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S1. Evaluation of spaDEG detection using Moran’s I

To quantitatively assess the spatial pattern strength of spaDEGs identified by iIMPACT

and SVGs detected by alternative methods, we computed Moran’s I [38], a commonly used

metric for measuring spatial autocorrelation. This index varies between −1 and 1, where

higher absolute values indicate a stronger spatial correlation. In particular, for each gene j

of interest,

Moran’s I(j) =
N∑N

i=1

∑n
i′=1 gii′

∑N
i=1

∑n
i′=1 gii′(cij − c̄j)(ci′j − c̄j)∑N

i=1(cij − c̄j)2
, (1)

where cij is the gene expression count observed on spot i and c̄j =
∑N

i=1 cij/N is the average

expression of gene j over all the N spots. Note that G is the neighborhood information

matrix derived from the SRT geospatial profile. Fig. S5 displays the average Moran’s I

for spaDEGs/SVGs identified by iIMPACT, SpaGCN, SpatialDE, and SPARK across three

SRT datasets, using varying selection thresholds for top genes. The boxplots comparing

the top 1, 000 spaDEGs/SVGs detected by these four methods reveal that, in general,

spaDEGs uncovered by iIMPACT exhibit better spatial variability and stronger spatial

patterns compared to SVGs identified by the other methods.
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S2. Simulation Study

Data generative model: The simulated data were generated based on the K = 5 histology-

based spatial domains identified by iIMPACT on the human breast cancer dataset (Fig.

3B). The posterior means of those domain-specific relative abundances of cell types ω̂k’s and

mean vectors of low-dimensional representation of gene expression µ̂k’s are given in Table

S7. Using this real data information, we generated the cell type abundance for each spot

from a multinomial distribution

vi|zi = k ∼ Multi(mi, ω̂k),

where the size parametermi was also obtained from real data. For generating high-dimensional

gene expression counts, we first projected the P ′-dimensional domain-specific mean vectors

µ̂k’s on to the original basis, denoted by a P -dimensional vector µ̃k. To mimic the excess

zeros and over-dispersion, we sampled each gene expression count cij from a zero-inflated

negative binomial (ZINB) distribution,

cij|zi = k ∼ πiI(cij = 0) + (1− πi)NB(si exp(µ̃kj), ψj), (2)

where the size factors si’s were sampled from a log-normal distribution with mean 0 and

standard deviation 0.2, i.e., si ∼ LN(0, 0.2). The dispersion parameters ψj’s were sampled

from an exponential distribution, i.e., ψj ∼ Exp(λψ), with two choices of the rate parameter

λψ = 0.1 or 0.2, corresponding to low and high variability. The false zero proportion

parameters πi’s were set to be 0.3 or 0.5, corresponding to low and high sparsity. For each

of the four scenarios in terms of λψ and πi, we independently repeated the above steps to

generate 10 replicated simulated datasets.

iIMPACT settings: We chose the number of reduced dimensions as P ′ = 3 in the

PCA step for obtaining the low-dimensional representation of gene expression levels Y . The

number of histology-based spatial domains was fixed atK = 5. We followed the recommended
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prior setting, as detailed in the METHODS section. Regarding the image profile weight, we

set w = 1 as the simulated image and molecular profiles (i.e., V and Y ) were generated

independently. As for the MCMC algorithm, we ran four independent MCMC chains with

U = 10, 000 iterations, discarding the first half as burn-in. We started each chain from

a model by randomly drawing all parameters from their prior distributions. The results

reported in Fig. S22 were obtained by pooling the MCMC outputs from the four chains

after.

Competing methods: We compared the performance of iIMPACT on spatial domain

identification with six current state-of-the-art methods, SpaGCN [19], BayesSpace [17], BASS

[18], stLearn [20], MUSE [21], and Louvain [14]. We used the default setting of each competing

method, as suggested by the authors. The number of spatial domains was fixed as K = 5 for

all methods.

Results: We quantified the clustering performance via the widely used adjusted Rand

index (ARI). It ranges from 0 to 1, with higher values indicating greater consistency between

the clustering results and the ground truth. The results are shown in Fig. S22. iIMPACT

substantially outperformed all other methods, exhibiting the highest average ARI under

all four scenarios, which highlights the benefit of integrating the cell type abundance in-

formation into the spatial domain identification process. BASS achieved very high ARIs

compared with other competing methods, even though it did not utilize the information from

the histology image. Besides, it had the relatively small variance of ARIs among different

replicates, indicating its robust performance regarding of the random noise in the SRT data.

SpaGCN also demonstrated superior performance, leveraging its ability to utilize histology

information effectively. Conversely, stLearn and MUSE, despite its capability to incorporate

histology images, had unsatisfactory clustering accuracy and performed similarly to Louvain,

a non-spatial clustering method. BayesSpace had a large variance among replicates since it
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might fail to converge for some replicates. Comparing the performance under low and high

variability settings, iIMPACT was robust to the level of over-dispersion of gene expression

counts due to the normalization and dimensionality reduction procedures employed before

the clustering model. However, it suffered from reduced clustering accuracy under high-

sparsity settings.

S3. Application to human DLPFC data

We demonstrated iIMPACT’s proficiency in analyzing SRT data from normal tissue sections

by applying it to the LIBD human DLPFC dataset from 10x Visium platform [52]. This

study measured gene expression across 12 tissue slices obtained from the DLPFC in three

human brains. For our analysis, we focused on tissue slice 151510. The manual annotation

of the tissue layers (see Fig. S14) provided by the original study was used to benchmark the

spatial domain detection accuracy of various methods.

To assess iIMPACT’s flexibility with various nuclei identification methods, we applied

Hover-Net [28] to extract the cellular information from the paired histology image. Hover-

Net is a state-of-the-art deep learning architecture specifically designed for segmentation

and classification of nuclei in histology images. It combines three branches: the nuclear pixel

branch separating nuclear pixels, the HoVer branch for spatial distance map prediction, and

the nuclear classification branch identifying the type of each nucleus. Although Hover-Net

was trained across multiple cancer datasets, it lacks specific training for cell type classification

in normal brain tissues. Consequently, its classification capabilities are constrained for the

DLPFC histology images. Therefore, we leveraged Hover-Net solely for the segmentation of

nuclei to assemble the cell type abundance table V . Specifically, we only use the total count

of identified cell nucleis within each spot and its expanded area, represented as mi, in this

phase.

To determine the cell type composition within each spot, we employed STDeconvolve [51],
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a reference-free cell type deconvolution method. STdeconvolve builds on latent Dirichlet

allocation (LDA) model and does not rely the on single-cell transcriptomics references,

which improves its applicability on SRT data. Applying STdeconvolve to the human DLPFC

data, we identified Q = 5 unlabeled cell types and deconvolved their proportions per spot,

represented as (ṽi1, . . . , ṽiQ)>. Each entry viq in the cell type abundance table was then

constructed by multiplying the Hover-Net-identified nuclei count mi with the STDeconvolve-

estimated cell type proportion ṽiq, followed by rounding to the nearest integer. This can be

formulated as viq = dmiṽiqc.

We created the image profile following the above two steps, which are also illustrated in

Fig. S13. The molecular and geospatial profiles were generated following the procedure shown

in Fig. 1. After assembling these three profiles, we implemented iIMPACT and compared

its spatial domain identification performance with five other methods: SpaGCN, BayesS-

pace, BASS, stLearn, and MUSE. As shown in Fig. S14, iIMPACT achieved the highest

ARI of 0.507, indicating a strong concordance with the manually annotated tissue layers.

These findings underscore the viability of the alternative data preparation approach for

iIMPACT, accommodating user preferences for specific nuclei segmentation and classification

techniques. Moreover, the results attest to iIMPACT’s versatility in handling various tissue

types in SRT data analysis.
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S4. Details of the MCMC Algorithm

According to the model description in the METHODS section, the full data likelihood of the

proposed Bayesian finite normal-multinomial mixture model is given as follows.

f(Y ,V |z,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,ω1, . . . ,ωK)

=
K∏
k=1

N∏
i=1

I(zi = k)f(yi,vi|zi = k,µk,Σk,ωk),

where I(·) denotes the indicator function and

f(yi,vi|zi = k,µk,Σk,ωk)

= f(yi|zi = k,µk,Σk)f(vi|zi = k,ωk)
w

= MN(yi;µk,Σk)Multi(vi;mi,ωk)
w

= (2π)−P
′/2|Σk|−1/2 exp

(
−1

2
(yi − µk)>Σ−1

k (yi − µk)
)(

mi!∏Q
q=1 viq!

Q∏
q=1

ω
viq
kq

)w

∝ |Σk|−1/2 exp

(
−1

2
(yi − µk)>Σ−1

k (yi − µk)
)( Q∏

q=1

ω
viq
kq

)w

.

We assume an independent prior structure 1) between the normal and multinomial sub-

components; and 2) among their parameters belonging to different spatial domains. Thus,

the joint distribution of priors for parameters can be written as,

π(z,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,ω1, . . . ,ωK)

= π(z)π(µ1, . . . ,µK ,Σ1, . . . ,ΣK)π(ω1, . . . ,ωK)w

= π(z)
K∏
k=1

π(µk,Σk)
K∏
k=1

π(ωk)
w

= π(z)
K∏
k=1

π(µk|Σk)π(Σk)
K∏
k=1

π(ωk)
w.

We assign the Markov random field (MRF) prior for histology-based spatial domain indicator
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z as

π(zi|z−i) ∝ exp

(
dk + f

N∑
i′=1,i′ 6=i

gii′I(zi′ = k)

)
,

We assign the conjugate priors for other parameters, listed as follows, so that the Gibbs

sampler can be applied for posterior sampling.

µk|Σk ∼ MN(ν0,Σ/τ0)

or equivalently, π(µk|Σk) = (2π/τ0)−P
′/2|Φ0|−1/2 exp

(
−τ0

2
(µk − ν0)>Φ−1

0 (µk − ν0)
)
,

Σk ∼ IW(η0,Φ0)

or equivalently, π(Σk) =
|Φ0|η0/2

2η0P ′/2ΓP ′(η0/2)
|Σk|−(η0+P ′+1)/2 exp

(
−1

2
tr
(
Φ0Σ

−1
k

))
,

and

ωk ∼ Dir(α0) or equivalently, π(ωk) =
Γ
(∑Q

q=1 α0q

)
∏Q

q=1 Γ(α0q)

Q∏
q=1

ω
α0q−1
kq ,

where ΓP ′(·) and Γ(·) denote the P ′-dimensional and univariate gamma function.

We recommend a weakly informative prior setting by choosing the MRF hyperparameters

d1 = . . . = dK = 1 and f = 1, the multivariate normal hyperparameters ν0 = 1
N

∑N
i=1 yi,

τ0 = 0.01, η0 = P ′ + 1, and Φ0 = IP ′×P ′ (i.e., the P ′-by-P ′ identity matrix), and the

multinomial hyperparameters α01 = . . . = α0Q = 1.

The full posterior distribution of the proposed Bayesian normal-multinomial mixture model

is given in the following formula.

π(z,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,ω1, . . . ,ωK |Y ,V ) ∝

f(Y ,V |z,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,ω1, . . . ,ωK)π(z,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,ω1, . . . ,ωK)

Posterior sampling is employed by the MCMC algorithm. Our primary interest lies in

identifying histology-based spatial domains and the interactive zone via inferring the spatial

domain indicator vector z, and in characterizing domain-specific relative abundance of cell

types via inferring ω1, . . . ,ωK . Since we use conjugate priors on all model parameters,
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z,µ1, . . . ,µK ,Σ1, . . . ,ΣK ,ω1, . . . ,ωK , their conditional distributions are all in closed form

and easy to sample from. Consequently, we can rely on the Gibbs sampler, an MCMC algo-

rithm for obtaining a sequence of observations approximated from a multivariate probability

distribution when direct sampling is difficult. To be specific, we perform the following steps

sequentially at each MCMC iteration after a random initialization.

Update the histology-based spatial domain indicator z: We update z1, . . . , zN

sequentially. To allocate spot i to one of the K histology-based spatial domains, we sample

zi from a single-drawing multinomial distribution,

zi|· ∼ Multi(1, (π(zi = 1|·)/e, . . . , π(zi = K|·)/e)),

where

π(zi = k|·) ∝ f(yi,vi|zi = k,µk,Σk,ωk)π(zi = k|z−i)

∝ |Σk|−1/2 exp

(
−1

2
(yi − µk)>Σ−1

k (yi − µk)
)( Q∏

q=1

ω
viq
k,q

)w

exp

(
dk + f

N∑
i′=1,i′ 6=i

gii′I(zi′ = k)

)

and the normalization constant e =
∑K

k=1 π(zi = k|·).

Update the domain-specific relative abundance of cell types ωk’s: We update

ω1, . . . ,ωK sequentially. For each histology-based spatial domain k, we draw a sample of ωk

from a Dirichlet distribution,

ωk|· ∼ Dir(αk),

where the concentration parameters αk = (αk1, . . . , αkQ) with each entry αkq = α0q +∑N
i=1 I(zi = k)viq. Note that the last term

∑N
i=1 I(zi = k)viq denotes the total number of

cells with type q observed in histology-based spatial domain k.

Update the domain-specific low-dimensional representation of gene expression

mean µk’s: We update µ1, . . . ,µK sequentially. For each histology-based spatial domain k,
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we draw a sample of µk from a multivariate normal distribution,

µk|· ∼ MN(νk,Σk/τk),

where νk = (ν0τ0 + nkȳk)/(τ0 + nk) and τk = τ0 + nk. Note that nk =
∑N

i I(zi = k) is the

number of spots allocated to histology-based spatial domain k and ȳk = 1
nk

∑N
i I(zi = k)yi

denotes the average low-dimensional gene expression value over all the spots allocated to

histology-based spatial domain k.

If PCA is chosen to reduce the dimension of the SRT molecular profile, then we can further

set Σk to an P ′-by-P ′ diagonal matrix due to orthogonality among principal components. In

this special case, we can draw each entry in µk independently,

µkj|· ∼ N(νkj, σ
2
kj/τk),

where νkj = (ν0jτ0 + nkȳkj)/(τ0 + nk).

Update the domain-specific covariance matrix of the low-dimensional represen-

tation of gene expression Σk’s: We update Σ1, . . . ,ΣK sequentially. For each histology-

based spatial domain k, we draw a sample of Σk from an inverse-Wishart distribution,

Σk|· ∼ IW(ηk,Φk),

where ηk = η0+nk and Φk = Φ0+
∑N

i=1 I(zi = k)(yi−ȳk)(yi−ȳk)>+ τ0nk

τ0+nk
(ȳk−ν0)(ȳk−ν0)>.

For the case when using PCA, the inverse-Wishart prior reduces to an inverse-gamma prior,

σ2
kj ∼ IG(η0/2, φ0/2). Thus, we only need to draw each diagonal entry in Σk independently,

σ2
kj|· ∼ IG(ηk/2, φk/2),

where φk = φ0 +
∑N

i=1 I(zi = k)(yij − ȳkj)2 + τ0nk

τ0+nk
(ȳkj − ν0j)

2.
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S5. Sensitivity Analysis

We first conducted a sensitivity analysis to investigate how the number of dimensions

reduced affects iIMPACT’s performance in histology-based spatial domain identification.

In particular, we varied the number of top principal components (PC) P ′ kept in the

molecular profile from 2 to 15 and computed the ARI between the ground truth and the

MAP estimate of the histology-based spatial domain indicator ẑ. Take human breast cancer

data as example, Fig. S19 summarizes the achieved ARI against different choices of P ′, along

with the cumulative variance explained by the PCs, indicating that iIMPACT was relatively

robust to the choice of number of PCs and the best performance occured when P ′ = 3.

Then, another sensitivity analysis was performed to investigate the sensitivity of iIMPACT

to the choice of the image profile weight w, which controls the image profile’s contribution

to the spatial domain identification result. In particular, we varies w in

{0.01, 0.02, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00}

and computed the ARI between the ground truth and the MAP estimate of the histology-

based spatial domain indicator ẑ. Fig. S21 summarizes the achieved ARI against different

values of w for both the human breast cancer and mouse visual cortex STARmap data.

It is interesting to know that iIMPACT was very sensitive to the choice of w. The best

performance occured when setting w = 0.05 for the human breast cancer data from NGS-

based SRT platforms (e.g., 10x Visium) and w = 0.5 for the mouse visual cortex data

from imaging-based SRT techniques (e.g., STARmap). Therefore, to guard against under or

over-fitting, the value of w should be chosen with some degree of caution.
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Fig. S1 Human breast cancer data: Nuclei identification results from the HD-Staining model.
A. The number of nuclei identified for seven different nuclei classes; B. Histogram of number
of cells in each spot expanded area; C. Spatial distribution of spot-level cell type abundance
for seven nuclei classes.



12

Fig. S2 A graphical illustration of the adjusted Rand index (ARI).
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Fig. S3 Human breast cancer data: The histology-based spatial domains detected by
iIMPACT, SpaGCN, BayesSpace, BASS, stLearn, and MUSE, setting the number of spatial
domains K from 2 to 8.
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Fig. S4 ARIs achieved by six spatial domain identification methods (iIMPACT, SpaGCN,
BayesSpace, BASS, stLearn, and MUSE) under different choices of the number of spatial
domains K on A. human breast cancer data; B. human prostate cancer data; and C. human
ovarian cancer data.
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Fig. S5 Evaluation of spaDEGs detected by iIMPACT: The average Moran’s I’s for
the spaDEGs/SVGs detected by four methods (i.e., iIMPACT, SpaGCN, SpatialDE, and
SPARK) under the setting of six selection thresholds of top genes, and the boxplots of
Moran’s I’s of top 1000 spaDEGs/SVGs detected by four methods, for the A. human breast
cancer data; B. human prostate cancer data; and C. human ovarian cancer data.
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Fig. S6 Human prostate cancer data: Nuclei identification results from the HD-Staining
model. A. The number of nuclei identified for six different nuclei classes; B. Histogram of
number of cells in each spot expanded area; C. Spatial distribution of spot-level cell type
abundance for six nuclei classes.
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Fig. S7 Integrated completed log-likelihood (ICL) plots for the selection of the number of
spatial domains K on A. human breast cancer data; B. human prostate cancer data; and C.
human ovarian cancer data. The minimum at K = 5 was selected as the number of spatial
domains to analyze for these three SRT data.
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Fig. S8 Human prostate cancer data: The matching histology image of the tissue section
with spot-level manually annotated labels from pathologists, and spatial domains detected by
iIMPACT, SpaGCN, BayesSpace, BASS, stLearn, and MUSE, setting the number of spatial
domains to be K = 3.
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Fig. S9 Human prostate cancer data: The histology-based spatial domains detected by
iIMPACT, SpaGCN, BayesSpace, BASS, stLearn, and MUSE, setting the number of spatial
domains K from 2 to 8.
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Fig. S10 Human ovarian cancer data: Nuclei identification results from the HD-Staining
model. A. The number of nuclei identified for six different nuclei classes; B. Histogram of
number of cells in each spot expanded area; C. Spatial distribution of spot-level cell type
abundance for six nuclei classes.
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Fig. S11 Human ovarian cancer data: The matching histology image of the tissue section
with spot-level manually annotated labels from pathologists, and histology-based spatial
domains detected by iIMPACT, SpaGCN, BayesSpace, BASS, stLearn, and MUSE, setting
the number of spatial domains to be K = 2.
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Fig. S12 Human ovarian cancer data: The histology-based spatial domains detected by
iIMPACT, SpaGCN, BayesSpace, BASS, stLearn, and MUSE, setting the number of spatial
domains K from 2 to 8.
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Fig. S13 An alternative pipeline for data preparation: Reference-free cell type deconvolution
algorithms are applied on the molecular profile to generate the cell type abundance table,
together with the nuclei localization via nuclei identification methods.
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Fig. S14 LIBD human dorsolateral prefrontal cortex (DLPFC) data: The histology image of
the tissue section, the manually annotation provided from the original study, and histology-
based spatial domains detected by iIMPACT, SpaGCN, BayesSpace, BASS, stLearn, and
MUSE, setting the number of spatial domains to be K = 7.
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Fig. S15 Human breast cancer data: The matching histology image of the tissue section with
manually annotated labels from pathologists, and spatial domains detected by iIMPACT with
nuclei identification by HD-staining on the histology image, iIMPACT with nuclei segmen-
tation by HD-staining on the histology image and cell type deconvolution by STdeconvolve
on SRT data, iIMPACT assuming the image profile is not available, and iIMPACT assuming
the molecular profile is not available, setting the number of spatial domains K = 5.
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Fig. S16 Human prostate cancer data: The matching histology image of the tissue sec-
tion with manually annotated labels from pathologists, and spatial domains detected by
iIMPACT with nuclei identification by HD-staining on the histology image, iIMPACT with
nuclei segmentation by HD-staining on the histology image and cell type deconvolution
by STdeconvolve on SRT data, iIMPACT assuming the image profile is not available, and
iIMPACT assuming the molecular profile is not available, setting the number of spatial
domains K = 3.
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Fig. S17 Human ovarian cancer data: The matching histology image of the tissue section
with manually annotated labels from pathologists, and spatial domains detected by iIM-
PACT with nuclei identification by HD-staining on the histology image, iIMPACT with
nuclei segmentation by HD-staining on the histology image and cell type deconvolution
by STdeconvolve on SRT data, iIMPACT assuming the image profile is not available, and
iIMPACT assuming the molecular profile is not available, setting the number of spatial
domains K = 2.
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Fig. S18 Human breast cancer data: A. A spatial scatter pie plot displays the cell-type
composition on each spot; B. Spatial distribution of number of cell types observed in each
spot: Over 70% of spots contain four or more cell types; C. Spatial distribution of Shannon
equitability index calculated based on seven cell types for each spot.
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Fig. S19 Sensitivity analysis I: ARIs achieved by iIMPACT when setting the image profile
weight w to be zero, and proportion of variance explained under different number of leading
principal components in PCA.
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Fig. S20 Demonstration of geometric representations of spatial distribution of spots, and
definition of spot expanded area in the 10x Visium and ST technologies.
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Fig. S21 Sensitivity analysis II: ARIs achieved by iIMPACT clustering under different
choices of the image profile weight w on A. human breast cancer data; and B. mouse visual
cortex STARmap data.
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Fig. S22 Simulation study: The boxplots of ARIs achieved by iIMPACT, SpaGCN, BayesS-
pace, BASS, stLearn, MUSE and Louvain under different scenarios in terms of sparsity and
variability settings.
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Table S1: Summary of the five real datasets analyzed in the paper.

Dataset
name

Technology Organism Tissue Disease Number of
genes

Sample
size

Source

Human
breast
cancer
data

ST (10x Vi-
sium)

Human Breast Ductal carcinoma
in situ, invasive
carcinoma

17943 2518 10x Genomics

Human
prostate
cancer
data

ST (10x Vi-
sium)

Human Prostate Adenocarcinoma,
invasive
carcinoma

17943 4371 10x Genomics

Human
ovarian
cancer
data

ST (10x Vi-
sium)

Human Ovarian Serous papillary
carcinoma

17943 3455 10x Genomics

Mouse
visual
cortex
STARmap
data

STARmap Mouse Visual cortex - 1207 1020 [11]

Human
DLPFC
data

ST (10x Vi-
sium)

Human Dorsolateral
prefrontal cortex
(DLPFC)

- 33538 4634 [52]

https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
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Table S2: Number of genes detected by iIMPACT, SpaGCN, SpatialDE and SPARK, and
overlaps with the known gene list for the four real datasets analyzed in the paper.

Dataset
iIMPACT SpaGCN SpatialDE SPARK

Number
of genes
detected

Number
of
overlaps

Number
of genes
detected

Number
of
overlaps

Number
of genes
detected

Number
of
overlaps

Number
of genes
detected

Number
of
overlaps

Human breast cancer data 1535 112 891 58 1616 91 0 0

Human prostate cancer data 1296 69 1616 72 228 11 0 0

Human ovarian cancer data 1468 98 574 35 2542 163 0 0

Mouse visual cortex STARmap
data (Layer: L1)

161 88 127 63 252 123 497 216

Mouse visual cortex STARmap
data (Layer: L2/3)

204 59 215 56 252 65 497 132

Mouse visual cortex STARmap
data (Layer: L4)

169 73 85 29 252 104 497 165

Mouse visual cortex STARmap
data (Layer: L5)

134 47 25 8 252 66 497 107

Mouse visual cortex STARmap
data (Layer: L6)

183 80 115 41 252 91 497 152
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Table S3: Running time (in minutes) of iIMPACT, SpaGCN, BayesSpace, BASS, stLearn,
and MUSE on the five real datasets analyzed in the paper.

Datasets iIMPACT SpaGCN BayesSpace BASS stLearn MUSE

Human breast cancer data 1.78 1.83 18.30 8.53 8.59 28.97

Human prostate cancer data 2.67 2.27 27.99 16.93 32.35 52.35

Human ovarian cancer data 2.24 1.90 23.49 13.22 5.66 41.52

Mouse visual cortex STARmap data 1.09 0.57 13.86 3.60 4.73 -

Human DLPFC data 3.92 2.35 28.92 17.86 6.73 54.49
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Table S4: A comparison of spatial domain identification performance among iIMPACT,
BayesSpace and BASS where the number of spatial domains K is determined by either
experienced pathologists or the integrated completed likelihood (ICL) criterion.

Number of
domains K

Adjusted Rand Index (ARI)

iIMPACT BayesSpace BASS

Choose K
based on
pathologists’
experience

Human breast cancer data 5
0.634 0.419 0.496

see the resulting patterns in Fig. 2B

Human prostate cancer data 3
0.674 0.522 0.667

see the resulting patterns in Fig. S8

Human ovarian cancer data 2
0.967 0.795 0.794

see the resulting patterns in Fig. S11

Choose K
based on the
ICL

Human breast cancer data 5 0.634 0.419 0.496

Human prostate cancer data 5 0.626 0.594 0.671

Human ovarian cancer data 5 0.609 0.590 0.521
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Table S5: Spatial domain identification performance (ARIs) of iIMPACT using two data
preprocessing strategies, with a comparison with BASS, to three real human cancer data
analyzed in the paper.

Number of
domains K

iIMPACT with
HD-Staining

iIMPACT with
HD-Staining

and
STdeconvolve

BASS

Human breast cancer data 5
0.634 0.614 0.496

see the resulting patterns in Fig. S15 Fig. 2

Human prostate cancer data 3
0.674 0.645 0.667

see the resulting patterns in Fig. S16 Fig. S8

Human ovarian cancer data 2
0.967 0.799 0.794

see the resulting patterns in Fig. S17 Fig. S11
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Table S6: The key notations of the proposed iIMPACT.

Notation Support Definition

Data N N ∈ N The number of spots

P P ∈ N The number of genes

P ′ P ′ ∈ N, P ′ � P The number of reduced dimensions

Q Q ∈ N The number of cell types

K K ∈ N The number of histology-based spatial domains

C = [cij ]N×P cij ∈ N The gene expression count table with cij being the read
count for gene j observed at spot i

Y = [yij ]N×P ′ yij ∈ R The low-dimensional gene expression table with yij being
the relative expression on dimension j at spot i

V = [viq ]N×Q viq ∈ N The cell type abundance table with viq being the number
of cells with cell type q at spot i and its expanded area

m = [mi]N×1 mi ∈ N The total number of cells at each spot i and its expanded
area

T = [tir]N×2 tir ∈ N The x and y coordinates of each spot

G = [gii′ ]N×N gii′ ∈ {0, 1} The adjacent matrix with gii′ = 1 indicating spot i and
spot i′ are neighbors

s = [si]N×1 si ∈ R+ The spot-specific size factors

Model
parameters

Ω = [ωkq ]K×Q ωkq ∈ [0, 1] With ωkq being the relative abundance of cell type q in
histology-based spatial domain k

M = [µkj ]K×P ′ µkj ∈ R With µk being the mean vector of the normal subcom-
ponent for histology-based spatial domain k

Σ = [Σk]K×P ′×P ′ σkjj′ ∈ R+ With Σk being the covariance matrix of the normal
subcomponent for histology-based spatial domain k

z = [zi]N×1 zi ∈ {1, . . . ,K} The histology-based spatial domain indicators

ψ = [ψj ]P×1 ψj ∈ R+ The gene-specific dispersion parameters

Tuning
parameters

w w ∈ [0, 1] Image profile weight
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Table S7: Simulation Study: The posterior means of parameters (domain-specific relative
abundances of cell types Ω̂ and means of low-dimensional representation of gene expression
M̂ ) estimated by iIMPACT on human breast cancer data, which were used in generating
the simulated data.

Domain-specific relative abundances of cell types, ω̂1, ω̂2, ω̂3, ω̂4, ω̂5

Stromal cell Karyorrhexis Lymphocyte Red blood cell Tumor cell Ductal epithelium Macrophage

Domain 1 0.4209 0.0415 0.0492 0.0905 0.3407 0.0562 0.0009

Domain 2 0.5221 0.0161 0.3346 0.1045 0.0174 0.0045 0.0007

Domain 3 0.2551 0.0141 0.1855 0.5202 0.0166 0.0037 0.0049

Domain 4 0.3875 0.0384 0.0498 0.2802 0.2207 0.0168 0.0066

Domain 5 0.5327 0.0203 0.2502 0.1888 0.0066 0.0011 0.0002

Domain-specific means of low-dimensional representation of gene expression, µ̂1, µ̂2, µ̂3, µ̂4, µ̂5

PC 1 PC 2 PC 3

Domain 1 26.2131 2.3886 -0.0389

Domain 2 -2.6583 -5.3326 -1.2944

Domain 3 -6.6993 -2.6915 4.0473

Domain 4 -19.0341 10.3570 1.1856

Domain 5 -18.0996 1.3260 -1.8454
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