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Supplementary Methods 

 
Selection of ALL patients 

This study was reviewed and approved by the Institutional Review Boards at the 

University of Southern California, the University of California, Berkeley, the California 

Department of Public Health, and all participating hospitals. Written informed consent was 

obtained from all study participants. This study was conducted in accordance with the 

Declaration of Helsinki.  

Childhood ALL patients were included from the California Childhood Leukemia 

Study (CCLS), a case-control study conducted from 1995 to 2015 to identify genetic and 

environmental risk factors for childhood leukemia. Briefly, ALL patients were identified 

within 72 hours after diagnosis at hospitals and were eligible for the enrollment if they: (i) 

were younger than 15 years of age-at-diagnosis, (ii) had no previous cancer diagnosis, 

(iii) were diagnosed at one of the participating hospitals, (iv) lived in California for at least 

three months, and (v) had an English or Spanish-speaking parent or guardian. Children 

of all self-reported race/ethnicities were eligible.  

We previously determined DNA methylation levels at the AHRR CpG cg05575921 

and calculated epigenetic smoking scores in 478 childhood ALL patients, including 194 

assayed with the Illumina HumanMethylation450K BeadChip® arrays, and 284 assayed 

with the Illumina EPIC methylation array as previously described [1-2]. For the current 

study, we selected two groups of ALL patients that we categorized as having “high” or 

“low” early-life tobacco smoke exposure, based on the combined results from two 

established epigenetic biomarkers: CpG cg05575921 in the AHRR gene, and an 

epigenetic smoking score consisting of up to 28 CpGs [1]. Both biomarkers have been 
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strongly associated with prenatal tobacco smoke exposure in newborn blood samples. In 

brief, the AHRR CpG cg05575921 was the top most statistically significant CpG related 

to maternal smoking during pregnancy [2–5], and the DNA methylation-based smoking 

score was derived from a linear combination of 28 previously selected maternal smoking-

associated CpGs [1]. 

To identify the high or low tobacco exposure patients for WGS, we first ranked 

subjects based on each epigenetic biomarker, separately in the 450K and EPIC array 

datasets given the potential differences in DNA methylation for cg05575921 and for 

additional CpGs included in the epigenetic score (Figure S1). For AHRR CpG 

cg05575921, at which DNA methylation has an inverse relationship with tobacco 

exposure, individuals with the lowest to highest DNA methylation were ranked from 

highest to lowest. For the epigenetic score, the individual with the highest score was given 

the highest ranking. Next, we summed the ranks across the two biomarkers for an overall 

ranking for each subject. We aimed to select 20 ALL cases with high tobacco exposure 

and 20 cases with low exposure based on their overall rank score and the availability of 

both tumor and germline DNA for WGS. Due to sample availability, we ultimately included 

18 ALL cases in the high tobacco exposure group and 17 cases in the low exposure group 

in our WGS analyses (Figure S1).  

 

Whole-genome sequencing 

DNA was isolated from diagnostic bone marrow (“tumor”) samples using the Qiagen DNA 

Blood Mini Kit and from newborn dried blood spot specimens using the Qiagen QIAamp 

DNA Investigator Kit, which provided median yields of 612 and 348 ng DNA, respectively. 
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WGS was performed by Novogene for the 35 matched tumor-normal pairs with Illumina 

Novaseq 6000 technology, using 150 bp paired-end libraries and obtaining an average 

coverage of ~35X coverage for germline samples and 58X coverage for tumor samples. 

We performed data processing and quality control of WGS data using the Genome 

Analysis Tool Kit (GATK) release 4.2.6.1 following best practices guidelines [6,7].  

  Quality control assessment of raw sequencing data was performed using FastQC 

[8], and reads were mapped to Human Reference genome version 38 (GRCh38) using 

the BWA-MEM 0.7.17 [9].  Duplicate reads were marked using Picard v2.27.1 

MarkDuplicates. Base quality scores were recalibrated using GATK ApplyBQSR, with 

known sites including dbSNP138, 1000 genome phase 1 SNPs, Mills and 1000G gold 

standard indels, and Homo Sapiens assembly 38 known indels from the GATK resource 

bundle.   

  

Somatic variant calling  

Somatic single nucleotide variants (SNVs) and indels were called from 35 matched tumor-

normal pairs using GATK Mutect2 [10] in tumor-normal mode, with a panel of normal 

callset that was created from 40 publicly available normal samples from the 1000 Genome 

project to capture common recurring artifacts. The Genome Aggregation Database 

(gnomAD) [11] VCF was used as a reference for germline population allele frequencies 

to measure the likelihood that a variant call in the normal might be a germline variant 

instead of an artifact. Raw SNVs and indels were filtered based on the probability of 

somatic variants using FilterMutectCalls after calculating the cross-sample contamination 

estimates and learning orientation bias artifacts. To exclude false-positive calls, variants 
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that were marked as “PASS” in the previous step were filtered using the following criteria: 

coverage depth ≥ 14X for tumor samples and ≥ 10X for paired normal samples, and 

variant allele fraction (VAF) ≥  0.10 [12]. We further restricted analyses to autosomal 

chromosomes in the downstream analyses. Variants were annotated using the Ensembl 

Variant Effect Predictor (VEP) v110.0 and ANNOVAR v2019-10-24 [13]. 

 

Identification of structural variants  

We identified structural variants (SV) including deletions, duplications, inversions and 

translocations using three complementary tools: Manta v1.6.0 [14], Lumpy v0.2.14 [15], 

and Delly v1.1.6 [16] (Figure S17). Lumpy was run using the wrapper Smoove v.0.2.3. 

SV calls were merged into a union set using the SURVIVOR tool, retaining only those 

called by at least two methods with the maximum allowed distance of 100bp as measured 

pairwise between breakpoints (begin 1 vs. begin 2, end1 vs. end 2) [17]. Variants were 

removed if they: 1) did not pass Delly, Manta or Lumpy, or passed only one of the three 

callers; 2) had a VAF <0.10; or 3) were 50bp or smaller in size.  SVs were annotated 

using AnnotSV 3.2.2 with two annotation modes: one directly related to the full-length SV 

(full mode) and the other related to each gene within SV (split mode) [18]. Known ALL 

driver genes were identified based on the previous literature [19–22].  

 

Deletion breakpoint motif analysis  

We obtained +/- 50bp flanking sequences from each deletion breakpoint based on hg38 

coordinates. Recombination signal sequence (RSS) motif enrichment analysis was 

performed using the Find Individual Motif Occurrences (FIMO) tool in MEME suite v5.5.5 
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(P<10-4) [23,24]. In brief, FIMO searches a set of individual sequences for the occurrence 

of known motifs provided by the user, treating each motif independently [23]. The position-

weight matrix (PWM) used to identify RSS motifs were obtained from previous studies 

[25–27], assuming a background rate of 0.2 for C/G and 0.3 for A/T. We investigated the 

presence of the full RSS motif (Figure S5), which can include a 12- or 23-nucleotide 

spacer, and heptamer and nonamer motifs within 50 bp flanking each deletion breakpoint. 

This was conducted initially for deletions in both immunoglobulin/T-cell receptor (Ig/TCR) 

and non-Ig/TCR regions, and subsequently limited to non-Ig/TCR regions (where both 

breakpoints were outside +/- 1000 bp of Ig/TCR regions) to examine off-target RAG 

recombination. The coordinates of “on-target” Ig/TCR (IgH, IgK, IgL, TRB, TRA/TRD, 

TRG) regions were based on prior studies [19,28] (Table S15). To explore the distance 

and clustering of motifs, we identified the motif signal decay within 5-200 bp from deletion 

breakpoints and plotted the proportion of deletions with at least one RSS motif.  

De novo deletion breakpoint motif analysis was conducted using HOMER v.4.11 

[29]. We selected +/- 50bp from the deletion breakpoints and used repeat masked 

sequences. We first searched for motifs ranging from 5 to 12 bp and then specified the 

length of motifs to be 7 bp (heptamer). We did not investigate the full RSS motif using 

HOMER as the recommended maximum motif length was 15 bp. 

 

Analysis of non-templated nucleotides 

Non-templated nucleotides (NTN) inserted at deletion breakpoints, a hallmark of RAG 

recombination [26], were identified by comparing the prefix of the upstream longest right 

soft-clipped sequence with the suffix of the downstream longest left soft-clipped sequence 
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and finding the longest common sequence. Upstream and downstream 50-bp sequences 

from the deletion breakpoints were extracted from BAM files using pysam v.0.22.0, a 

wrapper of samtools [30].  For deletions with microhomology at the breakpoints, to avoid 

false positive NTN calls we checked whether the first few base pairs of the prefix of the 

downstream right matched sequence (of the read with left soft-clipped sequence) was the 

same as for the suffix of the upstream left matched sequence (of the read with right soft-

clipped sequence) and also was the same as the previously mentioned longest common 

sequence. We also manually checked 20 deletions using the Integrative Genomics 

Viewer (IGV) v2.13.0 to confirm our findings: of 20 non-Ig/TCR deletions with RAG motif 

enrichment at both breakpoints, manual inspection using IGV revealed that 19 (95%) 

deletions had NTN, similar to the number (n=18, 90%) identified by the overlapped 

segment between the upstream and downstream deleted sequences. 

 

Mutational signature analysis 

Tobacco-associated mutagenesis involves both endogenous and exogenous mutational 

processes, with each process producing distinct mutation characteristics referred to as 

mutational signatures [31,32]. Two distinct approaches were used for analyzing 

mutational signatures. First, we conducted de novo extraction of mutational signatures 

using SigProfilerExtractor v1.1.4.[33]. Extracted signatures were decomposed into the set 

of reference signatures from Catalogue of Somatic Mutations in Cancer (COSMIC) 

database [34]. The optimal set of de novo signatures were extracted by the nonnegative 

matrix factorization algorithm and were matched to a set of reference signatures from 

COSMIC database.  
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Second, we assigned previously known (reference) mutational signatures to the 

mutational profile of each individual sample using SigProfilerAssignment v0.0.33 [35] and 

deconstructSigs v1.9.0 [36]. SigprofilerAssignment supports the probabilistic assignment 

of known mutational signatures to each individual sample [35]. Different from de novo 

extraction, fitting known signatures to each mutation within each sample can be used for 

small cohorts and clinical evaluation for individual patients. DeconstructSigs was used to 

replicate the results [36].   

 

Statistical analysis 

All analyses were performed using R v4.3.3. Demographic and tumor characteristics were 

compared between high and low tobacco exposure groups by Wilcoxon rank-sum test for 

continuous variables, or by Chi-square test or Fisher’s exact test for categorical variables. 

Two-sample Wilcoxon rank-sum tests were used to compare the frequency of different 

mutation events (including number of SNVs, indels, deletions, duplications, inversions, 

and translocations), number or proportion of mutations assigned to each mutational 

signature, and number of RAG-mediated deletions between high and low tobacco 

exposure groups. Chi-square test was used to compare the proportion of putatively RAG-

mediated deletions between each group. Fisher’s exact test was used to compare the 

proportion of deletions with RSS motif at both breakpoints, and the proportion of patients 

identified with each mutational signature between the two groups, as some events were 

less than five.  Multilevel logistic regression models with random intercept were used to 

estimate the association between prenatal tobacco exposure and the likelihood of a 

deletion having an RSS motif near at least one breakpoint or at both breakpoints, 
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adjusting for patient race/ethnicity and age-at-diagnosis. Univariable linear regression 

models and the Spearman correlation coefficient tests were used to assess the 

association between age-at-diagnosis and number of SNVs, indels, SVs and mutational 

signatures. Two-sided p <0.05 was considered statistically significant.  

In multilevel logistic regression models, each deletion was coded as 1 or 0 based 

on the presence or absence of RSS motifs at the breakpoints. The number of clusters 

corresponded to the number of patients (n=35), and the number of observations 

corresponded to the number of deletions. To scrutinize the above association, we 

conducted the following sensitivity analyses: 1) removing large deletions (>1Mb); 2) 

excluding four ETV6::RUNX1 cases that are known to harbor RAG-mediated deletions; 

3) excluding 6 deletions where RSS motifs were only found external to the breakpoints 

and were, thus, less likely to be RAG-mediated [27].  
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Supplementary Results 

Non-templated nucleotide (NTN) sequences at deletion breakpoints 

Among 311 non-Ig/TCR deletions, 231 (74.3%) had NTN at deletion breakpoints: the 

proportion was highest for those with the RSS motif at both breakpoints (92.31%), 

followed by those with the RSS motif at only one breakpoint (79.3%), and then non-RAG-

mediated deletions (64.53%). These results were similar to those previously reported in 

ALL patients by Papaemmanuil et al., in which NTN sequences were found at 84.0% of 

RAG-mediated deletions with resolved breakpoints but only 65.3% of non-RAG-mediated 

deletions [26]. 

 

Multilevel model analysis 

Including age-at-diagnosis and self-reported Hispanic/Latino ethnicity in a multilevel 

model attenuated the strength of the association between high prenatal tobacco exposure 

and the odds of non-Ig/TCR deletions being putatively RAG-mediated (OR: 2.17 [95%CI: 

0.95, 5.13] vs. OR:2.44 [95%CI: 1.13, 5.38] in the model without age-at-diagnosis and 

ethnicity). We repeated our analysis focusing on deletions for which the full RSS motif 

was found at both breakpoints and found that high tobacco exposure was strongly 

associated with RAG recombination in both univariable (OR, 4.70, 95%CI: 1.34, 29.75) 

and multivariable (OR, 5.81, 95%CI: 1.42, 39.84) models (Table 1).   

Deletions associated with off-target RAG recombination in ALL patients have been 

previously described as being on average smaller than non-RAG-mediated deletions; for 

example, in Papaemmanuil et al. [26], 97.5% (116/119) of likely RAG-mediated deletions 

were <1Mb in size compared with only 78.6% (77/98) of non-RAG-mediated deletions. 
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Similarly, in our data, 107/108 (99.7%) of putatively RAG-mediated non-Ig/TCR deletions 

were <1Mb in size. Thus, we repeated the multilevel model analysis restricting to 274 

non-Ig/TCR deletions that were <1Mb in size. This revealed a stronger association 

between tobacco exposure and putatively RAG-mediated deletions in the univariable (OR: 

2.55, 95%CI: 1.23, 5.32) and multivariable (OR: 2.16; 95%CI: 0.98, 4.82) models (Table 

S8).  

Four of the high tobacco exposure patients were identified as harboring the 

ETV6::RUNX1 fusion in our SV analysis, whereas no ETV6::RUNX1 fusions were found 

in the low exposure group. Excluding the 4 ETV6::RUNX1 patients, the association 

retained significance in the univariable model (OR: 2.35, 95% CI: 1.02, 5.56) and 

exhibited a suggestive trend in the fully-adjusted model (OR: 1.85, 95% CI: 0.71, 4.89). 

Furthermore, after removing 6 deletions which only had RSS motifs external to 

breakpoints, we observed stronger associations in the univariable (OR, 2.57, 95%CI:1.17, 

5.78) and fully-adjusted models (OR, 2.30, 95%CI: 0.98, 5.60) (Table S8).  

 

Mutational signature analysis 

In the de novo signature analysis using SigProfilerExtractor, four de novo SBS were 

considered as the best solution and were decomposed into seven COSMIC signatures: 

SBS1 and SBS5 (clock-like), SBS2 and SBS13 (AID/APOBEC activity), SBS3 (defective 

homologous recombination-based DNA damage repair), SBS18 (possibly damage by 

reactive oxygen species (ROS)), and SBS30 (deficiency in base excision repair due to 

inactivating mutations in NTHL1) (Table S9-10, Figure S12-S13). The AID/APOBEC 

signature was identified in only two of the 35 patients, both of which were in the high-
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tobacco exposure group. For signatures detected in both tobacco exposure groups 

(clock-like and ROS), we did not observe any significant difference in either total number 

of signature-related mutations between exposure groups or proportion of signature-

related mutations in each patient between the two groups (p>0.05) (Table S10-11, Figure 

S13). No significant difference was found for the proportion of subjects carrying each of 

the signatures between the two groups (Table S12). Age-at-diagnosis was positively 

associated with the number of SBS1-related mutations (linear regression beta:30.89, 

p=0.0003). Similar to SBS results, we found no significant difference between high and 

low tobacco exposure patients for any indel or double-base substitution signatures (Table 

S9).  

A total of 18 SBS signatures were identified using SigProfilerAssignment, including 

the above 7 signatures and an additional 11 signatures: SBS7a, SBS7b, SBS8, SBS9, 

SBS40, SBS44, SBS37, SBS39, SBS89, SBS54 and SBS58 (Figure S14). SBS2/SBS13, 

SBS3 and SBS44 were only observed in the high tobacco exposure group. Again, there 

was no significant difference in the total number or proportion of mutations assigned to 

each signature between two tobacco exposure groups (Table S13-14, Figure S15). Age-

at-diagnosis was positively associated with the number of SBS1-related mutations 

(beta:28.07, p=0.0005). 

DeconstructSigs results identified a total of 13 SBS signatures: SBS1, SBS2, SBS3, 

SBSB5, SBS7, SBS8, SBS9, SBS12, SBS13, SBS16, SBS18, SBS25 and unknown 

signature (Figure S16). Consistent with results from SigProfilerExtractor and 

SigProfilerAssignment, two subjects with high prenatal tobacco exposure had SBS2 and 

SBS13.  
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Supplementary Figures 

 
 

 
 
 
Figure S1. Distribution of combined rank score, AHRR methylation and epigenetic smoking 
score in sequenced vs non-sequenced subjects from the 450K and EPIC datasets. 
Genome-wide DNA methylation data were available from Illumina 450K methylation arrays and 
Illumina EPIC arrays.  The overall ranked score was calculated by combining the ranks of the 
AHRR cg05575921 methylation biomarker with the ranks of the epigenetic score for each patient.  
Since AHRR CpG methylation level is inversely associated with prenatal tobacco exposure, we 
flipped the Y-axis (with descending order from low AHRR methylation level to high AHRR 
methylation level).  
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Figure S2. Oncoplot of somatic SNV/indels overlapping childhood ALL driver genes. 
Variants annotated as “Multi_Hit” are those genes which are mutated more than once in the same 
sample. “In_Frame_Ins”: in-frame insertion. “In_Frame_Del”: in-frame deletion. ”Frame_Shift_Ins”: 
frame-shift insertion. The right bar shows the number of samples with driver gene alteration. The 
top bar shows the tumor mutation burden in each sample.  
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Figure S3 Somatic structural variants and their overlap with childhood ALL driver genes. 
The total number of structural variants (SVs) per patient (A) was based on the overlap of calls by 
three SV detection tools (Lumpy, Manta, and Delly), with final numbers of SVs based on those 
detected by at least two out of three methods. Total SV count was based on the sum of counts of 
different SV types: deletions (DEL), duplications (DUP), translocations (TRA), and inversions 
(INV). The middle plot (B) displays the number of SVs and different SV types per patient that 
overlapped known childhood ALL driver genes, limited to the top 30 affected genes in our dataset. 
The bottom oncoplot (C) shows the ALL driver genes affected by SVs across the 35 patients, with 
32 (91.4%) out of 35 patients harboring at least one SV overlapping an ALL driver gene, and 
genes ordered by the number of affected patients. SVs annotated as “Multi_Hit” indicate where 
the same gene was affected by more than one SV in the same patient. For all three plots, 
childhood ALL patients were stratified by tobacco exposure status as indicated. 
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Figure S4. Number of genome-wide structural variants overlapping known ALL driver 
genes, by prenatal tobacco exposure in pediatric ALL. 
Structural variants (SV) were all above 50 bases. Large structural rearrangements (deletions, 
duplications, inversions, and translocations) were called in 35 matched tumor/normal whole 
genome sequencing samples. We identified genome-wide somatic SVs that overlap known ALL 
driver genes. Box and whiskers plot of mutation per sample.  P values from the Wilcoxon rank 
sum tests are shown in the figure. *** P<.001; ** P<.01; * P<.05 
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A. Full RAG12 heatmap (spacer: 12-bp)               B. Full RAG23 heatmap (spacer: 23-bp) 
       

 
 
 
Figure S5. Heatmaps of full RSS motifs. 
Each row in the heatmap represents a single deletion breakpoint sequence in our data. Each 
column represents a specific position. Cells are colored by the sequence at that position. 
Sequences are aggregated into a consensus logo aligned with the heatmap to visualize how 
sequence variability contributes to the motif.  We plotted the occurrence pattern of non-Ig/TCR 
full RSS with 12 bp of intervening spacer (A) and the occurrence pattern of non-Ig/TCR full RSS 
with 23 bp of intervening spacer (B) within 50bp from the deletion breakpoints.  
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Figure S6. Total number of non-Ig/TCR deletions and proportion of putatively RAG-
mediated non-Ig/TCR deletions, per patient and by tobacco exposure status. 
Panel A shows the total number of non-Ig/TCR deletions per patient, in childhood ALL patients 
with high tobacco exposure (n=18) or low tobacco exposure (n=17). Panel B shows the proportion 
of non-Ig/TCR deletions that were putatively RAG-mediated (i.e., deletions for which the RSS 
motif was detected by FIMO in at least one of the two breakpoints) per patient, in patients with 
high or low tobacco exposure. Patient IDs correspond to those included in Supplementary Table 
S2.  
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Figure S7. RAG-mediated deletions in the Ig/TCR regions by tobacco exposure status. 
(A) Proportion of deletions with at least one breakpoint at which an RSS motif was detected by 
FIMO. (B) Proportion of deletions with RSS motif detected at both breakpoints.  Error bars 
represent 95% bootstrapped confidence intervals. Among 255 Ig/TCR deletions, 159 were from 
the high tobacco exposure group and 96 were from the low tobacco exposure group. P values 
from Chi-square tests for at least one RAG motif or Fisher’s exact tests for RAG motif at both 
breakpoints are shown in the figure. 
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Figure S8.  Proportion of non-Ig/TCR deletions with at least one RAG heptamer or nonamer 
motif as a function of distance from the breakpoint. 
The proportion of off-target (non-Ig/TCR) RAG-mediated deletions with at least one RAG 
heptamer (A) or nonamer (B) motif was plotted against the distance of the motif from the deletion 
breakpoint, ranging from within 5-bp to 200-bp. A positive distance represents bases interior to 
the deletion breakpoint (inside the deletion) and a negative value represents bases exterior to the 
breakpoint (outside the deletion). 
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Figure S9.  Off-target RAG-mediated deletions identified by HOMER de novo motif 
scanning with lengths of 7bp. 
This table displays results from HOMER de novo motif discovery analysis for motifs with 
length=7bp found in sequences +/- 50 bp from each deletion breakpoint, limited to non-Ig/TCR 
(off-target) deletions. The top 5 most significant motifs are displayed. The most significant motif 
“CACTGTG” corresponds to the RAG heptamer. Motifs labeled with asterisks were possible false 
positive results according to HOMER.  
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Figure S10.  Proportion of non-Ig/TCR deletions with at least one RAG heptamer or RAG 
heptamer at both breakpoints identified by HOMER de novo motif scanning with lengths 
of 7bp. 
Bar plots below show the proportion of deletions with at least one breakpoint (p value from Chi-
square test) (A) or with both breakpoints (p value from Fisher’s exact test) (B) at which the RAG 
heptamer was identified by HOMER, in childhood ALL patients with high tobacco exposure (n=18) 
or low tobacco exposure (n=17).   
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Figure S11. Off-target RAG-mediated deletions identified by HOMER de novo motif 
scanning with lengths of 5 to 12bp. 
The size of region for motif finding equals +/- 50 bp from the breakpoint. Motif length is equal to 
5-12 bp. The most significant motif, which includes “CACAGTG”, corresponds to the RAG 
heptamer, and was the only motif found in >2% of targets.  
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A. SBS signatures selection plot 
 

.  
 

B. Number of mutations in each de novo mutational signature from SigProfilerExtractor 

 
 
 
Figure S12. De novo mutational signature results (overall). 
A: Four de novo SBS signatures were considered as the best solution with the highest stability 
(average Silhouette score=0.94) and relative low mean sample Cosine distance (0.016).  
B: De novo extraction analysis using SigProfilerExtractor. Four de novo SBS were decomposed 
into seven COSMIC signatures.  SBS1 and SBS5: clock-like signature. SBS2 and 
SBS13:  AID/APOBEC family of cytidine deaminases. SBS3: Defective homologous 
recombination-based DNA damage repair. SBS18: Possibly damage by reactive oxygen species. 
SBS30: Deficiency in base excision repair due to inactivating mutations in NTHL1. 
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Figure S13. Number and proportion of de novo mutational signatures by tobacco exposure 
and patient based on SigProfilerExtractor result. 
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Figure S14. Fitting previously known mutational signatures to each patient. 
Assigning previously known mutational signatures to individual patients and individual somatic 
mutations. A total of 18 signatures were identified. SBS 1, SBS5: clock-like in that the number of 
mutations in most cancers and normal cells correlates with the age of the individual; SBS2, SBS13: 
AID/APOBEC family of cytidine deaminases; SBS3: defective homologous recombination-based 
DNA damage repair; SBS7a, SBS7b: ultraviolet light exposure; SBS8, SBS37, SBS39, SBS40, 
SBS89: unknown;  SBS 9: Polymerase eta somatic hypermutation activity; SBS44: Defective DNA 
mismatch repair; SBS18: Possibly damage by reactive oxygen species. SBS30: Deficiency in 
base excision repair due to inactivating mutations in NTHL1; SBS54, SBS58: possible artefact. 
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Figure S15. Number and proportion of previously known mutational signatures by tobacco 
exposure and patient based on SigProfilerAssignment result. 
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Proportion of known mutational signatures in the overall patients  
 

 
 
 
Proportion of known mutational signatures by tobacco exposure and patient  
 

 
 
 
Figure S16. Fitting known mutational signature using DeconstructSigs. 
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Figure S17. Venn diagram displaying the number of structural variants called by Lumpy, 
Manta and Delly. 
There were 19,964 SVs, 2,529 SVs, 795 SVs called by Lumpy, Manta and Delly, respectively. A 
total of 1202 SVs identified by at least two callers, including 600 deletions, 103 duplications, 287 
inversions and 212 translocations. After excluding VAF < 0.1, the final dataset for downstream 
analysis included 566 deletions, 90 duplications, 273 inversions and 211 translocations, yielding 
a total of 1140 structural variants.  
 

 
 

 


