iScience, Volume 27

Supplemental information

Tumor-infiltrating mast cells confer resistance

to immunotherapy in pancreatic cancer

Ying Ma, Xiangqin Zhao, Jingyan Feng, Suimin Qiu, Baoan Ji, Lu Huang, Patrick Hwu, Craig D. Logsdon, and Huamin Wang

4 Fig. S1. Mast Cells influenced the efficacy of in vivo antibody therapy. Related to

5 **Figure 2 and 4.**

6 Luciferase-transfected PDAC were injected on day 0, tumor growth was monitored by

7 IVIS imaging. Tumor size in normal (C57BL/6) and mast cell-deficient (Kit^{W-sh/W-sh}) mice

8 treated with: (A) anti-PD-1; (B) agonist anti-OX-40.

9

11

12 Fig. S2. Anti-OX40 treatment improves the survival of mast cell-deficient mice

13 with orthotopic tumor implantation, compared to survival in wild-type tumor-

14 bearing mice. Related to Figure 2 and 4.

15 (A) Anti-OX40 treated mast cell-deficient Panc02 tumor-bearing mice achieved a long-

term tumor free survival, *P* = .0127. (C) Survival curve of mice with Panc02 tumor

treated with anti-PD-1. Tumors were implanted on day 0.

- 18
- 19

Fig. S3. Mast cell-derived PGE₂ does not influence tumor volume. Related to

22 **Figure 3.**

23 28 days post tumor cell implantation, mast cell-deficient mice reconstituted with PGE2-/-

- 24 BMMC developed less ascites than those reconstituted with wild-type BMMC. P =
- 0.046 for ascites incidence. There was no significant effect on tumor size (P = .3222).

26

27

31 Fig. S4. Correlation of OX40 (a.k.a. TNFRSF4) and effector CD8+ T cells (CD8A)

- 33 (A) KPC-GEMM mice, tumor infiltrating CD8 and GZMB positive cells (reference to
- 34 Figure 5 C-F) presented strong positive linear correlation (Pearson r = 0.7851 and P =

- 35 0.0002). (B) A strong positive linear correlation between CD8A and GZMB was shown
- ³⁶ from data presented in the TCGA database. (C) Weak positive linear correlation
- 37 between TNFRSF4 and CD8A or (D) GZMB analyzed from 186 PDAC patients'
- 38 samples in the TCGA database.

Fig. S5. Scatter Plots (A & C) of gene expression panel and lists (B & D) of up

regulated 31 genes induced by agonist anti-OX40 treatment. Related to Figure 5.

- 43 Group 1 (vertical axis) represented tumor samples from 6 mice treated with anti-OX40
- and Control Group (horizontal axis) represented tumor samples from 6 mice without
- 45 anti-OX40 treatment. mRNA from these tissues was applied for the panel analysis of

quantitative real-time PCR array. (A & B), genes from Toll-like Receptor Signaling PCR 46 array; (C & D), genes from Allergy & Asthma PCR array. (A & C) Scatter plots were 47 generated with Log 10 Fold change of mRNA expression determined by PCR Array 48 assays ($\Delta\Delta$ Ct). Red dots above the left boundary line represent the genes with more 49 than 2 fold of up regulation in anti-OX40 treated group compared to control group; black 50 51 dots between the two boundary lines represent the genes expression range from 2 to -2 fold-changes between the two groups; green dots below the right boundary line 52 represent the genes with more than 2 fold down regulation in anti-OX40 treated group 53 compared to control group. Genes with the red dots on the plots of A & C were listed in 54 the tables of B & D. (B & D) Left column is the position of gene primers in the 96-well 55 PCR Array plate; middle column is the gene symbols of the red dots on A & C; right 56 column is the fold regulation of those red dot genes in anti-OX40 treatment group 57 compared to control. 58

59

60

Fig. S6. Clustergrams of 31 genes up regulated following agonist anti-OX40

64 treatment. Related to Figure 5.

⁶⁵ The left 6 columns represent tumor samples from 6 mice treated with anti-OX40 and the

⁶⁶ right columns represent tumor samples from 6 mice treated with the isotype control.

⁶⁷ These 31 genes were from both the Toll-like Receptor Signaling genes and Allergy &

68 Asthma genes in PCR arrays. This heatmap presents the reproducibility and variation

69 of those 31 genes with two-fold up regulation.

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

- 72 Fig. S7. TCGA correlation of 30 inflammatory genes up-regulated by OX40.
- 73 **Related to Figure 6.** (MUC5AC data was not available in TCGA database). Genes

- ⁷⁴ were sorted according to their correlation index (Pearson r value) with TNFRSF4 (both
- row and column) from the largest to the smallest.

79 **Fig. S8. OX40** signature genes derived from treated mice can be used to stratify

80 patients for predicting survival benefit. Related to Figure 7.

81 KPC GEMM models were treated with agonist OX40 antibodies, and a consistent 16-

gene signature was identified upon transcriptional profiling. This signature was then

- interrogated in the TCGA PDAC subset (Right). PDAC with presence of the OX40
- ⁸⁴ induced transcriptional signature has significantly higher disease-free and overall
- survival compared to tumors without the signature.
- 86
- 87
- 88

	В	Sig. Exp(B)		95.0% CI for Exp(B)	
				Lower	Upper
GATA3	-0.080	0.857	0.923	0.389	2.192
PDCD1	-3.004	0.064	0.050	0.002	1.195
CCL22	11.616	0.966	110806.830	0.000	1.03E+239
LY86	-5.969	0.994	0.003	0.000	•
ICOS	2.226	0.190	9.262	0.333	257.536
CCL5	0.799	0.461	2.223	0.266	18.539
CCR4	1.359	0.093	3.892	0.798	18.987
CCL17	-1.395	0.223	0.248	0.026	2.340
PRG2	-1.101	0.008	0.333	0.147	0.753
IL2RA	-0.955	0.069	0.385	0.138	1.076
TNF	-0.080	0.881	0.923	0.325	2.626
CCL11	1.106	0.095	3.023	0.825	11.074
RNASE2	0.510	0.533	1.666	0.335	8.278
TNFRSF4	13.792	0.984	977169.132	0.000	
CHIA	11.422	0.961	91271.291	0.000	1.20E+203
ALOX5	0.692	0.354	1.997	0.462	8.635
PGLYRP1	0.590	0.611	1.805	0.185	17.574
SATB1	1.179	0.258	3.251	0.421	25.097
IL5	-0.520	0.331	0.594	0.208	1.695
IL33	-0.879	0.229	0.415	0.099	1.739
IL5RA	-0.001	0.999	0.999	0.316	3.165
IL1A	2.470	0.028	11.825	1.314	106.392
CCR3	1.119	0.135	3.062	0.706	13.289
TNFSF4	-0.626	0.153	0.535	0.227	1.263
IL4	2.194	0.031	8.967	1.217	66.048
IL9	-0.271	0.713	0.762	0.179	3.241
CSF2	0.100	0.928	1.105	0.129	9.470
IL18		0.522			
IL18(1)	-12.321	0.957	0.000	0.000	3.16E+188
IL18(2)	-0.567	0.254	0.567	0.214	1.504
IL17RB	-0.271	0.716	0.762	0.177	3.281
MUC13	0.489	0.375	1.630	0.553	4.806

90 Fig. S9. Validation of OX40 up-regulated 16-gene signature in a publicly available

91 single cell RNA sequencing dataset. Related to Figure 7.

- 92 (A) Heatmap of expression levels (TPM values) of 16 genes across various cell types.
- 93 (B) Correlation analysis results of the average expression levels of the 16 genes with T
- 94 cell proportions in various samples.
- 95
- 96
- 97

98Table S1. Multivariate Cox regression analyses of OX40 up-regulated 30

99 inflammatory genes for OS. Related to Figure 7.

	В	Sig.	Exp(B)		95.0% CI for Exp(B)
				Lower	Upper
GATA3	-0.080	0.857	0.923	0.389	2.192
PDCD1	-3.004	0.064	0.050	0.002	1.195
CCL22	11.616	0.966	110806.830	0.000	1.03E+239
LY86	-5.969	0.994	0.003	0.000	
ICOS	2.226	0.190	9.262	0.333	257.536
CCL5	0.799	0.461	2.223	0.266	18.539
CCR4	1.359	0.093	3.892	0.798	18.987
CCL17	-1.395	0.223	0.248	0.026	2.340
PRG2	-1.101	0.008	0.333	0.147	0.753
IL2RA	-0.955	0.069	0.385	0.138	1.076
TNF	-0.080	0.881	0.923	0.325	2.626
CCL11	1.106	0.095	3.023	0.825	11.074
RNASE2	0.510	0.533	1.666	0.335	8.278
TNFRSF4	13.792	0.984	977169.132	0.000	
CHIA	11.422	0.961	91271.291	0.000	1.20E+203
ALOX5	0.692	0.354	1.997	0.462	8.635
PGLYRP1	0.590	0.611	1.805	0.185	17.574
SATB1	1.179	0.258	3.251	0.421	25.097
IL5	-0.520	0.331	0.594	0.208	1.695
IL33	-0.879	0.229	0.415	0.099	1.739
IL5RA	-0.001	0.999	0.999	0.316	3.165
IL1A	2.470	0.028	11.825	1.314	106.392

CCR3	1.119	0.135	3.062	0.706	13.289
TNFSF4	-0.626	0.153	0.535	0.227	1.263
IL4	2.194	0.031	8.967	1.217	66.048
IL9	-0.271	0.713	0.762	0.179	3.241
CSF2	0.100	0.928	1.105	0.129	9.470
IL18		0.522			
IL18(1)	-12.321	0.957	0.000	0.000	3.16E+188
IL18(2)	-0.567	0.254	0.567	0.214	1.504
IL17RB	-0.271	0.716	0.762	0.177	3.281
MUC13	0.489	0.375	1.630	0.553	4.806

100 Sig: P value; Exp(B): OR (odd ratio); CI: confidence interval. The 30 inflammatory genes up regulated

101 with anti-OX40 treatment were narrowed down to a 16 genes signature (red: OR > 1), which will

102 contribute to the survival benefit.

103

105 **Abbreviations:**

- 106 PDAC, pancreatic ductal adenocarcinoma
- 107 NP, normal pancreas
- 108 CP, chronic pancreatitis
- 109 PanIN, pancreatic intraepithelial neoplasia
- 110 KPC-GEMM, Kras^{G12D/+};Trp53^{R172H/+};Pdx-1-Cre genetically engineered mouse model
- 111 KC, Pdx-1-Cre x LSL-Kras^{G12D}; mice
- 112 KCLW, Kit <u>W-sh/W-sh</u> x Pdx-1-<u>C</u>re x LSL-<u>K</u>ras^{G12D} x LSL-<u>L</u>uciferase mice
- 113 KCLB, wild-type Kit with C57<u>B</u>L/6 background, Pdx-1-<u>C</u>re x LSL-<u>K</u>ras^{G12D} x LSL-
- 114 Luciferase mice
- 115 BLI, bioluminescence imaging
- 116 TCGA, The Cancer Genome Atlas
- BMMC, bone marrow-derived mast cells
- 118 GZMB, granzyme B
- 119 OR, odd ratio
- 120 Cl, confidence interval
- 121
- 122
- 123
- 124