- . Supplementary information for 'Endemics by generalist insects are
- eradicated if nearly all plants produce constitutive defense. An
- explanation by mathematical modeling'
- ⁴ Suman Chakraborty^{1,2}, Shalu Dwivedi¹, and Stefan Schuster^{1,*}
- ⁵ Dept. of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena,
- 6 Ernst-Abbe-Pl. 2, 07743 Jena, Germany
- ²International Max Planck Research School 'Chemical Communication in Ecological
- s Systems', 07745 Jena, Germany
- Correspondence: stefan.schu@uni-jena.de
- June 13, 2024
- This supplementary information contains the derivation and stability analysis of the equilibrium points:
- H_{Free}^* , $H_{Endemic}^*$, Q_{Free}^* and $Q_{Endemic}^*$, respectively.

¹³ S1. Derivation and stability of H_{Free}^*

The equilibrium H_{Free}^* is obtained from the equations:

$$\frac{dS}{dt} = \mu N - \frac{\eta IS}{N} - \mu S + \alpha E = 0 \tag{1a}$$

$$\frac{dE}{dt} = \frac{\eta IS}{N} - (\mu + \alpha) E = 0 \tag{1b}$$

$$\frac{dI}{dt} = \frac{\beta \eta IS}{N} - \gamma I = 0 \tag{1c}$$

From eq. (1c), we obtain:

$$\left(\frac{\beta\eta S}{N} - \gamma\right)I = 0\tag{2}$$

- 16 Eq. (2) has two solutions:
- Case 1: I = 0.
- Case 2: If $I \neq 0$, then $S = \gamma N/\eta \beta = N/R_0$, where $R_0 = \eta \beta/\gamma$.
- Here we analyze only case 1. Case 2 is analyzed in **S2**. Using I = 0 in eq. (1b), we obtain E = 0. Using I = 0 and E = 0 in eq. (1a), we obtain:

$$S = N$$

- Therefore, the non-endemic equilibrium is: $H_{Free}^* = (N, 0, 0)$.
- The Jacobian matrix from system 1 is:

$$M = \begin{pmatrix} -\frac{\eta I}{N} - \mu & \alpha & -\frac{\eta S}{N} \\ \frac{\eta I}{N} & -(\mu + \alpha) & \frac{\eta S}{N} \\ \frac{\beta \eta I}{N} & 0 & \frac{\beta \eta S}{N} - \gamma \end{pmatrix}$$

At H_{Free}^* the Jacobian is:

$$M_{H^*_{Free}} = \begin{pmatrix} -\mu & \alpha & -\eta \\ 0 & -(\mu + \alpha) & \eta \\ 0 & 0 & \beta \eta - \gamma \end{pmatrix}$$

The characteristic equation of the Jacobian is:

$$\begin{vmatrix} -\mu - \lambda & \alpha & -\eta \\ 0 & -(\mu + \alpha) - \lambda & \eta \\ 0 & 0 & \beta \eta - \gamma - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (-\mu - \lambda)(-(\mu + \alpha) - \lambda)(\beta\eta - \gamma - \lambda) = 0$$

$$\Rightarrow \lambda = -\mu, -(\mu + \alpha), (\beta \eta - \gamma)$$

- H_{Free}^* is asymptotically stable if all the eigenvalues (λ) are negative real numbers. Therefore, if $\beta\eta \gamma < 0$
- or $R_0 < 1$ (where $R_0 = \beta \eta / \gamma$), then H^*_{Free} is a stable node. In contrast, if $\beta \eta \gamma > 0$ or $R_0 > 1$, then one of the eigenvalues is positive. Thus, H^*_{Free} becomes a saddle point, which is unstable.

S2. Derivation and stability of $H_{Endemic}^*$

- The equilibrium $H_{Endemic}^*$ is also obtained from the differential equations given in S1.
- Here, we analyze the case 2 mentioned in S1, where $S = N/R_0$. Using this value of S in eqs. (1b) and (1a),
- we get:

$$\frac{\eta IS}{N} - (\mu + \alpha) E = 0 \Rightarrow E = \frac{\eta I}{R_0(\mu + \alpha)}$$

$$\frac{dS}{dt} = \mu N - \frac{\eta IS}{N} - \mu S + \alpha E = 0$$

$$\Rightarrow \mu N - \frac{\eta I}{R_0} - \frac{\mu N}{R_0} + \frac{\alpha \eta I}{R_0(\mu + \alpha)} = 0$$

$$\Rightarrow \left(\frac{\alpha \eta}{R_0(\mu + \alpha)} - \frac{\eta}{R_0}\right) I = -\mu N \left(1 - \frac{1}{R_0}\right)$$

$$\Rightarrow \left(\frac{\alpha \eta - \mu \eta - \alpha \eta}{R_0(\mu + \alpha)}\right) I = -\frac{\mu N(R_0 - 1)}{R_0}$$

$$\Rightarrow \left(\frac{\mu \eta}{(\mu + \alpha)}\right) I = \mu N(R_0 - 1)$$

$$\Rightarrow I = \frac{N(\mu + \alpha)(R_0 - 1)}{\eta}$$

Using this value of I at $E = \eta I/R_0(\mu + \alpha)$, we get:

$$E = \frac{N(R_0 - 1)}{R_0}$$

Hence, the endemic equilibrium is:

$$H_{Endemic}^* = \left(\frac{N}{R_0}, \frac{N(R_0 - 1)}{R_0}, \frac{N(\mu + \alpha)(R_0 - 1)}{\eta}\right)$$

The Jacobian matrix from system 1 is:

$$M = \begin{pmatrix} -\frac{\eta I}{N} - \mu & \alpha & -\frac{\eta S}{N} \\ \frac{\eta I}{N} & -(\mu + \alpha) & \frac{\eta S}{N} \\ \frac{\beta \eta I}{N} & 0 & \frac{\beta \eta S}{N} - \gamma \end{pmatrix}$$

At the endemic equilibrium $H^*_{Endemic}$, the Jacobian is:

$$M_{H_{Endemic}^*} = \begin{pmatrix} -(\mu + \alpha)(R_0 - 1) - \mu & \alpha & -\frac{\eta}{R_0} \\ (\mu + \alpha)(R_0 - 1) & -(\mu + \alpha) & \frac{\eta}{R_0} \\ \beta(\mu + \alpha)(R_0 - 1) & 0 & \frac{\beta\eta}{R_0} - \gamma \end{pmatrix}$$

36 The characteristic equation of the Jacobian is:

$$\begin{vmatrix} -(\mu + \alpha)(R_0 - 1) - \mu - \lambda & \alpha & -\frac{\eta}{R_0} \\ (\mu + \alpha)(R_0 - 1) & -(\mu + \alpha) - \lambda & \frac{\eta}{R_0} \\ \beta(\mu + \alpha)(R_0 - 1) & 0 & \frac{\beta\eta}{R_0} - \gamma - \lambda \end{vmatrix} = 0$$

$$\Rightarrow ((\mu + \alpha)(R_0 - 1) + \mu + \lambda)((\mu + \alpha) + \lambda)(\frac{\beta\eta}{R_0} - \gamma - \lambda) - \alpha(((\mu + \alpha)(R_0 - 1))(\frac{\beta\eta}{R_0} - \gamma - \lambda)) - \frac{\eta}{R_0}((\mu + \alpha)(R_0 - 1))(\frac{\beta\eta}{R_0} - \gamma - \lambda) - \frac{\beta\eta}{R_0}(\mu + \alpha)(R_0 - 1)) - \frac{\eta}{R_0}((\mu + \alpha + \lambda)(\beta(\mu + \alpha)(R_0 - 1))) = 0$$

$$\Rightarrow -\lambda(\lambda + \mu + \alpha)(\lambda + \mu + (\mu + \alpha)(R_0 - 1)) + \alpha(\lambda + \frac{\eta\beta}{R_0})(\mu + \alpha)(R_0 - 1)$$

$$-\frac{\eta\beta}{R_0}(\lambda + \mu + \alpha)(\mu + \alpha)(R_0 - 1) = 0, \quad \text{where } \frac{\beta\eta}{R_0} = \gamma$$

$$-\lambda(\lambda + \mu)(\lambda + \mu + \alpha) - \lambda(\lambda + \mu + \alpha)(\mu + \alpha)(R_0 - 1)(\alpha\lambda - (\lambda + \mu)\frac{\eta\beta}{R_0}) = 0$$

$$-\lambda(\lambda + \mu)(\lambda + \mu + \alpha) - (\mu + \alpha)(R_0 - 1)(\lambda + \mu)(\lambda + \frac{\eta\beta}{R_0}) = 0$$

$$-\lambda^2(\lambda + \mu) - \lambda(\lambda + \mu)(\mu + \alpha) - (\mu + \alpha)(R_0 - 1)(\lambda + \mu)(\lambda + \frac{\eta\beta}{R_0}) = 0$$

$$(\lambda + \mu)(\lambda^2 + (\mu + \alpha)R_0\lambda + \eta\beta(\mu + \alpha)(1 - \frac{1}{R_0})) = 0$$

$$\lambda = -\mu, -\frac{(\mu + \alpha)R_0}{2} \pm \frac{\sqrt{(\mu + \alpha)^2R_0^2 - 4\eta\beta(\mu + \alpha)(1 - \frac{1}{R_0})}}{2}$$

The last two eigenvalues determine the stability of $H^*_{Endemic}$, because the first eigenvalue $(-\mu)$ is always a negative real number. Since $R_0 > 1$ or $1 - 1/R_0 > 0$, $\sqrt{(\mu + \alpha)^2 R_0^2 - 4\eta \beta(\mu + \alpha)(1 - 1/R_0)} < (\mu + \alpha)R_0$ if the term inside the square root is a positive real number. If the term inside the square root is imaginary, the eigenvalues are complex conjugate numbers.

 $H_{Endemic}^*$ is a stable node if all the eigenvalues are negative real numbers. Hence:

$$(\mu + \alpha)^2 R_0^2 \geq 4\eta \beta (\mu + \alpha) \left(1 - \frac{1}{R_0} \right)$$

$$(\mu + \alpha) R_0 \geq 4\gamma \left(1 - \frac{1}{R_0} \right) > 0, \text{ since } \beta \eta = \gamma R_0$$

 $H_{endemic}^*$ is a stable focus if two of the eigenvalues are complex conjugate numbers with a negative real part.

$$(\mu + \alpha)R_0 < 4\gamma \left(1 - \frac{1}{R_0}\right)$$

S3. Derivation and stability of Q_{Free}^*

The equilibrium Q_{Free}^* is obtained from the equations:

$$\frac{dS}{dt} = (\mu - \sigma)N - \frac{\eta IS}{N} - \mu S + \alpha E = 0$$
(3a)

$$\frac{dE}{dt} = \frac{\eta IS}{N} - (\mu + \alpha)E = 0 \tag{3b}$$

$$\frac{dI}{dt} = \frac{\beta \eta IS}{N} - \gamma I = 0 \tag{3c}$$

44 From eq. (3c), we obtain:

$$\left(\frac{\beta\eta S}{N} - \gamma\right)I = 0\tag{4}$$

- Similar to the eq. (2) in S1, eq. (4) also has exactly two solutions:
- Case 1: I = 0.
- Case 2: The other solution is $S = N/R_0$, where $R_0 = \eta \beta/\gamma$.
- We only analyze case 1 here. Case 2 is analyzed in S4. Using I=0 at eq. (3b), we get E=0. Using I=0
- and E = 0 in eq. (3a), we obtain:

$$S = \frac{(\mu - \sigma)N}{\mu}$$

$$\Rightarrow S = (1 - p)N, \text{ where } \frac{\sigma}{\mu} = p$$

- Therefore, the non-endemic equilibrium is $Q_{Free}^* = ((1-p)N, 0, 0)$.
- The Jacobian matrix from system 3 is:

$$M = \begin{pmatrix} -\frac{\eta I}{N} - \mu & \alpha & -\frac{\eta S}{N} \\ \frac{\eta I}{N} & -(\mu + \alpha) & \frac{\eta S}{N} \\ \frac{\beta \eta I}{N} & 0 & \frac{\beta \eta S}{N} - \gamma \end{pmatrix}$$

At the generalist free equilibrium Q_{Free}^* , the Jacobian is:

$$M_{Q_{Free}^*} = \begin{pmatrix} -\mu & \alpha & -\eta(1-p) \\ 0 & -(\mu+\alpha) & \eta(1-p) \\ 0 & 0 & \beta\eta(1-p) - \gamma \end{pmatrix}$$

53 The characteristic equation is:

$$\begin{vmatrix} -\mu - \lambda & \alpha & -\eta(1-p) \\ 0 & -(\mu + \alpha) - \lambda & \eta(1-p) \\ 0 & 0 & \beta\eta(1-p) - \gamma - \lambda \end{vmatrix} = 0$$

The eigenvalues are:

$$\lambda = -\mu, -(\mu + \alpha), \beta \eta (1 - p) - \gamma$$

 Q_{Free}^{*} is a stable node if all the eigenvalues are real and negative. Hence:

$$\beta \eta (1-p) - \gamma < 0$$

$$\Rightarrow R_0 (1-p) - 1 < 0, \text{ since } R_0 = \frac{\beta \eta}{\gamma}$$

- The above inequality is obvious for $R_0 < 1$. The specific condition for the stability of Q_{Free}^* at $R_0 > 1$ is
- discussed below:

$$R_0(1-p) - 1 < 0$$

$$\Rightarrow 1 - p < \frac{1}{R_0}$$

$$\Rightarrow p > 1 - \frac{1}{R_0}$$

- That is the stability condition of Q_{Free}^* for $R_0 > 1$. In contrast, if $p < 1 1/R_0$, then one of the eigenvalues $(\beta \eta (1-p) \gamma)$ is positive. That makes Q_{Free}^* a saddle point, which is unstable.

59 S4. Derivation and stability of $Q^*_{Endemic}$

- We also obtain the equilibrium $Q_{Endemic}^*$ from the differential equations given in S3.
- Using the value $S = N/R_0$, mentioned in case 2 of S3, in eqs. (3b) and (3a), we obtain:

$$\frac{dE}{dt} = \frac{\eta IS}{N} - (\mu + \alpha) E = 0 \Rightarrow E = \frac{\eta I}{R_0(\mu + \alpha)}$$

$$\begin{split} \frac{dS}{dt} &= (\mu - \sigma)N - \frac{\eta IS}{N} - \mu S + \alpha E &= 0 \\ \Rightarrow (\mu - \sigma)N - \frac{\eta I}{R_0} - \frac{\mu N}{R_0} + \frac{\alpha \eta I}{R_0(\mu + \alpha)} &= 0 \\ \Rightarrow \left(\frac{\alpha \eta}{R_0(\mu + \alpha)} - \frac{\eta}{R_0}\right)I &= -\mu N\left(1 - \frac{1}{R_0}\right) + \sigma N \\ \Rightarrow \left(\frac{\alpha \eta - \mu \eta - \alpha \eta}{R_0(\mu + \alpha)}\right)I &= -\frac{\mu N(R_0 - 1)}{R_0} + \sigma N \\ \Rightarrow \left(\frac{\mu \eta}{\mu + \alpha}\right)I &= \mu N(R_0 - 1) - \sigma N R_0 \\ \Rightarrow \left(\frac{\eta}{\mu + \alpha}\right)I &= N(R_0 - 1) - p N R_0, \quad \text{where } p = \sigma/\mu \\ \Rightarrow I &= \frac{(\mu + \alpha)N(R_0 - 1 - p R_0)}{\eta} \\ \Rightarrow I &= \left(1 - p - \frac{1}{R_0}\right)\frac{(\mu + \alpha)N R_0}{\eta} \end{split}$$

Using this value of I at $E = \eta I/R_0(\mu + \alpha)$, we get:

$$E = \left(1 - p - \frac{1}{R_0}\right)N$$

63 Hence, the endemic equilibrium is:

$$Q_{Endemic}^* = \left(\frac{N}{R_0}, \left(1 - p - \frac{1}{R_0}\right)N, \left(1 - p - \frac{1}{R_0}\right)\frac{(\mu + \alpha)NR_0}{\eta}\right)$$

The Jacobian matrix from system 3 is:

$$M = \begin{pmatrix} -\frac{\eta I}{N} - \mu & \alpha & -\frac{\eta S}{N} \\ \frac{\eta I}{N} & -(\mu + \alpha) & \frac{\eta S}{N} \\ \frac{\beta \eta I}{N} & 0 & \frac{\beta \eta S}{N} - \gamma \end{pmatrix}$$

At the endemic equilibrium $Q_{Endemic}^*$, the Jacobian is:

$$M_{Q_{Endemic}^*} = \begin{pmatrix} -(\mu + \alpha)(R_0 - pR_0 - 1) - \mu & \alpha & -\frac{\eta}{R_0} \\ (\mu + \alpha)(R_0 - pR_0 - 1) & -(\mu + \alpha) & \frac{\eta}{R_0} \\ \beta(\mu + \alpha)(R_0 - pR_0 - 1) & 0 & \frac{\beta\eta}{R_0} - \gamma \end{pmatrix}$$

The characteristic equation of the Jacobian is:

$$\begin{vmatrix} -(\mu + \alpha)(R_0 - pR_0 - 1) - \mu - \lambda & \alpha & -\frac{\eta}{R_0} \\ (\mu + \alpha)(R_0 - pR_0 - 1) & -(\mu + \alpha) - \lambda & \frac{\eta}{R_0} \\ \beta(\mu + \alpha)(R_0 - pR_0 - 1) & 0 & \frac{\beta\eta}{R_0} - \gamma - \lambda \end{vmatrix} = 0$$

Replacing $\frac{\eta\beta}{R_0}$ by γ in the characteristic equation, we get:

$$\begin{vmatrix} -(\mu + \alpha)(R_0 - pR_0 1) - \mu - \lambda & \alpha & -\frac{\eta}{R_0} \\ (\mu + \alpha)(R_0 - pR_0 1) & -(\mu + \alpha) - \lambda & \frac{\eta}{R_0} \\ \beta(\mu + \alpha)(R_0 - pR_0 - 1) & 0 & -\lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta(\mu + \alpha)(R_0 - pR_0 - 1) & -(\mu + \alpha) - \lambda & \frac{\eta}{R_0} \\ \beta(\mu + \alpha)(R_0 - pR_0 - 1) & 0 & -\lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta(\mu + \alpha)(R_0 - pR_0 - 1) & -(\mu + \alpha)(\lambda + \alpha)(\lambda + \alpha)(R_0 - pR_0 - 1) - \frac{\eta R_0}{\beta}(\mu + \alpha)(R_0 - pR_0 - 1) \\ -(1) & \frac{\beta\eta}{R_0}(\lambda + \mu + \alpha)(\mu + \alpha)(R_0 - pR_0 - 1) = 0 \end{vmatrix}$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = \frac{\eta}{R_0} \begin{vmatrix} \beta(\mu + \alpha)(R_0 - pR_0 - 1) \\ -(\mu + \alpha)(R_0 - pR_0 - 1) \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = \frac{\eta}{R_0} \begin{vmatrix} \beta(\mu + \alpha)(R_0 - pR_0 - 1) \\ -(\mu + \alpha)(R_0 - pR_0 - 1) \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma_1 & \beta & \beta \\ \beta & \beta & \beta \end{vmatrix} = 0$$

$$\begin{vmatrix} \gamma$$

- The first eigenvalue, $-\mu$, is a negative real number. Now we analyze the other two eigenvalues. Since $Q_{Endemic}^*$ exists when $p < 1 1/R_0$, the term $(R_0(1-p)-1)$ inside the square root is positive. Therefore, $\sqrt{(\mu+\alpha)^2(1-p)^2R_0^2-4(\mu+\alpha)(R_0(1-p)-1)\gamma}$ is either a positive real number or an imaginary number. Moreover, the square root is less than $(\mu+\alpha)(1-p)R_0$ when it is a positive real number. Therefore, either all the eigenvalues are negative real numbers or two of them are complex numbers (one is the complex conjugate of the other).
- $Q_{Endemic}^*$ is a stable node if all the eigenvalues are negative real numbers. Hence:

$$(\mu + \alpha)^2 (1-p)^2 R_0^2 \ge 4(\mu + \alpha)(R_0(1-p) - 1)\gamma$$

 $Q_{indemic}^*$ is a stable focus if two of the eigenvalues are complex conjugate numbers with negative a real part.

$$(\mu + \alpha)(1-p)^2 R_0^2 < 4(R_0(1-p)-1)\gamma$$