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MIDI notes quantization and segmentation

To preserve the information associated with the temporal duration of notes in the time-series extracted from
the raw MIDI data, each note in the sequence was quantized and segmented according to a grid of unit
duration of 1/12th of a quarter note. An example of this procedure is given in Supplementary Figure 1,
where Supplementary Figure 1la shows an example of a MIDI-signal composed of 4 notes of different pitch
and durations. In Supplementary Figure 1b the quantization and segmentation procedure was applied. The
pitch of the notes was left unchanged, but the length was adapted such that the starting and ending times
of the notes fit with the quantization grid. The notes were subsequently segmented according to the grid.
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Supplementary Figure 1. Note segmentation process. (A) presents a typical MIDI signal, (B) shows
the form of this MIDI signal after processing : every note longer than the shortest time unit is replaced by
a sequence of time units of the same pitch. The gray transparent lines represent the grid of time units used
for quantization and segmentation.



Representation of rests

In the methods section we explained that we treated rests (absence of notes) by introducing a pitch of 0 for
each time unit of silence. Even though this appears as a suitable procedure to treat rests, which has been
used in previous work [1, 2], the introduction of zeros in place of missing values in a time series might create
artifacts depending on the statistical distribution of the missing values.

In order to check that our results are not due to such artifacts, we applied the Lomb-Scargle periodogram
to a number of pieces from our corpus and compared the results to their multitaper equivalent. The Lomb-
Scargle periodogram is able to deal with missing values as it does not require uniform data sampling. It is
subject, however, to a larger bias and variance than the multitaper method. The Lomb-Scargle estimation
is expressed as:
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The PSD estimations obtained by the Lomb-Scargle periodogram confirmed our results by revealing identical
shapes (PL or PL+P), similar slopes, and cutoff times, as the multitaper estimation. See e.g. Supplementary
Figure 2 and Supplementary Figure 3 for a direct comparison of the two methods for a movement of a sonata
by J.S. Bach and a string quartet by Brahms.

We conclude that the replacement of rests by pitches of 0 does not change the overall slope of the PSDs.
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Supplementary Figure 2. Comparison of PSD estimation with and without missing values for
the Sonata for solo Violin in G minor, BWYV 1001, presto, by J.S. Bach (A) presents the PSD
estimation using the multitaper method and replacing rests by a pitch of 0, (B) shows the Lomb-Scargle
periodogram omitting rests. The inclusion or exclusion of missing notes as 0 pitch does not change the
overall slope of the PSD. The Lomb-Scargle periodogram shows more scattering, as expected by the fact
that this method does not perform any averaging.
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Supplementary Figure 3. Comparison of PSD estimation with and without missing values
for the String Quartet Op.51, No.1 in C minor by J. Brahms. (A) presents the PSD estimation
using the multitaper method and replacing non-played notes by a pitch of 0, (B) shows the Lomb-Scargle
periodogram omitting rests. The inclusion or exclusion of rests as 0 pitch does not change the overall slope
of the PSD. The Lomb-Scargle periodogram shows more scattering, as expected by the fact that this method
does not perform any averaging.

Choice of the NW product

In the main text of this article, we mention that the bias bandwidth (controlled by the NW product) can mask
the existence of a plateau in the PSD. Here we provide an example illustrating this effect. Supplementary
Figure 4 shows a comparison of the PSD estimation of Beethoven’s 4th Symphony, Opus 60, 2nd movement
for two different values of the NW product. Compared to the case with a low value of NW (NW = 3, right
panel) using a higher NW value (NW = 12, left panel) yields an estimation that has a lower variance, but a
broader bandwidth. Consequently, the plateau that is seen in the estimation for NW = 3 is concealed within
the bandwidth for NW = 12, within which conclusions cannot be drawn as the plateau might result from
the bias mixing the different frequency components. The example illustrates that an appropriate choice of
NW is important to achieve accurate results. The choice of NW = 2 in this study was motivated by the fact
that the bandwidth difference between the lowest possible value NW = 1 and NW = 2 is not very large, but
the variance reduction going from NW = 1 to NW = 2 is considerable (see Supplementary Figure 5). NW
= 2 therefore appears as a good trade-off between bias and variance.
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Supplementary Figure 4. Effects of the NW product on the bandwidth of the estimation and
detection of plateaus. PSD estimation of Beethoven’s 4th Symphony, Opus 60, 2nd movement obtained
using two different NW products: 12 (left) and 3 (right). A high NW product can lead to a bandwidth so
large that it conceals the plateau appearing at around period 80.
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Supplementary Figure 5. Effects of the NW product on the variance. PSD estimation of David
Liebman’s Begin the Beguine with two different NW products: NW = 2 (left) and NW = 1 (right). Lowering

the NW products reduces the bandwidth of the bias and uncovers a pateau, but considerably increases the
variance.



Detrended fluctuation analysis

Power-spectral analysis, on which the current study is based, is not the only tool that can be used to study
fluctuations in time series. Another popular and powerful method is detrended fluctuation analysis (DFA)
[3, 4]. It even has the advantage of being readily extensible to multivariate time series, a feature which might
make it appear as an ideal method for studying musical time series. It was shown, however, to be impacted
considerably by the presence of periodic components in the signal[5, 6]. This may become problematic, as
musical time series often show repetitions and periodic components, as emphasized by the rhythmic peaks
mentioned in the main text of this article. Periodic components can lead to broad shoulders in the DFA
fluctuation function, as e.g. in Supplementary Figure 6, where we compare the effect of periodic components
on DFA and on the PSD of simulated pink noise. Here the PSD is able to identify the periodic component
with good resolution and is otherwise unaffected, whereas the course of the DFA fluctuation function is
affected over a range of window sizes much broader than the introduced periodicity.

To the best of our knowledge, the only way to correct DFA for periodic components is by manual intervention,
identifying them via the PSD and then applying an appropriate filter to the original signal [6]. Since this
method modifies the original signal, introduces some arbitrariness, and is not always able to reconstruct the
undisturbed fluctuation function completely [6], we decided to use PSD-analysis rather than DFA.
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Supplementary Figure 6. Effects of periodic components on DFA and PSD. How periodic compo-
nents affect the DFA fluctuation function and the PSD for signals showing long range correlatons was studied
here by simulating pink noise (generated with the colorednoise Python package, mean = 0 and standard
deviations 1) with an added cosine term of equal amplitude. A) DFA fluctuation function for different sim-
ulated signals; black line: pure pink noise (exponent S = 1), dotted blue line: pink noise with an additional
cosine term of periodicity 20, dashed red line: pink noise with an added cosine term of amplitude 1 and
periodicity 80. The presence of a periodic component leads to an additional broad shoulder centered around
the periodicity on top of the otherwise pure power law. B) PSD estimation of the same simulated signals
with the same color coding as in A). The addition of a periodic component leaves the PSD power law nearly
unchanged apart from a sharp peak at the frequency of the component. This example demonstrates that
for signals containing various periodic components, like musical time series (see Supplementary Figure 13),
PSD analysis can be more meaningful than DFA.



Data

Classical music scores

The following is a list of all classical music pieces used in our analysis, sorted by composer. We used MIDI
transcriptions mostly from the database kunstderfuge.com [7], but also from other databases [8, 9].

Single movements

J.S. Bach: Kunst der Fuge 07 (top voice), VIolin Sonata No.l in G minor, BWV 1001, adagio; Violin
Sonata No.1 in G minor, BWV 1001 presto; Gavotte; Chaconne (top notes); Partita for unaccompanied flute
1013, movements 1, 2, 3 & 4.

L. van Beethoven: String Trio in C minor, Op.9 No.3, movement 1 & 2; String Quartet No.13, Op.130,
1st movement; String Quartet No.6, Op.18 No.6, 1st movement; Symphony No.2, Op.36, 1st movement;
Symphony No.2, Op.36, 3rd movement; Symphony No.1, Op.21, 3rd movement; Symphony No.4, Op.61,
movements 1, 3 & 4; Violin Sonata No.4, Op.23 movements 1, 2 & 3; Violin Sonata No.8, Op.30 No.3, 3rd
movement; Cello Sonata No.4, Op.102 No.1, 1st movement;

J. Brahms: String Quartet No.1, Op.51 No.1, 1st movement.

A. Dvorak: String Quartet No.10, Op.51, 1st movement; String Quartet No.11, Op.61, 1st movement;
Serenade for Strings, Op.22, movements 1, 2, 3, 4 & 5.

J. Haydn: String Quartet in G major, Hob.III:41, 1st & 3rd movement; String Quartet in E-flat major,
Hob.III:31, movement 1, 2, 3 & 4; String Quartet in D major, Op. 1 No. 3, Hob. III:3, 1st movement; String
Quartet in G major, Op. 1 No. 4, Hob. III:4, 2nd movement.

D. Shostakovich: Prelude and Fugue No. 11 in B major (top voice); Prelude and Fugue No. 13 in F sharp
major (top voice).

R. Schumann: String Quartet No.1, Op.41 No.1, movements 1 & 2.

W. Mozart:String Quartet No.17 in B-flat major, K.458, 3rd movement; String Quartet No.18 in A major,
K.464 movements 1, 2, 3 & 4; Sonata for Violin and Piano in C major, KV 6, 1st movement.

Full compositions

J.S. Bach: Flute Sonata BWYV 1013; Violin Sonata No.2 in A minor, BWV 1003; Violin Sonata No.l in G
minor, BWV 1001; Cello Suite No.1 in G major, BWV 1007; Prelude and Fugue in C-sharp major, BWV
848.

L. van Beethoven: String Trio in C minor, Op.9 No.3; Symphony No.2, Op.36; Symphony No.1, Op.21,,
Violin Sonata No.4, Op.23 (top voice).

A. Dvorak: String Quartet No.10, Op.51; String Quartet No.11, Op.61; Serenade for Strings, Op.22

J. Haydn: Violin Sonata in D major; String Quartet in E flat major, Op. 20 No. 1, Hob. III:31; String
Quartet Op. 33; String Quartet Op. 76.

W. Mozart: String Quartet No. 2 in D major, KV 155; Concerto for Piano and Orchestra No. 18 in B flat
major, KV 456; String Quartet No. 20 in D major, KV 499; String Quartet No. 18 in A major, KV 464 ;
String Quartet No. 14 in G major, KV 387; String Quartet No. 15 in D minor, KV 421; String Quartet No.
16 in E flat major, KV 428 (1783).

G. Handel: Violin Sonata in F major, HWV 370; Violin Sonata in A major, HWV 361; Violin Sonata in
G minor, HWV 368; Violin Sonata in D major, HWV 371;

R. Schumann: Violin Sonata No.1, Op.105; Violin Sonata No.2, Op.121

P. Tchaikovsky: String Quartet No.1, Op.11

Wagner: Symphony in C.

A. Vivaldi: Trio Sonata “La Folia”.

Jazz Improvisations

As mentioned in the materials section, all the improvised music data that we used were obtained from the
Weimar Jazz Database [10]. We removed pieces that were too short (less than 500 data points) or non-
standard MIDI files. The following is the complete list of pieces we used sorted by artist.



Art Pepper: Stardust-1, Stardust-2

Benny Carter: I Got It Bad, It’s a Wonderful World-1

Ben Webster: Did You Call Her Today

Bob Berg: I Didn’t Know What Time It Was, Nature of The Beast, Angels.

Branford Marsalis: Gut Bucket Steepy, Housed From Edward-1, The Nearness of You, Three Little Words
Chris Potter: Arjuna, D.I.T., PopTune#1, Rumples, Togo

Clifford Brown: A Night In Tunisia, Jordu

Coleman Hawkins: Body and Soul, Sophisticated Lady

Curtis Fuller: Blue Train

David Liebman: Nica’s Dream, Pablo’s Story, Softly as In A Morning Sunrise, There Will Never Be An-
other You

David Murray: Blues for Two-1

Dexter Gordon: Society Red, The Rainbow People

Don Byas: Body and Soul

Eric Dolphy: Dahomey Dance

Freddie Hubbard: Dolphin Dance, Maiden Voyage

Hank Mobley: Remember, Soul Station

JJ Johnson: Walkin’, Yesterdays

Joe Henderson: In’N Out-1, The Sidewinder, Totem Pole

Joe Lovano: Body and Soul-1, Central Park West, I Can’t Get Started, Little Willie Leaps in
John Coltrane: Blue Train, Body and Soul — Alternate Take, Impressions - 1961, Impressions - 1963, My
Favorite Things-1, My Favorite Things-2, Nature Boy, Nutty, So What

Kenny Dorham: Punjab

Lee Morgan: Blue Train

Michael Brecker: Confirmation, Midnight Voyage, Naked Soul

Miles Davis: Miles Runs the Voodoo Down-1. Miles Runs the Voodoo Down-2, Walkin’

Milt Jackson: Softly as in a Morning Sunrise

Ornette Coleman: Peace

Pat Metheny: All the Things You Are

Pepper Adams: A night In Tunisia

Sidney Bechet: Summertime

Sonny Rollins: Blue Seven-1, Vierd Blues

Stan Getz: Body and Soul, Crazy rhythm

Steve Coleman: The oracle-1, The oracle-2

Steve Lacy: Let’s cool One

Steve Turre: Dat Dere

Wayne Shorter: Eighty one, Footprints



Dependence of the cutoff time on movement length

The observation of a correlation between the total length of pieces and their cutoff times raises the question
as to why that might be the case. It is very likely that repetitions of themes and motifs within a piece
have an influence on the cutoff time, and longer pieces allow for the development of longer musical ideas.
Themes usually comprise motifs and sub-motifs that cannot always be unambiguously characterized as their
identification relies on somewhat subjective criteria (e.g. musical meaning, punctuation, cadence culmination,
etc.) [11, 12]. Automatic musical structure and theme detection is a research question on its own that lies
outside the scope of the current work [13, 14]. For this reason we did not conduct an in depth analysis
of the relationship between cutoff times and the different lengths (sub-motif, motif, theme) at play within
musical pieces. However, the longest possible theme within a musical piece is limited by the duration of
the movement in which it exists. We therefore checked for the influence of the structure associated with
movements in classical compositions on the cutoff times. The results are shown in Supplementary Figure 7,
where the cutoff times identified in pieces from various composers are plotted against the average movement
length in the corresponding pieces. We observe no trend or correlation between average movement lengths
and cutoff times, indicating that the cutoff is probably the result of the interplay between different melodic
motifs present within the themes expressed in the various movements. The fact that this simple check shows
no clear trend suggests that a profound investigation of the relationship between motif and theme lengths
and cutoff times would not reveal any correlation.
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Supplementary Figure 7. Dependence of the cutoff time on the average movement length.
Each dot represents a full composition from different composers and depicts the cutoff time as a function
of the average length of the movements in the corresponding pieces. The color coding (black/gray) helps
distinguishing pieces of the same composer. The pieces shown are the following, ordered by composers: J.S.
Bach: Flute Sonata BWV 1013 (black); Cello Suite No.1 in G major, BWV 1007 (gray). L. van Beethoven:
Symphony No.2, Op.36 (black); Symphony No.1, Op.21 (gray). A. Dvorak: String Quartet No.10, Op.51
(black); Serenade for Strings, Op.22 (gray). J. Haydn: Violin Sonata in D major (black); String Quartet in
E flat major, Op. 20 No. 1, Hob. IIL:31 (gray); W. Mozart: String Quartet No. 14 in G major, KV 387
(black); String Quartet No. 15 in D minor, KV 421 (gray); G. Handel: Violin Sonata in F major, HWV 370
(black); Violin Sonata in A major, HWV 361 (gray)



Example for different average cutoff times depending on composer

In the main text of this article, we mentioned that the style of a composer may also be reflected in the cutoff
times. In Supplementary Figure 8, we show such an example where we compare the cutoff times observed in
movements by J.S. Bach to those in movements by Mozart. The movements from this corpus indicate that
movements by Mozart on average tend to have longer cutoffs than those by Bach.
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Supplementary Figure 8. Comparison of the cutoff time for single movements of J.S. Bach and
Mozart. The blue points represent movements by J.S. Bach and the orange points movements by Mozart.
Mean values and standard deviations are indicated by horizontal and vertical lines. Movements by Mozart
tend to have longer cutoff times than those by J.S. Bach. For this plot, all movements of the corpus showing
a PL+P were used. The pieces shown in this plot are the following: (J.S. Bach) Violin Sonata No.1 in G
minor; Gavotte; Partita for unaccompanied flute 1013, movements 1, 2, & 4.; (Mozart) String Quartet No.17
in B-flat major, K.458, 3rd movement; String Quartet No.18 in A major, K.464 movements 1, 2 & 4; Sonata
for Violin and Piano in C major, KV 6, 1st movement.



Rhythmic peaks: differences between classical and jazz

As stated in the main text of this article, the rhythmic peaks observed in classical compositions tend to
be much stronger than in jazz improvisations. This can be seen in Supplementary Figure 9, where the
distribution of the strongest identified rhythmic peaks in pieces is shown as a function of their intensity.
While there is some overlap between the distribution for classical compositions and for jazz improvisations,
rhythmic peaks are on average much stronger in classical compositions than in jazz improvisations. This
difference can be explained by the fact that classical music tends to be rhythmically more regular than jazz,
and the fact that jazz improvisers are known to play with micro-timing deviations [15, 16], both of which
influence the strength of the periodicities identified by the power spectrum.
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Supplementary Figure 9. Intensity of the strongest rhythmic peak identified in classical pieces
and jazz improvisation. The light gray bars depict the proportion of observed strongest peaks as a
function of their intensity in jazz improvisation. while the black bars show this relationship for classical
compositions. For these histograms, only the strongest peak is extracted from each piece of the two datasets.
While there is some overlap between the two distributions, we see that on average, rhythmic peaks are much
stronger in classical compositions than in jazz improvisations.
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Effects of slight plateau slopes on correlations

In some cases, weak slopes can be seen in the plateau part of the power spectra of jazz and classical pieces.
Such trends can be attributed to a large variance in the low-frequency regime causing the fitting routine to
identify slopes where there are none. Nevertheless, in some rare examples (e.g. see Supplementary Figure
14B), one might argue that these trends are not resulting from the fitting procedure and are indeed part
of the musical time series. To account for such cases, and ensure the validity of our results, we ran several
noise simulations allowing for a slight (positive and negative) slope in the plateau part of the corresponding
power spectrum. To generate noise with the desired PSD shape (power law ending in a plateau with a slight
slope), we multiplied the Fourier transform of white noise (generated via the function ramdom.rand from
the numpy package) with a vector representing the shape of the PSD we wish to simulate (a weak slope
in the plateau part and a negative slope in the power-law part). Then the inverse Fourier transform was
computed to obtain the time series of the simulated noise. From these simulated noisy signals, we computed
the autocorrelation function in order to reveal the effects of such slight plateau slopes. The results can be
seen in Supplementary Figure 10 Overall, we observe that a slight slope in the plateau only has a very weak
effect on the corresponding autocorrelation profile compared to a purely flat plateau.
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Supplementary Figure 10. Influence of weak slope in the plateau. To mimic and study the effects
of the weak slopes observed in the plateaus of some rare example, signals showing a power-law and a weak
slope at frequencies lower than the cutoff time in their PSD were simulated. In the top panel, each colored
line represents the average PSD of 5 simulated PL+P signals having a weak indicated in the legend. The
legend shows the slope of the plateau part of the PSD in the low frequency regime. In the botton pannel, the
corresponding averaged autocorrelation function is displayed. We see that, overall such weak slopes do not
have a considerable effect on the autocorrelation function, and the correlation decay is not strongly affected.
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Cutoff time vs. power-law exponent

To check whether there is a correlation between the cutoff time of a musical piece and the exponent [,
Supplementary Figure 11 shows scatter plots for the different datasets, in which the cutoff time of each piece
is plotted against the exponent of the power-law part. In these plots only pieces are represented that show

a PL+P shape. There is no indication of a correlation between these two variables.
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Supplementary Figure 11. Possible correlation between the cutoff time and the power law
exponent 5. Each point represents a piece in the different datasets relating the exponent 3 of the power-
law part of the spectrum to the cutoff time. There appears to be no correlation between these two variables.

Power-spectral densities of additional examples
We carried out PSD analyses for a total of 553 musical pieces. The following Supplementary Figure 12, 13

and 14 show examples in addition to the examples in the main text for single movements, full compositional
works, and improvised jazz solos.
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Supplementary Figure 12. PSD estimations of single movements. (A) Kunst der Fuge, BWV 1080
(Bach, Johann Sebastian); (B) Sarabande from Partita in A minor, BWV 1013 (Bach, Johann Sebastian);
(C) Presto from Violin Sonata No.l in G minor, BWV 1001 (Bach, Johann Sebastian); (D) Adagio molto
from Symphony No.2, Op.36 (Beethoven, Ludwig van) (E) Presto from Violin Sonata No.l in G minor,
BWYV 1001 (Bach, Johann Sebastian); (F) Tio in D major from 3 String Trios, Op.9 (Beethoven, Ludwig
van); (G) Moderato from Serenade for Strings, Op.22 (Dvoidk, Antonin); (H) Larghetto from Serenade for
Strings, Op.22 (Dvoidk, Antonin); (I) Allegro from String Quartet No.11, Op.61 (Dvordk, Antonin); (J)
Andante from String Quartet No.18 in A major, K.464 (Mozart, Wolfgang Amadeus); (K) Allegro from
String Quartet No.18 in A major, K.464 (Mozart, Wolfgang Amadeus); (L) String Quartet in E-flat major,
Hob.III:31 from String Quartets, Op.20 (Haydn, Josel%h).
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Supplementary Figure 13. PSD estimations of full compositional works. (A) Partita in A minor,
BWV 1013 (Bach, Johann Sebastian); (B) Violin Sonata No.2 in A minor, BWV 1003 (Bach, Johann
Sebastian); (C) Cello Suite No.l in G major, BWV 1007 (Bach, Johann Sebastian); (D) String Trio in
C minor, Op.9 No.3 (Beethoven, Ludwig van); (E) Symphony No.1, Op.21 (Beethoven, Ludwig van); (F)
Symphony No.2, Op.36 (Beethoven, Ludwig van); (G) Serenade for Strings, Op.22 (Dvoiék, Antonin); (H)
Violin Sonata in A major, HWV 361 (Handel, George Frideric); (I) Violin Sonata in G minor, HWV 368
(Handel, George Frideric); (J) Sonata for Violin No.2 (Haydn, Joseph); (K) String Quartets, Op.20 (Haydn,
Joseph); (L) String Quartet No.2 in D major, K.155/134a (Mozart, Wolfgang Amadeus).
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Supplementary Figure 14.

database [10].
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PSD estimations of various jazz solos from the Weimar Jazz
(A) Anthropology (Art Pepper); (B) Stardust (Art Pepper); (C) Just Friends (Benny

Carter); (D) It’s a wonderful world (Benny Carter); (E) Did you call her today (Ben Webster); (F) When or
where (Ben Webster); (G) Angels (Bob Berg); (H) Nature of the beast (Bob Berg); (I) House from Edward
(Branford Marsalis); (J) UM.M.G (Branford Marsalis); (K) Arjuna (Chris Potter), (L) Blues for two - take

1- (David Murray).
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