obtained an average of 145,675 ± 65,187 reads/sample (mean ± SD) in the CHNS-1 cohort and

226,503 ± 65,272 reads in the CHNS-2 cohort.

The raw sequencing reads were further processed with the Quantitative Insights Into Microbial Ecology 2 platform (QIIME 2).15 In

summary, DADA242 was used to filter sequencing reads with quality score Q < 25 and to denoise reads into amplicon sequence var-

iants (ASVs), resulting in feature tables and representative sequences. The ASV features that were presented in only one sample were

excluded before conducting the taxonomy analysis. Taxonomy was assigned to ASVs based on the UNITE (version 8.2, 99%) data-

base using the VSEARCH tool wrapped in QIIME2. Reads that could not be confidently assigned to known taxa due to insufficient

matching with reference sequences were labeled with the highest taxonomic rank that could be assigned, followed by ‘spp’. ASVs

that were not filtered were rarefied at 20,000 reads to calculate alpha diversity. The measures of alpha diversity at the ASV level

include observed OTUs, Shannon’s diversity index, Faith’s phylogenetic diversity, and Pielou’s evenness.

Serum metabolome profiling
The serum samples were stored at �80�C in a refrigerator and thawed on ice before being vortexed for 10 s. For metabolomic anal-

ysis, 50 mL of the sample and 300 mL of the extraction solution (ACN:Methanol = 1:4, V/V) containing internal standards were added to

a 2mLmicrocentrifuge tube. The sample was vortexed for 3 min and then centrifuged at 12,000 rpm for 10min at 4�C. Subsequently,
200 mL of the supernatant was collected and placed at�20�C for 30min, followed by another centrifugation at 12,000 rpm for 3min at

4�C. An aliquot of 180 mL of the supernatant was transferred for LC-ESI-MS/MS analysis.

The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, ExionLC AD, https://sciex.com.cn/; MS, QTRAP Sys-

tem, https://sciex.com/) following standard protocols. The triple quadrupole-linear ion trapmass spectrometer (QTRAP) was used to

perform LIT and triple quadrupole (QQQ) scans, operated and controlled by Analyst 1.6.3 software (Sciex) with standard parameters.

The source temperature 500�C; ion spray voltage (IS) was 5500 V (positive) and �4500 V (negative); ion source gas I (GSI), gas II

(GSII), and curtain gas (CUR) were set at 55, 60, and 25.0 psi, respectively; the collision gas (CAD) was set to high. Instrument tuning

and mass calibration were performed with10 and 100 mmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively.

A specific set of MRM transitions were monitored for each period according to the metabolites eluted within this period.

QUANTIFICATION AND STATISTICAL ANALYSIS

The gut mycobiome taxa data were analyzed at the genus level. To address the issue of sparse fungal data in subsequent analyses,

taxa present in less than 10% of the population were excluded. For the mycobiome-phenotype association analysis, the taxa data

were transformed using the centered log-ratio (CLR) method to address the compositional nature of the mycobiome data. Prior to

performing the CLR transformation, multiplicative imputation was employed to handle zero values.43 As for blood metabolome

data, a natural logarithmic (loge) transformation was applied. All statistical tests used were two sided. To account for potential false

positive discoveries, multiple-testing correction was implemented using the Benjamini–Hochberg method. An adjusted p value of

less than 0.05 was considered indicative of statistical significance. All regression analyses were performed using Stata (v15.0).

Core taxa identification
Core fungal taxa were identified as those appearing in at least 50% of samples with a minimum relative abundance of 0.1%, or form-

ing central nodes in fungal network. NetCoMi package 43 was used to perform fungal co-abundance networks analyses. We used

SparCC analysis to estimate the fungal correlationmatrix. Correlationswith FDR adjusted p values <0.05 andwith amagnitude above

0.2 were selected for further visualization and network analysis. Here, we used eigenvector centrality to define the central node in the

co-abundance network (node with a centrality value above the empirical 95% quantile in the network).

Estimation of the effect of environmental factors on fungal variability
We used the vegdist function in the R package vegan (version 2.5.7) to calculate the gut fungal Bray-Curtis dissimilarity matrix. The

variations of Bray-Curtis dissimilarity matrix explained by each of the environmental variables was determined by PERMANOVA anal-

ysis using the function adonis2 in vegan. The p value was determined through 999 permutations.

Correlation between fungal genera and observed OTUs
Spearman correlation analysis was used to examine the correlation between measured fungal genera and observed OTUs.

Association of the gut mycobiome with human cardiometabolic diseases
We used logistic mixed-effects regression and linear mixed-effects regression, respectively, to independently evaluate the associ-

ations of each fungal features (per SD) with human cardiometabolic diseases and their indicative factors (fasting glucose, HbA1c,
Cell Reports Medicine 5, 101775, October 15, 2024 e3
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HDL, LDL, TC, TG, SBP and DBP). Themodels were adjusted for age, gender, and BMI and included a random intercept and random

coefficient for provinces or megacities, accounting for the variability in gut fungal composition across different regions.

For the fungus that was significantly associated with T2D, we further evaluated the interaction between the fungus and T2D tradi-

tional risk score for the risk of T2D using a logistic mixed-effects regression model. The model simultaneously included the two main

effects, as well as the product of the two main effects, along with random intercepts and random coefficients to account for the vari-

ability across provinces or megacities. The risk score utilized in the analysis was developed based on the standards of medical care

for T2D in China. It encompassed factors such as age, gender, waist circumference, BMI, and systolic blood pressure.44 Further-

more, for the fungal taxa that showed a significant interaction with risk score for T2D, we performed a subgroup analysis stratified

by the median level of the corresponding factor.

Temporal variability of gut mycobiome over time
We conducted dynamic analyses on participants with paired mycobiome data from the 2015 and 2018 surveys. To evaluate differ-

ences in the gut mycobiome between the two time points, we performed a principal component analysis (PCA) based on between-

samples Aitchison distance, obtained from CLR-transformed abundance data. We performed paired two-sided Wilcoxon-signed

rank tests on the first two axes of principal components to assess the variation between the two time points. To compare differences

in overall fungal composition between and within individuals, we employed the Wilcoxon rank-sum test on the fungal Bray-Curtis

dissimilarity. Furthermore, we utilized paired two-sided Wilcoxon-signed rank test to evaluate temporal changes in both alpha diver-

sity and the relative abundance of gut fungi. For the clustering of samples across the two time points, we adopted the R package

microbiome (version 1.19.1) to performDirichlet Multinomial Mixture (DMM) analysis.45 The optimal number of clusters was identified

based on the local minimum of the Laplace approximation score. To ensure the robustness of this cluster count, we used additional

alternative criteria, such as the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC). We quantified the contri-

bution of each fungal taxa to the fungal clusters, considering taxa with contribution values exceeding the 99th percentile of the overall

contribution values as the primary contributor to the fungal cluster. We then analyzed the transition of all participants between the

DMMclusters from the baseline to follow-up. Subsequently, we analyzed the transitions of all participants between the DMMclusters

from baseline to follow-up.

Dynamic interplay between gut mycobiome and human cardiometabolic diseases
We fitted a generalized estimating equation (GEE) model to examine the association of dynamic changes in gut mycobiome clusters

over time with cardiometabolic diseases. The models were adjusted for age, gender, and BMI and used independent correlation

structure as the GEE model’s working correlation matrix. Additionally, the models included both a random intercept and a random

coefficient for provinces or megacities.

Associations of gut mycobiome with human serum metabolites
Among the participants with measured mycobiome and metabolome data in the 2015 survey, we constructed metabolome-based

machine learning classifiers (LightGBM)46 to classify the fungal clusters. Performance of the classifiers was assessed by area under

the Receiver-Operating Characteristic curve (AUC) across 10-folds. The reference groupwas cluster 4, and each of other groups and

their combinations as the comparison group.

We performed orthogonal projections to latent structures discriminant analysis (OPLS-DA) to investigate the differential metabo-

lites between fungal cluster 3 and cluster 4. This analysis was performed in the R language using the ‘ropls (version 1.26.4). Metab-

olites with a variable importance in projection (VIP) score exceeding 1 were selected for further investigation. We evaluated the

chosen metabolites using the machine learning model (LightGBM). This analysis was conducted using the Python package lightgbm

(version 3.2.1). The model was trained and initially validated using 10-fold cross-validation with the 2015 dataset. Subsequently, the

model trained on the 2015 data (discovery model) was directly applied and validated on the 2018 dataset, which did not include any

participants from the training dataset. Additionally, we employed theWilcoxon rank-sum test to calculate the fold change of selected

metabolites between the two groups.

Mediation analysis
We utilized weighted correlation network analysis (WGCNA, version 1.70.3)47 to detect co-expressed metabolite modules based on

the metabolites selected from OPLS-DA. To assess the associations between fungal clusters and diseases, as well as between

fungal clusters (cluster 3 and cluster 4) and metabolite modules, logistic mixed-effects and linear mixed-effects regression analyses

were conducted, respectively. Furthermore, logistic mixed-effects regression was used to evaluate the association between metab-

olite modules and diseases. All models were adjusted for age, gender, and BMI and included a random intercept and random coef-

ficient for provinces or megacities, accounting for the variability in gut fungal composition across different regions. For metabolite

modules that exhibited significant associations with both fungal partitions and diseases, we conducted mediation analysis using

the R package mediation (v4.5.0) to investigate the potential mediation effect of metabolites on the link between mycobiome and

cardiometabolic diseases. In addition, we also performed mediation analysis to explore whether disease status could mediate the

association between mycobiome and the metabolites.
e4 Cell Reports Medicine 5, 101775, October 15, 2024
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Figure S1. The inter-correlation of fungal genera, related to Figure 2. The correlation between each 

genus was calculated by Spearman correlation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S2. Distribution of fungal genera across urbanization score and correlation analyses, 

related to Figure 2. A, Distribution of fungal taxa that present in at least 50% of samples at a 

minimum relative abundance of 0.1%, across urbanization score. Q1 to Q4 represent the quantiles of 

the urbanization score. B, Correlations between the gut fungal genera and observed OUT. The values 

on the x-axis and y-axis represent the rank and Spearman’s coefficient of each genus’s correlation with 

observed OTUs, respectively. C, Co-abundance network construction and keystone taxa identification. 

Co-abundance network was constructed by SparCC analysis. Correlations with FDR adjusted P values 

< 0.05 and with a magnitude above 0.2 were selected for further visualization and network analysis. 

Here, we used eigenvector centrality to define the central node in the co-abundance network (node with 

a centrality value above the empirical 95% quantile in the network). The size of each node was 

proportional to its eigenvector centrality value. Nodes were clustered and marked with different colors 

to visually distinguish between clusters. 



 

 

 

Figure S3. Temporal variability of gut mycobiome over time, related to Figure 4. A, Percentage 

changes of fungal genera with significant increase (brown-orange) or decrease (blue) in abundance 

over three years. Temporal changes in the relative abundance of the gut mycobiome were evaluated 

using a paired two-sided Wilcoxon signed-rank test. Only statistically significant results (FDR < 0.05) 

are depicted in the figure. B, Comparison of the fungal alpha diversity indices between baseline and 

follow-up. 

 

 



 

 

 

 

Figure S4. DMM clustering of ITS gene sequencing data, related to Figure 4. A, Model fitting 

performance for different numbers of clusters. The x-axis represents the number of clusters, while the 

y-axis showcases the corresponding values of the performance indices. AIC, Akaike Information 

Criterion; BIC, Bayesian Information Criterion. B, Box plot showing the importance for dominant 

fungal taxa per DMM cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S5. Dynamic interplay between gut mycobiome, metabolism modules and cardiometabolic 

health, related to Figure 5. A, The distribution of metabolites across different metabolism modules. B, 

Paired association of metabolism modules. The correlation between each metabolism module was 

calculated by Spearman correlation coefficient. Significance levels are indicated as follows: *, P < 0.05; 

**, P < 0.01; ***, P < 0.001. C, Association of gut mycobiome with metabolism modules. The analysis 

was conducted using linear mixed-effects regression model, with adjustment for the age, gender and 

BMI. The linear mixed-effects model included a random intercept and random coefficient for provinces 

or megacities, accounting for the variability in gut fungal composition across different regions. The 

figure presents Z-scored beta coefficients along with their corresponding 95% confidence intervals. D, 

Association of metabolism modules with cardiometabolic diseases, as well as host metabolism 

indicators. Weighted Gene Co-expression Network Analysis was employed to identify metabolism 

modules of differential metabolites. Only significant associations (orange for positive, blue for negative) 

were showed on the chord diagram. 



 

 

 
 

Figure S6. Metabolism modules mediate the effect of gut mycobiome on type 2 diabetes, related 

to Figure 6. A, Mediation linkages among the gut mycobiome, metabolism modules (M14 and M9) 

and type 2 diabetes. The proportion of mediation effect is displayed at the center of the ring chart. B, 

As in A, but for M9 module. C, Paired associations of metabolites belong to M14 and M9. The 

correlation between each metabolite was calculated by Spearman correlation coefficient. Significance 

levels are indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 

 

 

 

 

 

 

 



 

 

Table S1. Characteristics of the participants included in the study, related to Figure 1. 

 
Factor CHNS-1 CHNS-2 (baseline) CHNS-2 (follow-up) 

Number of participants 10695 1946 1946 
Age, years 51.30 (15.48) 56.51 (13.73) 59.54 (13.73) 

Women, n (%) 5727 (53.6%) 1064 (54.7%) 1064 (54.7%) 

Urban, n (%) 4281 (40.0%) 584 (30.0%) 584 (30.0%) 
Urbanization score 71.95 (17.64) 75.05 (16.68) 75.05 (16.68) 

Pet owership, n (%) 1973 (19.0%) 496 (26.0%) 515 (26.7%) 

Education, n (%)    
     Middle school or lower 6822 (63.8%) 1459 (75.0%) 1459 (75.0%) 

     High school or professional college 2296 (21.5%) 353 (18.1%) 353 (18.1%) 

     University 1577 (14.7%) 134 (6.9%) 134 (6.9%) 
Married, n (%) 10216 (95.5%) 1908 (98.0%) 1908 (98.0%) 

Income, yuan / year per household 68145.23 (92725.05) 77164.02 (2.3e+05) 83565.78 (1.4e+05) 

BMI, kg/m2 24.15 (4.10) 24.19 (4.23) 24.24 (3.85) 
Waist circumference, cm 83.79 (12.72) 84.59 (12.05) 84.69 (11.12) 

Hip circumference, cm 94.68 (10.34) 94.89 (9.56) 94.60 (9.17) 

SBP, mmHg 126.91 (19.04) 131.16 (18.80) 133.75 (20.12) 

DBP, mmHg 80.62 (11.17) 82.51 (10.57) 83.47 (11.59) 

HbA1c, % 5.72 (0.97) 5.73 (0.92) 5.69 (0.97) 

Fasting glucose, mmol/l 5.49 (1.53) 5.44 (1.40) 5.87 (1.62) 
Insulin, mmol/l 7.62 (7.87) 7.07 (7.48) 10.44 (19.35) 

HDL-C, mmol/l 1.28 (0.33) 1.25 (0.34) 1.46 (0.43) 

LDL-C, mmol/l 3.12 (0.90) 3.12 (0.94) 3.15 (0.92) 
TC, mmol/l 4.91 (1.10) 5.02 (1.04) 5.01 (0.99) 

TG, mmol/l 1.50 (1.12) 1.53 (1.29) 1.73 (1.62) 
Type 2 diabetes, n (%) 1183 (11.1%) 235 (12.1%) 285 (14.6%) 

Prediabetes, n (%) 2900 (31.1%) 624 (32.1%) 514 (26.4%) 

Hypertension, n (%) 2973 (28.0%) 721 (37.1%) 815 (41.9%) 
Dyslipidemia, n (%) 3465 (32.4%) 698 (40.0%) 640 (34.7%) 

Intestinal disease, n (%) 245 (2.4%) 25 (1.3%) 48 (2.5%) 

Diarrhea, n (%) 101 (1.0%) 23 (1.2%) 18 (0.9%) 
Myocardial infarction, n (%) 87 (0.8%) 16 (0.8%) 19 (1.0%) 

Stroke, n (%) 135 (1.3%) 32 (1.6%) 53 (2.7%) 

Cancer, n (%)  115 (1.1%) 19 (1.0%)  26 (1.3%) 
Hypertension medications, n (%) 1446 (13.5%) 332 (17.1%) 414 (21.3%) 

Diabetes medications, n (%) 437 (4.1.0%) 80 (4.1%) 104 (5.3%) 

Antibiotic (current), n (%) 205 (2.0%) 29 (1.5%) 42 (2.2%) 
Antibiotic (within 6 months), n (%) 1000 (9.7%) 153 (8.0%) 188 (9.8%) 

Probiotics, n (%) 335 (3.2%) 43 (2.3%) 86 (4.5%) 

Anti-inflammatory medications, n (%) 259 (2.5%) 30 (1.6%) 51 (2.6%) 
Antiacid medications, n (%) 104 (1.0%) 18 (0.9%) 22 (1.1%) 

Proton pump inhibitor, n (%) 154 (1.5%) 27 (1.4%) 33 (1.7%) 

Current smoking, n (%) 2785 (26.3%) 490 (25.4%) 462 (23.8%) 
Current alcohol consumption, n (%) 2905 (27.5%) 539 (27.9%) 503 (26.0%) 

Physical activity, MET 143.48 (164.77) 173.93 (175.42) 171.24 (193.38) 

Wheat intake, g/day 137.27 (136.18) 92.00 (109.05) 100.89 (108.53) 
Rice intake, g/day 220.75 (172.69) 241.95 (132.27) 233.65 (142.74) 

Dark vegetable intake, g/day 65.28 (75.69) 79.02 (93.01) 61.01 (81.76) 

Light vegetable intake, g/day 200.56 (132.86) 214.45 (133.23) 214.30 (136.44) 
Vegetable intake, g/day 265.83 (153.97) 293.47 (150.02) 275.31 (153.13) 

Salted vegetable intake, g/day 3.58 (12.58) 5.34 (14.39) 5.13 (18.65) 

Fruit intake, g/day 41.77 (73.87) 52.31 (81.80) 52.82 (90.17) 
Nuts intake, g/day 4.47 (14.53) 4.68 (14.23) 4.76 (14.98) 

Pork intake, g/day 68.54 (70.36) 65.58 (65.53) 63.87 (66.97) 

Poultry intake, g/day 16.02 (36.24) 19.12 (39.95) 17.93 (37.95) 

Milk intake, g/day 27.48 (75.69) 20.45 (61.36) 20.73 (62.03) 

Egg intake, g/day 27.01 (31.03) 29.70 (33.36) 28.76 (35.16) 

Fish intake, g/day 26.45 (46.70) 35.89 (54.12) 35.66 (54.20) 
Carrot intake, g/day 27.52 (61.04) 28.28 (53.46) 32.48 (67.69) 

Tuber intake, g/day 36.40 (54.73) 33.60 (59.24) 34.02 (66.63) 

Pastes intake, g/day 1.74 (10.77) 1.15 (4.76) 1.16 (6.21) 
Other meat intake, g/day 10.18 (27.12) 7.73 (23.57) 8.83 (26.44) 

Cake intake, g/day 14.43 (38.36) 10.82 (29.48) 15.24 (39.97) 

Sugar intake, g/day 2.26 (9.00) 2.35 (5.91) 1.93 (6.77) 
Vegetable oils intake, g/day 35.94 (34.95) 39.14 (34.79) 35.55 (27.08) 

Animal oil intake, g/day 3.47 (13.03) 0.45 (3.45) 1.03 (7.22) 

Salt intake, g/day 8.53 (11.19) 9.99 (30.19) 7.70 (5.67) 
Sauce intake, g/day 9.44 (27.57) 9.71 (13.70) 10.08 (13.04) 

Other foods intake, g/day 18.77 (30.00) 16.19 (28.53) 14.09 (26.77) 



 

 

Table S2. The prevalence and relative abundance of included genera in the CHNS-1 cohort, related to Figure 2. 

 

Phylum Class Order Family Genus Relative abundance (%) Prevalence (%) 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Aspergillus 22.60 99.21 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Saccharomyces 16.12 82.56 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetales_fam_Incertae_sedis Candida 8.80 89.76 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium 8.35 91.93 

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Debaryomyces 3.31 67.18 

Ascomycota Saccharomycetes Saccharomycetales Unassigned Unassigned 3.04 64.82 

Ascomycota Saccharomycetes Saccharomycetales Dipodascaceae Unassigned 2.88 57.28 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium 2.00 71.86 

Ascomycota Leotiomycetes Erysiphales Erysiphaceae Blumeria 1.20 46.11 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Unassigned 1.03 50.30 

Ascomycota Dothideomycetes Pleosporales Unassigned Unassigned 0.99 48.21 

Ascomycota Saccharomycetes Saccharomycetales Pichiaceae Pichia 0.88 26.42 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Kazachstania 0.82 26.63 

Ascomycota Sordariomycetes Hypocreales Unassigned Unassigned 0.71 35.41 

Ascomycota Dothideomycetes Pleosporales Periconiaceae Periconia 0.54 24.09 

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Meyerozyma 0.48 26.45 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetales_fam_Incertae_sedis Starmerella 0.47 19.41 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycodaceae Hanseniaspora 0.45 15.95 

Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Talaromyces 0.39 28.85 

Ascomycota Eurotiomycetes Eurotiales Unassigned Unassigned 0.38 22.69 

Ascomycota Saccharomycetes Saccharomycetales Phaffomycetaceae Wickerhamomyces 0.34 22.48 

Ascomycota Saccharomycetes Saccharomycetales Metschnikowiaceae Clavispora 0.33 12.36 

Ascomycota Eurotiomycetes Chaetothyriales Herpotrichiellaceae Exophiala 0.29 21.43 

Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 0.27 22.64 

Ascomycota Sordariomycetes Unassigned Unassigned Unassigned 0.26 23.22 

Ascomycota Saccharomycetes Saccharomycetales Trichomonascaceae Wickerhamiella 0.26 13.28 

Ascomycota Sordariomycetes Trichosphaeriales Trichosphaeriaceae Unassigned 0.25 15.08 

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetales_fam_Incertae_sedis Diutina 0.25 10.08 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Unassigned 0.24 20.34 

Ascomycota Sordariomycetes Hypocreales Hypocreaceae Trichoderma 0.21 14.58 

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Unassigned 0.21 20.15 

Ascomycota Saccharomycetes Saccharomycetales Metschnikowiaceae Kodamaea 0.18 11.88 



 

 

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Unassigned 0.17 12.63 

Ascomycota Sordariomycetes Hypocreales Hypocreales_fam_Incertae_sedis Acremonium 0.14 10.04 

Ascomycota Sordariomycetes Microascales Microascaceae Unassigned 0.13 11.01 

Ascomycota Sordariomycetes Xylariales Apiosporaceae Arthrinium 0.13 12.03 

Ascomycota Dothideomycetes Pleosporales Phaeosphaeriaceae Unassigned 0.12 11.82 

Ascomycota Sordariomycetes Hypocreales Hypocreales_fam_Incertae_sedis Unassigned 0.11 10.29 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium 0.11 12.59 

Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Apiotrichum 1.97 62.46 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula 0.85 39.34 

Basidiomycota Agaricomycetes Unassigned Unassigned Unassigned 0.76 20.95 

Basidiomycota Wallemiomycetes Wallemiales Wallemiaceae Wallemia 0.76 43.52 

Basidiomycota Agaricomycetes Polyporales Ganodermataceae Ganoderma 0.43 12.12 

Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Cutaneotrichosporon 0.38 19.06 

Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Unassigned 0.35 23.00 

Basidiomycota Cystobasidiomycetes Cystobasidiales Cystobasidiaceae Cystobasidium 0.28 23.38 

Basidiomycota Agaricomycetes Agaricales Psathyrellaceae Coprinopsis 0.20 16.14 

Basidiomycota Malasseziomycetes Malasseziales Malasseziaceae Malassezia 0.12 11.81 

Basidiomycota Agaricomycetes Agaricales Psathyrellaceae Coprinellus 0.09 10.83 

Mucoromycota Mucoromycetes Mucorales Mucoraceae Mucor 3.49 61.93 

Mucoromycota Mucoromycetes Mucorales Rhizopodaceae Rhizopus 0.83 41.25 

Mucoromycota Mucoromycetes Mucorales Lichtheimiaceae Lichtheimia 0.11 15.63 

Unassigned Unassigned Unassigned Unassigned Unassigned 9.95 89.71 

 

 

 

 

 

 

 

 



 

 

Table S3. Normalized eigenvector centrality and degree of genera in the network for the CHNS-

1 cohort, related to Figure 2. 

 

Genus Normalized eigenvector centrality Degree 

Blumeria 1 5 

Debaryomyces 0.92 4 

Candida 0.57 2 

Cladosporiaceae spp 0.56 2 

Alternaria 0.55 2 

Meyerozyma 0.55 2 

Fungi spp 0.44 2 

Periconia 0.40 2 

Saccharomyces 0.38 1 

Dipodascaceae spp 0.21 3 

Phaeosphaeriaceae spp 0.14 1 

Mucor 0.079 1 

Pichia 0.074 1 

Lichtheimia 0 1 

Aspergillus 0 5 

Wickerhamiella 0 3 

Cladosporium 0 3 

Talaromyces 0 2 

Trichosporonaceae spp 0 2 

Clavispora 0 2 

Kodamaea 0 2 

Starmerella 0 2 

Acremonium 0 1 

Apiotrichum 0 1 

Aspergillaceae spp 0 1 

Cutaneotrichosporon 0 1 

Diutina 0 1 

Hanseniaspora 0 1 

Hypocreales spp 0 1 

Penicillium 0 1 

Rhizopus 0 1 

Trichoderma 0 1 

Wallemia 0 1 

Hypocreales_fam_Incertae_sedis spp 0 1 

Agaricomycetes spp 0 0 

Arthrinium 0 0 

Coprinellus 0 0 

Coprinopsis 0 0 

Cystobasidium 0 0 

Debaryomycetaceae spp 0 0 

Eurotiales spp 0 0 

Exophiala 0 0 

Fusarium 0 0 

Ganoderma 0 0 



 

 

Kazachstania 0 0 

Malassezia 0 0 

Microascaceae spp 0 0 

Nectriaceae spp 0 0 

Pleosporales spp 0 0 

Rhodotorula 0 0 

Saccharomycetales spp 0 0 

Sordariomycetes spp 0 0 

Trichosphaeriaceae spp 0 0 

Wickerhamomyces 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S4. Association of fungal alpha diversity with cardiometabolic diseases, adjusted for 

sequencing depth, related to Figure 3. 

 
Fungal alpha 
diversity 

Cardiometabolic 
diseases 

Adjusted odds 
ratio 

Lower confidence 
interval 

Higher confidence 
interval P 

Faith_pd Dyslipidemia 0.90 0.86 0.94 0.000017 

Observed OTUs Type 2 diabetes 0.89 0.83 0.96 0.002 

Observed OTUs Dyslipidemia 0.93 0.89 0.98 0.003 

Shannon Type 2 diabetes 0.92 0.86 0.98 0.010 

Observed OTUs Hypertension 0.94 0.90 0.99 0.020 

Faith_pd Type 2 diabetes 0.92 0.86 0.99 0.029 

Evenness Type 2 diabetes 0.94 0.88 1.00 0.043 

Shannon Dyslipidemia 0.97 0.93 1.01 0.187 

Shannon Hypertension 0.97 0.93 1.02 0.269 

Evenness Dyslipidemia 0.99 0.94 1.03 0.493 

Evenness Hypertension 0.99 0.94 1.04 0.668 

Faith_pd Hypertension 0.99 0.94 1.04 0.711 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S5. Characteristics of the participants at baseline, stratified by fungal clusters, related to 

Figure 4. 

 

Factor C1 C2 C3 C4 

Number of participants 1084 525 174 163 

Age, years 55.96 (13.79) 58.15 (12.77) 56.63 (15.25) 54.80 (14.29) 

Women, n (%) 582 (53.7%) 298 (56.8%) 93 (53.4%) 91 (55.8%) 

Urban, n (%) 398 (36.7%) 86 (16.4%) 33 (19.0%) 67 (41.1%) 

Urbanization score 76.29 (17.33) 69.01 (17.47) 65.85 (15.31) 78.28 (16.50) 

Education, n (%)     

     Middle school or lower 767 (70.8%) 425 (81.0%) 149 (85.6%) 100 (61.3%) 

     High school or professional college 224 (20.7%) 71 (13.5%) 20 (11.5%) 45 (27.6%) 

     University 93 (8.6%) 29 (5.5%) 5 (2.9%) 18 (11.0%) 

Married, n (%) 1063 (98.1%) 517 (98.5%) 172 (98.9%) 159 (97.5%) 

Income, yuan / year per household 84922.58 (1.3e+05) 
82833.71 

(1.6e+05) 

67058.78 

(1.2e+05) 

94251.86 

(1.0e+05) 

BMI, kg/m2 24.28 (3.72) 24.34 (3.66) 22.85 (7.65) 24.58 (3.83) 

Waist circumference, cm 84.90 (12.09) 85.47 (10.75) 78.89 (13.29) 85.78 (12.81) 

Hip circumference, cm 95.31 (9.76) 95.62 (7.97) 88.96 (11.60) 96.08 (8.38) 

SBP, mmHg 131.32 (18.08) 131.70 (19.65) 
129.59 

(20.26) 

130.03 

(19.14) 

DBP, mmHg 82.40 (10.15) 83.24 (11.04) 80.50 (10.46) 83.06 (11.62) 

HbA1c, % 5.74 (0.96) 5.73 (0.83) 5.57 (0.93) 5.78 (0.87) 

Fasting glucose, mmol/l 5.44 (1.43) 5.39 (1.36) 5.63 (1.23) 5.49 (1.45) 

Insulin, mmol/l 7.22 (7.75) 6.58 (7.03) 6.36 (4.68) 8.35 (9.09) 

HDL-C, mmol/l 1.25 (0.34) 1.24 (0.34) 1.37 (0.37) 1.21 (0.31) 

LDL-C, mmol/l 3.15 (0.93) 3.00 (0.87) 3.36 (0.92) 3.13 (1.20) 

TC, mmol/l 5.03 (1.02) 4.92 (0.98) 5.29 (1.06) 5.04 (1.32) 

TG, mmol/l 1.54 (1.10) 1.53 (1.34) 1.30 (0.90) 1.69 (2.21) 

Type 2 diabetes, n (%) 136 (12.6%) 61 (11.6%) 10 (5.8%) 28 (17.2%) 

Hypertension, n (%) 394 (36.5%) 203 (38.7%) 61 (35.1%) 63 (38.7%) 

Dyslipidemia, n (%) 388 (40.3%) 190 (39.0%) 55 (38.2%) 65 (42.5%) 

Current smoking, n (%) 279 (26.1%) 129 (24.7%) 39 (22.4%) 43 (26.5%) 

Current alcohol consumption, n (%) 317 (29.6%) 128 (24.5%) 52 (29.9%) 42 (25.9%) 

Physical activity, MET 158.65 (162.54) 209.92 (201.01) 
181.86 

(172.98) 

149.75 

(152.88) 

Wheat intake, g/day 87.39 (102.33) 118.22 (124.52) 36.87 (64.77) 
96.27 

(110.14) 

Rice intake, g/day 237.89 (126.15) 228.43 (124.33) 
322.50 
(171.69) 

226.44 
(115.96) 

Dark vegetable intake, g/day 76.67 (86.58) 64.78 (82.91) 
147.41 

(140.84) 
68.05 (67.90) 

Light vegetable intake, g/day 215.59 (132.90) 219.21 (133.08) 
183.38 

(130.83) 

223.84 

(132.24) 

Vegetable intake, g/day 292.35 (149.76) 283.99 (149.98) 
330.79 
(151.52) 

291.89 
(145.70) 

Salted vegetable intake, g/day 5.23 (13.55) 4.49 (12.97) 7.71 (16.79) 5.65 (12.35) 

Fruit intake, g/day 57.04 (86.59) 48.07 (76.01) 30.65 (53.86) 56.43 (80.83) 

Nuts intake, g/day 5.27 (14.88) 4.18 (11.91) 2.89 (10.90) 3.69 (11.88) 

Pork intake, g/day 68.02 (65.82) 54.30 (62.77) 89.06 (70.08) 60.75 (58.90) 

Poultry intake, g/day 18.53 (38.16) 14.90 (33.84) 32.84 (48.51) 20.50 (39.56) 

Milk intake, g/day 24.83 (66.79) 10.39 (39.92) 5.36 (34.58) 39.33 (86.33) 

Egg intake, g/day 31.04 (32.64) 30.83 (37.49) 17.92 (26.49) 29.64 (27.21) 

Fish intake, g/day 37.71 (55.77) 32.96 (50.67) 22.18 (36.28) 47.52 (64.52) 

Carrot intake, g/day 26.43 (48.29) 33.73 (58.67) 29.48 (58.80) 20.49 (47.99) 

Tuber intake, g/day 36.64 (63.52) 35.10 (56.16) 8.22 (30.23) 35.27 (54.78) 

Pastes intake, g/day 1.12 (4.68) 1.48 (5.54) 0.44 (2.57) 1.00 (3.62) 



 

 

Other meat intake, g/day 8.38 (22.82) 5.42 (20.54) 3.98 (13.58) 14.09 (33.12) 

Cake intake, g/day 9.65 (26.35) 13.30 (34.57) 5.46 (19.01) 15.92 (36.38) 

Sugar intake, g/day 2.35 (5.47) 2.32 (6.36) 1.53 (5.69) 3.25 (6.96) 

Vegetable oils intake, g/day 37.38 (32.60) 42.22 (35.59) 38.37 (30.04) 40.91 (41.60) 

Animal oil intake, g/day 0.38 (3.04) 0.60 (3.74) 0.36 (2.31) 0.49 (4.34) 

Salt intake, g/day 9.14 (14.32) 10.03 (21.09) 16.71 (83.58) 8.05 (6.98) 

Sauce intake, g/day 9.40 (13.00) 10.01 (15.25) 10.68 (13.39) 9.65 (12.11) 

Other foods intake, g/day 17.94 (31.64) 14.39 (24.96) 9.65 (17.61) 17.19 (24.59) 
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