Supplementary Methods

1 Proposed Boosting Algorithm

1.1 Polygenic score function

To define the linear polygenic score (PGS) function, assume that we are given the
following input training dataset:

{(wl,yl)v ($2,y2)a ceey (:I:N,yN)}7

where N is the number of samples, and y; has a Boolean value (+1 or —1) that
expresses whether the i-th sample is diseased (41) or healthy (—1). Vector x; has the
form
(Gi,h G¢727 ceey Gi,M7 SET;, age;, PCi’l, ...PCZ'J())T,

where M is the number of SNVs, G € RVN*M ig the genotypic dosage matrix, and Gj ;
is the allelic dosage, defined as the count of minor alleles, of the j-th SNV of the i-th
sample (G;; € {0,1,2}) after substituting missing values into the mode count. sez;
and age; are the sex and age of the i-th sample, respectively, and PC; ; is the value
of the j-th projected principal components of the i-th sample.

Herein, we define a polygenic score PGS for predicting the disease risk of the i-th
sample (x;,y;) as a linear model of general functions:

PGS(m;) = Y fi(a),
t=0

where fi(z) is a function from X to R (X is the space of all possible instances), and T'
is the iteration number. In typical PGS methods, each of f; models the additive effect
of a single SNV.

1.2 LogitBoost algorithm

We explain the LogitBoost algorithm [1, 2] in terms of human genetics.
LogitBoost uses real-valued functions fi(x;) to predict the quantitative risk of
disease. We first explain how the LogitBoost algorithm works.



LogitBoost

Given: training data {(x1,y1), (Z2,y2), -, (TN, UN)}

Initialize: Fy(x) =0

Fort=0,...,.T — 1:

1. Compute the probability p:; of sample ¢ being a disease, the sample working
response z ;, and the sample weight wy ;:

_ 1
= T+ exp(—Fi(w)

1 _
L — Pt,i Yi = +1
2t = 1
Yy = —1

Dt,i

1—pei

Wi = Dri(1 = pri)-

2. Search SNV functions H for the function f; € H that minimizes

N
Z wt,i(ft(wi) - Zt,i)2,
i=1

and select the best fit function f;".
3. Update the predictor:

Fiii(x) = Fy(x) + f (x).

Output: PGS(x) = Fr(x)
J
We perform T rounds of iteration to output 7' tests f;. We first prepare SNV
functions H. A representative example of SNV functions H is the additive model of
every SNV. In Step 1, we calculate the working response z;; and sample weight wy ;.
In Step 2, we fit and find the SNV function to minimize the least-squares loss function.
To find the best fit SNV function f;, we fit every function f; in H by a weighted least-
squares regression to z; ; and select the SNV function with the minimal least-squares
loss function.

1.3 LogitBoost minimizes the logistic loss function using Newton’s
method

Let F; denote a tentative polygenic score function at the ¢-th iteration:

t—1
Fy(a:) =Y fr(x),
7=0

where f.(x;): X = R is the weak learner selected in the 7-th iteration.



We consider the score function Fi(x) at the t-th iteration to Fy(x) + f(x), using
Newton’s method, i.e., considering the quadratic approximation of the loss function.

Given a general twice differentiable loss function I(F(x)), let Fi(x) be the score
function at the ¢-th iteration and consider updating it to Fi(x) + f(x). We seek a
function f(x) to minimize the total loss function for N samples:

N
Zl Ft mz +f mz))
1=1

Minimizing L;(f()) itself is hard, so we instead minimize the sum of the quadratic
approximation of the loss function I(F'(x)) for N samples, which is called Newton’s
method.

Theorem 1 Minimizing the sum of the quadratic approzimation of the loss function [(F(x))
for N samples is equivalent to minimizing the least-squares loss function Li(f(x)):

al st(xi, yi) 2
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where si(x,y) = — T pa)—o is the negative first derwative of l(F(x)) and
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Besides, on the update, the total loss function Li(f(x)) decreases by ALy (f(a:))
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Fa)=0 is the second derivative of I(F(x)), both evaluated at
x)=

Proof Using Newton’s method, we minimize the quadratic approximation of the updated loss
function {(F¢(x)) + f(x)) around Fi(x) for each sample:

Ol(Fy(z) + f(=))

Fi(w) + 1(@) =) + PRI g
19*1(Fy(z) + f(x)) ‘ 2
= U(Fu(@) — s1(@,0) f @) + 3 Hilw,9) f(2)°
where s¢(x,y) = — %W‘ﬂw):o and Hi(x,y) := W‘f@):o as defined

above. The total loss function for N samples is given by:
N
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where the second term is constant for f(z;). Thus, minimizing AL:(f(x)) is equivalent to
minimizing the following least-squares loss function Li(f(x)):

N 2
z)) = e . ) — St(mi7yi)
N=3 Hilai) (e - pileevhy
O

Among a variety of loss functions, the logistic loss function is commonly adopted
for two-class classification problems, including predicting case or control status. The
logistic loss function L for N samples is defined as the negative log-likelihood of L:

L=—InL
( [~ 11 1—pz>
iy = iy =—
:—< Z Inp; + Z 1—pl>.
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Since the probability p; of sample 7 being case (y; = +1) is modeled as p; =

1
14exp(—F(x;))’
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From Theorem 1, minimizing the approximated logistic loss function is equiva-
lent to minimizing the least-squares loss function. We compute the least-squares loss
function for the logistic loss function at the ¢-th iteration according to Theorem 2.

Theorem 2 When adopting the logistic loss function (l(F(w)) =1In (1 + exp ( — yF(a:)))),

the least-squares loss function to find minimal f(x) at the t-th iteration is

Zwtl th)Qa

where
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Proof We seek a function f(x) to minimize the logistic loss function for N samples:

N
Lo(f () = D U(F (@) + f(:).
i=1
From Theorem 1, the corresponding least-squares loss function is L:(f(xz)) =
Zivil (Ht(wiayi) (f(wz)* %) ), where si(x,y) = — %W‘f(m):O and
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The first derivative %W for the logistic loss function is
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where wi(x) = pe(x)(1 — pe(x)).
The least-squares loss function is
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Concisely by denoting w; ; = wi(x;) and 2z ; = z¢ (@4, 14),
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O
Theorem 3 The decrease in the logistic loss function ALt(f(x)) at the t-th iteration is
1 N
2
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Proof The decrease in logistic loss function AL¢(f(x)) is
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where, Hy(a;,y;) = wy; and s¢(®4,y;) = Ui — Pt,i = 24,iWt4, as shown in Theorem 2. O

1.4 Non-additive GenoBoost

When we apply LogitBoost for the polygenic score, we have two types for the weak
learners that represent non-additive and additive models. For both models, we can
calculate analytic solutions for the parameters of each variant.

Non-additive GenoBoost assigns genotype-dependent scores (i, St,1,St,2) for
allele dosage (0,1, 2), respectively, of the variant selected at the ¢-th iteration as

St,0 Gt(ml) =0
Ji(xi) = si1 Gi(zy) =1
St72 Gt(ml) = 2.

where Gy(x;) is defined as genotype G; ; when SNV j is selected at the ¢-th iteration,
and G; ; € {0,1,2} is the allelic dosage of the j-th SNV of the i-th sample.



The scores to minimize the loss function are given by the following:

o Ut i
tk = T
Wik

where W, ;, = Z wy; and Uy p = Z wy iz, (for k=0,1,2).
:Gy(xi)=k :Gy(xi)=k
Among SNV candidates, we select the SNV for the ¢-th iteration with the minimal
loss function:

N 2
Ly = Zwt,i(ft(ivi) - Zt,i)2 = Z Z Wi (SIk - Zt,i)z-
i=1

k=04:Gy (@) =k

Theorem 4 Non-additive GenoBoost minimizes the logistic loss function using Newton’s
method at the t-th iteration by setting parameters sy, (k = 0,1,2) to optimal values s;k:

Utk
St = W (1)

We assume that Wy, > 0(k = 0,1,2), which holds when all three genotypes are present for
the SNV.

Proof We calculate f(x) to minimize the least-squares loss function
N

2
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O

We define SNV accuracy as the absolute value of the decrease in the loss function
and use it as a metric to select the SNV at each iteration. High SNV accuracy indicates
a great decrease in the loss function and a large association with the phenotype.

Theorem 5 The decrease in the logistic loss function for non-additive GenoBoost at the t-th
iteration s

AL(f* () = —= i Ui
2 = Wik



If sf,k # 0 for some k, the logistic loss function is guaranteed to decrease:

ALt(f* (z)) < 0.

Proof From Theorem 3, the decrease in the logistic loss function at the ¢-th iteration is given
by
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We substitute f*(z) with si
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When s; ;. # 0 for some &, Uy 1, # 0 and Ut2,k > 0 hold from Supplementary Equation (1),
AL(f*(x)) <0,
since Wy ;. > 0 always holds. O

1.5 Additive GenoBoost

Additive GenoBoost uses two parameters (¢, o) for the variant selected at the t-th

iteration as
Ct Gt (.’131) =0

fili) =S co+a;  Gi(z) =1
20 Gi(x;) = 2.

The scores to minimize the loss function have a complicated form compared to
those of non-additive GenoBoost, as shown in Theorem 6.



Theorem 6 Additive GenoBoost minimizes the logistic loss function using Newton’s method
at the t-th iteration by setting parameters (ct,a+) to optimal values (ci,af) as

. _ (Wi +4Wi2)Us o + 2W; oUs 1 — Wi 1Us 2
¢ Wi oWe1 + Wi 1 W o + 4Wy 2 Wy 0

o = (=Wt —2Wi2)Uro + (—Wyo + Wi o)Us1 + (2Weo + Wi 1)Uz 2
Wi oW1+ Wi 1We o + AW oW g ’
where
Wt,k = Z wm, Ut,k = Z wt,izt,i fO?" k= 0, 1, 2.

:Gy(x)=k i:Gi (i) =k

Proof We calculate f(z) under the additive model to minimize the least-squares loss function:
N
2
Li(f(x)) = Zwt,i (f (i) — 21,5)
i=1
2 2
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Ct

=0.

(ct,a)=(cf,a})

(et,ar)=(ct,af)

OL:(f(=))

dcy

= 2 i:G (i) =0 Wei - 2(ct — 2t4)
220G (i) =1 Weyi - 2((cf + oF) — 24,4)
+ 20 Ga(ws)=2 Wi - 2((c} +207) — 24) =0
=20 (i) =1 Wi - 2((cf +07) — z14)
220G (@) =2 Weyi - 4((ct +207) — 2¢,1) = 0.
We collect the coefficients of ¢; and «j in each equation, and transform each equation
using Wy, and Uy
{ et Weo+ Wi+ Wez) +of (W +2Wi2) + (—Uo —Uin — U 2) =0 (3)
cr (Wt,l + 2Wt’2) +of (Wt,l + 4Wt72) + (—Ut,l — 2Ut)2) =0. (4)
((3) x (W1 +4Wy2) — (4) x (Wi +2Ws 2)) and
((4) x (Weo + Wi + Wea) = (3) x (Wia +2Wa,2)) yield
cf (WeoWe1 + Wi i Wy o + AW o Wi o)
— (Wi +4Wi 2)Upo + 2We 2Up 1 — Wy 1Up2) =0
of (Wi oWe1 + Wi i Weo 4+ AWy 2 Wi o)
— (W1 = 2Wi 2)Up o + (—Wi2 + Wi o)Up 1 + (2We0 + Wi 1)Uy 2) = 0.
cf and of are given by
&= (Wi +4Wi2)Uso + 2Wi 2Us 1 — Wi 1Us 2
Wi oW1 + Wi 1 Wi o +4W3 oWy o
of = (W1 —2Wi2)Upo + (—Wio + Wi0)Up 1 + (2We g + Wt,l)Ut,Q.
Wi oWe 1 + Wi aWe o + AW o Wi o

(ct,ar)=(cf,a;)

OL:(f(=))
Doy

(et ae)=(cy,af)
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1.6 Learning rate

We introduce two features in GenoBoost to improve the accuracy and incorporate more
SNVs: the learning rate and limiting of extreme SNV scores. The original GenoBoost
only takes a few highly reliable SNVs from one LD in most cases, as once an SNV
is selected, the loss functions of its correlated SNVs are adjusted to be large. This
behavior is expected; however, it sometimes leads to overfitting [3]. To avoid this, we
introduce the learning rate. We set parameter v (0 < v < 1) as the learning rate.
After selecting an SNV, the sample score is updated as

Fipi(x) = Fi(x) + v fe(x).

This makes the loss function decrease much less per iteration than the original and
selects more SNVs from an LD block in most cases (Supplementary Fig. 17). Among
several candidate values of 7, we set -y to the optimal value in the validation dataset.

1.7 Limiting extremely large absolute SNV scores

Sometimes, the SNV scores have extremely large absolute values for non-additive
GenoBoost. This happens, for example, for the low-frequency variant’s score s; 2. st 2
is calculated only from samples with two minor alleles (Supplementary Equation (1)),
and is sometimes extremely large or small due to sampling error when the number of
samples with two minor alleles is small. To avoid overfitting, we limit the score s 2
while the estimated genetic inheritance modes stay the same.

Let ds;¢ 1 = s¢,1 — S¢,0 and ds; 2 i= St 2 — S¢,0 be the score of s; 1 and s; o relative to
st,0. As illustrated in Supplementary Figure 6, if ds;; or ds; 2 has an extreme value,
st is adjusted. Sometimes, for example, for low-frequency variants, ds; 2 could be
>10 times larger than ds; 1; these extreme SNV scores may lead to overfitting. Since
the variant is the recessive mode (Fig. 1d and Supplementary Fig. 2), we limit s; o
so that ds; o is at most 4 x ds;; since this is the border of the recessive mode and
additive mode. We adjust s; » similarly to the overdominant and overrecessive modes.
The threshold 4 x ds; ; is the one dividing ds; ; into additive mode and dominant mode
at equal intervals, and other thresholds are set so that estimated additive, dominant,
and recessive modes have equal range of ds; 1 (Supplementary Fig. 2).

Supplementary Table 1 shows how to limit the SNV scores.

Condition Adjusted ds?éj

dst,2 > 4dsi 1 dstY = adsy

0 <dsto <08dsi1  dstY = 0.8dss,1
—4dsy,1 < dsg2 <0 dstT =0

dse2 < —Adsi,1 dsy§ = —4ds,

Supplementary Table 1: Adjusted ds; s after limiting the SNV scores
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We tried another adjustment shown in Supplementary Table 2 as well as no adjust-
ment, but the accuracy was lower, as shown in Supplementary Fig. 7. The threshold
21/2 is the one dividing ds¢,1 additive model and dominant model geometrically.

Condition Adjusted ds¢,2
2v/2dst 1 < dst 2 dsféj = 2v/2dst 1
0 < dsy2 < V2dse,1 dstY = /2dsy 1
—2\/§dst71 <dst2 <0 ds;“éj =0

dsto < —2v/2dst 1 ds‘tuéj = —2v/2dst 1

Supplementary Table 2: Another adjusted ds; o after limiting the SNV scores

We will show that the adjustment does not change the size relationship of the
decrease in the loss function of SNVs under a specific situation.

Let us assume that at the ¢-th iteration, recessive SNV A has SNV scores
(50, 51,52 > 0) that are adjusted to (so, 51,557 > 0), respectively, so that ds, = 4ds;,
thus changing the value of the loss function from AL 4 to ALZdj . As a comparison, we
consider a hypothetical SNV A’ whose SNV scores are (sg, s1, sgdj ) from the begin-
ning, and the decrease in the loss function is AL 4. We confirm that SNV A has a
smaller loss function than SNV A’ (AL4 < ALy/) and that the ordering of L of
genetic variants remains the same even after the adjustment (ALZdj < AL 4s) under
a common condition where Wy, (k =0, 1,2) are equal for SNV A and A’.

Theorem 7 Assume the size relationship for the SNV score of k = 2 for SNV A (s2) and
the adjusted score (sgdj), which is equal to the SNV score of k =2 for SNV A’:
S > s;dj > 0,
and assume that Wy, (k = 0,1,2) are equal for SNV A and A’.
Then, the decrease in the logistic loss function of SNV A is smaller than A’:
ALy < ALy
Also, the decrease in the logistic loss function for the adjusted SNV scores of SNV A is smaller
than A’:
ALa < ALy,
therefore, the ordering of the decrease in the loss functions stays the same.

Proof We first show Uy = Uarj, for k= 0,1 and Ug o > Uy 2 > 0. The SNV scores of
SNV A before adjustment are (sq, s1, $2), which satisfy

Ui,k
= 2 k = 07 1, 2
Sk WA,k ( )7
from Supplementary Equation (1), where War = >, _pwi; and Upy =
Zi:xA =k Wti2t,- The SNV scores of SNV A’ are (sg, s1, sgdj > 0), which satisfy
Ua i adj Uar 2
S = : k=0,1) and s%9 = — ==
Wark ( 1) 2 War 2
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where Wy, p = Zi:a:A/ _pwe; and Uyr g, = Zm%/ _ W2t Here, for k = 0,1, from the
assumption Wy j = WA/7k, 7
5 Ua Uar k
k= =
War Warg
Uajr=Ua i

For k = 2, from the assumption sy > sgdj >0and Wy 2 =Wy o,

oy = Ua2 sadi _ Uar 2
Wa2 2 War o

UA72 > UA/Q > 0.

We next show AL 4 < AL 4/. From Theorem 5,

Ul
Ala=-3 Z Wak
UA/
ALy = Z W
The difference between AL 4 and ALy is
Uik 1< U3,
ALjpy — ALy = —= - | —= .
B el GO
_1 2 (Udx Ui
2= \War Warg

_ 1 U%,Q B Ui',z
2\ Waa Wao

by Uap =Uarp and Wy j, = Wy, (k=0,1)

Ui, —U%
:M>O byWA2:WAlzandUA2>UA'2>O’
2Wy 2 , ’ ’ ’

which proves ALy < AL 4/ » '
The inequity stays as (AL(XI] < AL4s), when the SNV A score s2 is adjusted to s;dj

From Supplementary Equation (2),

1
a1 9 dj2 dj
3= 1 (3 (s 2m0) (57~ 2905)

k=0
1
1 U,k Uk
- * 9 Ak g
2,; <<WA,k) AT I W R
1 Uara\?2 U
i < A7.2 ) 7 A7.2 Uns
2\ \Wa 2 War o
Uarp

Ua
by Sk:WAk (k‘—()l) and s adj WA/2

)

1 Uik 1
__izwAk+§

k=0 ’

2
Uy o _ 2Ua2Uar 2
War 2 War o

> by Wao=War o
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The difference between ALZdj and AL 4/ is
. U ’ U 1 Ui/2 ZUA 2UAI2
ALy — ALY = Ak (-2 Ak 42 2 AR
A 4 Z WA’, Z o Wak T3 War o Waro

_1 _UA’,Q 3 Ui o _ 2Ua2Ua 2
2 War 2 Wy 2 Wy o

by Uar =Uar and Wy, = Wy g, (k=0,1)

:UAQ
War o

)

(UAQ*UA/ )>0, by Ugz2 > Upr2 >0,

which proves ALZdj < ALy
O

However, in practice, the ordering of L for M SNVs is not necessarily preserved if
the adjustment results in a violation of the condition sy > s§dj > 0 for some SNVs.
We use the decrease in loss function after adjustment AL*¥ for the SNV selection.

1.8 Batch screening

It is tractable to compute the loss function for all the variants and every iteration
because the analytic solution does not run a regression. However, most of the variants
do not change their loss function in the next iteration when they have low correlations
with the selected variant. Batch screening has been proposed to avoid unnecessary
computation [4, 5]. Batch screening first computes the loss function for all variants
and only computes the loss function and selects the SNVs for the smallest Myqicn
for several iterations. We can reduce the computational time without compromising
accuracy.

After computing the loss function for all variants, for several iterations, we only
focus on variants whose loss function is larger than the threshold, which is the Mpqtcn-
th smallest loss function. We recompute the loss function for all variants when Mpqcn
iterations have passed.

1.9 Covariates

There are several ways to incorporate quantitative and qualitative covariates. One
way is to regard the covariates as weak learners themselves. This requires regression
in every iteration, as there are no analytic solutions for the effect size for the quan-
titative variable. Another way is to use the same qualitative boosting framework by
classifying the quantitative value into qualitative categories; this requires parameters
for boundaries.

We decided to run logistic regression beforehand and let the predictive function
serve as the initial score function of GenoBoost (Fio,(x)). This strategy is similar to
GWAS and is widely accepted. However, once the effect sizes are determined, they
cannot be changed.
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1.10 GenoBoost algorithm
We show the GenoBoost algorithm.

Additive and non-additive GenoBoost

Given: training data {(x1,y1), (z2,92), ... (®N, yn)}
User-given parameter: learning rate 0 < v < 1, maximum iteration 7', and Mpqsch
Initialize: t = 0, Fo(x) = Feov(x)

Repeat:

1. Compute the probability of sample i being a disease p; ;, the sample working response

2¢,5, and the sample weight wy ;:

1
_ = +1
! Zti = { boe (i :

Pti = 77T 7 o7 5
i 1+ exp(—Ft(wi)) 71%1)/” (yi = 71)

and set Wy, = Zi:G,(mi):k wy ; and Uy, = Zi:Gt(mi):k Wi 2t -

we,i = pr,i(1 = pes),

2. For each SNV, compute the fitted parameters for the function under the additive

model:
&= (Wi + AW 2)Upo + 2WioUp 1 — Wi 1Us o
Wi oW1 + Wy aWi o + AW oW o
of = (=W —2Wi2)Us o + (—Wio + Wi 0)Up 1 + QW0 + Wi 1)Uy 2 -

Wi oW1 + Wi 1 Wi o + AW o We o

.. U
To use the non-additive model, set: sfk = Wt”C .
s tk

3. Compute the loss function: Zf\il wy i (fe(x;) — zt,i)Q, where fi(z;) is the additive

(left) or non-additive (right) function defined below:

cf Gi(x;) =0 sto Gi(x) =0
fe(@i) = ¢ +of  Gi(z) =1 fi(xi) = st Gilm) =1
cf +2a; Gi(z;) =2, st Gi(zi) =2

and limit extreme SNV scores for the non-additive function.
4. Create a batch of the Mpyt.p smallest SNVs.
Initialize the batch counter tpqscn, = 0.
Repeat:
(a) Select the SNV with the smallest loss function.
(b) Update the predictor: Fyiq(x) = Fi(x) + v [ (x).
(¢) Increment the counter t =t + 1, tpatch = thaten + 1
(d)
(e) If tpateh = Mpaten or t = T, exit the inner loop of Step 4.
5. If t =T, exit the loop.

Output: Fr(x)

Compute the loss function according to Steps 1, 2, and 3 for batch SNVs.
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1.11 Computational complexity

The order of the computational time of GenoBoost is O(NMTyater, + N MpaienT),
where N is the number of samples, M is the number of candidate SNVs, Mpq¢cn is the
number of SNVs in the batch, T is the number of iterations, and Tpqscp is the number
of iterations to compute the loss function for all M variants.

We devised an implementation to improve speed and memory consumption using
the compressed 2-bit form for genotype [6], single instruction, multiple data (SIMD)
instructions, and multithreading programming. GenoBoost is capable of processing
millions of SNVs in a reasonable time.

1.12 Estimation of genetic modes

We can estimate genetic inheritance modes from the scores of the selected SNVs. We
obtain a score of the heterozygote relative to that of the minor allele homozygotes,
defined as s; — sgp and denoted by ds;, and that of the major allele homozygotes,
defined as sy — sg and denoted by dss. We obtain the ratio of the two relative scores
rs = %. From these scores, we estimate the genetic inheritance mode of a selected
SNV as being overdominant, dominant, additive, recessive, or overrecessive, as shown
in Supplementary Table 3 and Figure 1d. We first classify variants into the dominant,
additive, recessive, and heterozygotes-only modes. We then classify the heterozygotes-

only modes into the overdominant and overrecessive modes by the sign of ds;.

Inferred genetic inheritance mode Condition
Overdominant (rs < —% or g <rs)and ds; >0
Dominant % <rs< %
Additive 1<rs<3
Recessive —% <rs < %
Overrecessive (rs < ,i or g <rs)and ds; <0

Supplementary Table 3: Genetic inheritance mode classification
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2 Data preparation

2.1 Phenotypic definition

We set case/control labels for samples based on self-reported medical conditions(Data
Field 20001/20002) and health record information, including International Classifi-
cation of Diseases (ICD-9, ICD-10) codes and OPCS Classification of Interventions
and Procedures (OPCS-4) codes. Supplementary Table 4 shows the definition of
phenotypes [7-12].

For cancers, including breast cancer and colorectal cancer, national cancer reg-
istries were also included [10, 12]. Gout also includes patients taking allopurinol or
sulphinpyrazone therapy, excluding those who also had lymphoma or leukemia [8].

2.2 Non-European samples

To investigate the portability of polygenic scores, we calculated the accuracy of the
polygenic scores of African, South Asian, and East Asian samples. We define African,
South Asian, and East Asian samples using genotype principal components (PCs,
defined in Data Field 22009) and the self-reported ancestry (Data Field 21000) as
follows; African: 260 < PC1, 50 < PC2, and not self-identified as any of Asian, White,
Mixed, or Other population groups; South Asian: 40 < PC1 < 120, —170 < PC2
< —80, and not self-identified as any of Black, White, Mixed, or Other population
groups; and East Asian 130 < PC1 < 170, PC2 < —230, and not self-identified as
any of Black, White, Mixed, or Other population groups [13]. For quality control, we
further excluded samples registered as putative sex chromosome aneuploidy or outliers
for heterozygosity or missing rate. The African sample sizes were 6,487 and 3,704 for
females, the South Asian sample sizes were 7,952 and 3,604 for females, and the East
Asian sample sizes were 1,770 and 1,138 for females. Supplementary Table 5 shows
case/control sample information for non-European samples.

We randomly split each of them into 20% validation and 80% test datasets. We
used the validation dataset to estimate the effects of covariates and the test dataset
to evaluate the predictive performance of PGS models.

2.3 PGS models without genetic variants on Chromosome 6

To investigate whether non-additive GenoBoost captures non-additive effects of other
regions than the MHC region, we excluded chromosome 6 from the polygenic score
function and computed the accuracy for rheumatoid arthritis, psoriasis, gout, inflam-
matory bowel disease, and asthma. We also excluded chromosome 6 from the training
dataset and trained for GenoBoost and LDpred for rheumatoid arthritis and psoriasis.
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2.4 Simulation Study

To understand the situation where additive and non-additive GenoBoost had higher
accuracy than other methods, we simulated polygenic phenotypes varying additive
and non-additive heritability (hZ2,;, h3,,,) and the number of causal SNVs (Mcqysal)-
We used the UK Biobank genotype of unrelated white British samples. The overall
heritability (h?), which is the sum of additive and non-additive heritability, was set
to 0.05 and 0.1, the numbers of causal SNVs were 100 and 1000, the proportions of
dominance heritabilities were 0% and 20% (Supplementary Table 6). Ten simulation

datasets for each parameter were generated according to the procedure below.

2 2 2
h hoaa  Paom Meausal

0.05 0.05 0.0 100 / 1000
0.05 0.04 0.01 100 / 1000
0.1 0.1 0.0 100 / 1000
0.1 0.08 0.02 100 / 1000

Supplementary Table 6: Simulation parameter
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Generation of Simulation Dataset
User-given parameters: hidd, hiom, M qusal, case prevalence p

1. Generate a set of causal SNVs.

Scausal — Meausai SNVs that are randomly selected

2. Generate additive and dominance effect sizes.
For the j-th SNV,

5;‘1dd =0 ] ¢ Scausal

ﬂadd ~N (0 hidd > ,] cs .
N P causal
J Mcausal

and

ﬁf(’m =0 ] ¢ Scausal
d hg

B'Om ~ N (07 o’m) ] S Scausala
I Mcausal

where N(-,+) is normal distribution.
3. Calculate the dosage scores for each SNV.

d fi
_5]. om 17ij
54,0 ﬁ;zdd n Bdom
Si1| = V25 (1=1;) J
$j,2 L A T
V2fi(1=f3) J £

where f; is the minor allele frequency of the j-th SNV.
4. Calculate liability for the i-th sample L;.

€ ~ N(Ov 1- hidd - htziom)

54,0 Gi,j =0
Li=ei+ Y s Gig=1
JE€Scausal Sj.2 Gi,j = 9.
5. Define the disease status of the i-th sample y;; namely, y; = 1 if L; is in top p
proportion and y; = 0 otherwise.

N )

21



3 Previously Published Polygenic Score Methods

To adjust the effects of covariates, we input both covariates and genotypes in the
snpnet program for snpnet and snpboost. For lassosum, LDpred, PRS-CS, SBayesR,
and C+T, we constructed PGS scores from summary statistics, which adjusted covari-
ate effects. We applied five-fold cross-validation and optimized hyperparameters via
grid search based on covariate-adjusted pseudo-R? in the validation dataset, following
the manner of GenoBoost.

3.1 Snpnet

Snpnet [4] is an algorithm to apply Batch Screening Iterative Lasso algorithm using
individual-level data. LASSO’s loss function is the sum of the logistic loss function
and a regularization term and differs from GenoBoost’s. snpnet has one parameter,
the regularization factor, which determines the number of SNVs. We used the default
value for the regularization factors of snpnet, which searches for 100 values.

3.2 Snpboost

Snpboost [5] is an iterative algorithm to minimize the loss function using the boost-
ing technique using individual-level data. Snpboost runs logistic regression at every
iteration and selects the SNV with the smallest loss function. Snpboost uses a batch
screening iterative method similar to snpnet. Unlike GenoBoost, snpboost cannot
exploit the non-additive model and uses regression to minimize loss function in every
iteration.

3.3 Lassosum

We also used lassosum (version 0.4.5) [14], a summary statistics-based LASSO. Las-
sosum inputs summary statistics and a reference panel for the LD matrix. The
regularization factors for lassosum were 0.0005, 0.001, 0.005, 0.01, 0.0125, 0.015, 0.175,
0.02, 0.025, 0.03, 0.04, 0.05, and 0.1. We used 489 European samples from 1,000
genomes as a reference panel.

3.4 LDpred

LDpred (version 1.0.11) [15] estimates effect size as posterior mean effect assuming
a non-infinitesimal model with a reference panel. Unlike C+T, LDpred can increase
accuracy by capturing effects in LD regions surrounding the most associated SNVs.
Setting the prior distribution can be regarded as applying regularization. LDpred has
several parameters, but we only vary the fraction of causal markers here. The fractions
of causal markers were 1.0, 0.1, 0.01, and 0.001. We set the radius of the LD block as
500. We used 489 European samples from 1,000 genomes as a reference panel.

3.5 PRS-CS

PRS-CS [16] is similar to LDpred but exploits the continuous priors on the effect sizes,
which is favorable both theoretically and computationally. We used PRS-CS-auto,
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which estimates parameter ¢ from the summary statistics. We used 489 European
samples from 1,000 genomes as a reference panel.

3.6 SBayesR

SBayesR (version 2.02) [17] estimates effect sizes using finite mixture models. SBayesR
does not require hyperparameters. We first tried to run SBayesR, but the convergence
error was raised for several phenotypes. We used a p-value threshold for SNVs of 0.4
following the manual. This corrected the error in most phenotypes; however, the error
remained for psoriasis and Alzheimer’s disease and for four out of five cross-validations
of gout. We used 489 European samples from 1,000 genomes as a reference panel.

3.7 C4+T

C+T [18] repeats clumping, selecting the smallest p-value SNV, and thresholding,
excluding SNVs correlated with selected SNVs. C+T has two parameters: the p-value
and the correlation thresholds. The p-values were 0.01, 0.03, 0.1, and 0.3, and the
correlations were 0.1, 0.3, 0.5, 0.7, and 0.9. We also ran C+T using the number of
SNVs instead of the p-value to extract the smaller number of SNVs. The numbers
were 5, every 10 from 10 to 150, every 100 from 200 to 1,000, and every 1,000 from
2,000 to 10,000. The maximum number of 10,000 is sufficient, as the numbers of SNVs
used with the p-value of 0.01 were less than or close to 10,000. We used the training
dataset of UK Biobank as a reference panel.

4 Non-additive snpnet

It is possible to create a non-additive version of LASSO by modifying the input geno-
type for snpnet. We prepare dummy non-additive genotype matrix D € RV*M created
from genotypic dosage matrix G € RN*M . D, ; € {0,1} for j-th SNV of the i-th sam-
ple is defined as D; ; = 1if G; j = 1 and D, ; = 0if G; ; = 0 or 2. By inputting [G, D]
instead of G, snpnet outputs a non-additive polygenic function GS + D~.
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Supplementary Notes

Supplementary Note 1. PGS models without genetic variants
on Chromosome 6

Non-additive GenoBoost had higher accuracy than other methods in rheumatoid
arthritis and psoriasis, where heritability enriches in the MHC region. To investi-
gate whether non-additive GenoBoost successfully captures non-additive effects of the
region, we computed the accuracy of PGS when trained with the whole genotype and
excluding chromosome 6 in the test dataset. GenoBoost tied with some other methods,
which suggests that GenoBoost successfully captured non-additive effects of the MHC
region, but GenoBoost still ranked first for three out of five phenotypes (Supplemen-
tary Fig. 5a). We also excluded chromosome 6 from the training dataset, and obtained
results similar to excluding chromosome 6 in the test dataset (Supplementary Fig. 5b).

Supplementary Note 2. Simulation

We compared the predictive accuracy of additive and non-additive GenoBoost and
LDpred on the simulation dataset defined in the Supplementary Methods. As shown in
Supplementary Fig. 10, GenoBoost had higher accuracy under all simulation param-
eters except for one parameter setting (h2 = 0.05, hg = 0.01, and M4usqr = 1000).
Non-additive GenoBoost performed better accuracy when there was dominance heri-
tability with a large overall heritability (h? = 0.1) and tied with additive GenoBoost
otherwise.

Supplementary Note 3. Non-additive snpnet

We implemented a non-additive version of snpnet [LASSO] that is described in Sup-
plementary Methods. The non-additive snpnet improved the accuracy for psoriasis but
did not outperform GenoBoost (Supplementary Fig. 11).

Supplementary Note 4. Predictive ability on African, South
Asian, and East Asian samples

To investigate the portability of polygenic scores, we evaluated the covariate-adjusted
pseudo-R? of PGS models on African, South Asian, and East Asian samples in UKB.
We first fit two regression models, one with covariate terms alone and another with
covariate terms and PGS score (the ‘full’ model), using individuals in the validation set.
We subsequently evaluated the likelihood of each model using the test set individuals
and reported the covariate-adjusted pseudo-R2.

As shown in Supplementary Fig. 12, the accuracy for those populations was lower
than for white British samples for most methods and phenotypes.
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487,409 all samples

Not withdrawn

White British (Field 22006)

Exclude sex chromosome aneuploidy (Field 22019)

Exclude outliers for heterozygosity or missing rate (Field 22027)
Unrelated samples used in principal component analysis (Field 22020)

337,138 white British unrelated samples

80 % 20 %

269,710 observation dataset 67,428 test dataset
80 % 20 %

215,768 training dataset 53,942 validation dataset

93,095,623 all variants

A,C, T, Gonly
Exclude ambiguous variants (A/T, C/G)

75,427,684 variants

MAF >1%

HWE p-value >1e-6

Missingness per variant <5%

Retain largest MAF allele if two or more alternative alleles are registered
imputation info score >0.3

6,640,643 biallelic common variants

l Registered in Hapmap3

1,073,318 biallelic common variants

Supplementary Figure 1. Sample and single nucleotide variant quality control (QC)
summary. Flowchart to show sample and SNV QC. After the QC, 337,138 white British
unrelated samples and 1,073,318 variants remained. The training sample size was 215,768
samples.
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Supplementary Figure 4. Benchmarking GenoBoost against seven commonly used
methods across twelve diseases in UK Biobank. a-c Predictive performance measured by
covariate-adjusted pseudo-R? (a), area under the curve (AUC) (b) and area under the PR
curve (AUPRC) (¢) of PGS models across GenoBoost (i, A, B) and seven other methods (ii-
viii). On each box, the center line is the median, the top and bottom of the box are the second
and fourth values (Q3 and Q1), and the upper and lower whiskers are shown if the first and
the fifth are in Q3 + 1.5 IQR and Q1 — 1.5 IQR, respectively, where IQR = Q3 — Q1. Source
data are provided as a Source Data file.
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Supplementary Figure 4. d Predictive ability (odds ratio) of GenoBoost PGS models in
stratifying high-risk within the top 1%-tile (as well as 3, 5, and 10%-tile) vs. the remaining
population in the hold-out test set, similar to Fig. 2c. On each box, the center line is the
median, the top and bottom of the box are the second and fourth values (Q3 and Q1), and the
upper and lower whiskers are shown if the first and the fifth are in Q3 + 1.5 IQR and Q1 - 1.5
IQR, respectively, where IQR = Q3 — Q1. Source data are provided as a Source Data file.
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Supplementary Figure 4. e Number of selected SNVs in PGS models across GenoBoost
against seven commonly used methods across twelve diseases in UK Biobank. The y-axis
shows the number of SNVs in a log-scale, similar to Fig. 2d. On each box, the center line is
the median, the top and bottom of the box are the second and fourth values (Q3 and Q1), and
the upper and lower whiskers are shown if the first and the fifth are in Q3 + 1.5 IQR and Q1 —
1.5 1QR, respectively, where IQR = Q3 — Q1. Source data are provided as a Source Data file.
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Supplementary Figure 5. Predictive accuracy of PGS excluding chromosome 6. a

Covariate-adjusted pseudo-R? for fi

ve diseases in UK Biobank on PGS trained with whole

genotype and excluding chromosome 6 in the test dataset. b Covariate-adjusted pseudo-R?
for rheumatoid arthritis and psoriasis on PGS trained with genotype excluding chromosome 6.
On each box, the center line is the median, the top and bottom of the box are the second and
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Supplementary Figure 6. Limiting extremely large absolute SNV scores. s, is adjusted toe
the border of genetic modes (Supplementary Fig. 2) when ds; (= s;- Sp) or ds, (= s,- Sp) has

extremely large value.
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Supplementary Figure 7. Benchmarking non-additive GenoBoost across twelve diseases in
UK Biobank when varying adjustment of s,. Covariate-adjusted pseudo-R? of non-additive
GenoBoost (A) is shown along with one with a different adjustment (A2, Supplementary Methods)
and without adjustment (A3). Non-additive GenoBoost without adjustment failed for Alzheimer’s
disease due to an excessively large s,. On each box, the center line is the median, the top and
bottom of the box are the second and fourth values (Q3 and Q1), and the upper and lower
whiskers are shown if the first and the fifth are in Q3 + 1.5 IQR and Q1 — 1.5 IQR, respectively,
where IQR = Q3 — Q1. Source data are provided as a Source Data file.
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Supplementary Figure 8. Manhattan plot of GWAS univariate p-values and absolute
values of multivariate effect sizes estimated from PGS methods. a For asthma, we
calculated p-values for GWAS, and absolute values of effect sizes for Non-additive and
Additive GenoBoost, snpboost, snpnet, lassosum, LDpred, PRS-CS, SBayesR, and C+T using
the best parameter of the primary cross-validation dataset. The p-values are by logistic
regression (two-sided, no adjustments for multiple comparisons) with n=215,768 sample. The
effect sizes of Non-additive GenoBoost indicate the relative score of heterozygotes to that of
major allele homozygotes (s; — Sp).
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Supplementary Figure 8. b The same figure as Supplementary Fig. 8a but for psoriasis.
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Supplementary Figure 9. PGS distribution for asthma and psoriasis. a The Additive
GenoBoost polygenic score distributions of asthma case and control samples in the primary
hold-out test replicate. b Score distributions of case and control samples were statistically
different (p < 1 x 107200; two-sided Mann-Whitney’s U test). ¢ Comparison of Additive
GenoBoost and Non-additive GenoBoost polygenic score distributions. Kernel density plot of
the score distributions of Additive GenoBoost on the x-axis and Non-additive GenoBoost on
the y-axis for all test samples to show the difference in distributions of case and control. The
contours showed kernel density levels of 2%, 5%, 10%, and every 20% from 20% to 100%.
The regressed line is also shown. d-e The Non-additive GenoBoost (d) and Additive
GenoBoost (e) polygenic score distribution of psoriasis case and control samples in the hold-
out test set. f-g The Non-additive GenoBoost (f) and Additive GenoBoost (g) polygenic score
distributions of case and control samples were both statistically different (p < 1 x 10-80; two-
sided Mann-Whitney’s U test). h Comparison of Additive GenoBoost and Non-additive
GenoBoost polygenic score distributions.
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Supplementary Figure 10. Prediction accuracy on simulation data. Covariate-adjusted
pseudo-R? on simulation data with overall heritability (h?) of 0.05 (a), 0.1 (b) with dominance
heritability (hs?) of 20% and 0%, and 100 and 1000 causal SNVs were benchmarked. Ten
simulations per parameter are shown along with boxplots (n=10). On each box, the center line
is the median, the top and bottom of the box are the first and third quartiles (Q3 and Q1), and
the upper and lower whiskers are Q3 + 1.5 IQR and Q1 - 1.5 IQR, respectively, where IQR =
Q3 - Q1. Source data are provided as a Source Data file.
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Supplementary Figure 11. Benchmarking Non-additive snpnet. Non-additive snpnet
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Supplementary Figure 12. Prediction accuracy for African, South Asian, and East Asian
samples compared to white British samples in UK Biobank. Covariate-adjusted pseudo-R? of
PGS models across GenoBoost (i, A, B) and seven other methods (ii-viii) for twelve phenotypes for
African (a, n=5,190), South Asian (b, n=6,362), and East Asian (¢, n=1,416) test samples compared
to white British samples were shown. Female samples were used for breast cancer (n=2,975;
African, n=2,867; South Asian, n=904; East Asian). Psoriasis, inflammatory bowel disease, all-
cause dementia, and Alzheimer’s disease for East Asian samples are not shown since regression in
validation dataset failed due to small number of case samples. On each box, the center line is the
median, the top and bottom of the box are the second and fourth value (Q3 and Q1), the upper and
lower whiskers are shown if the first and the fifth are in Q3 + 1.5 IQR and Q1 — 1.5 IQR, respectively,
where IQR = Q3 — Q1. Source data are provided as a Source Data file.
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Supplementary Figure 13. Relationship between the polygenicity or the estimated
heritability and the proportion of non-additive SNV effects among the SNVs in the Non-
additive GenoBoost PGS model. The number of SNVs in the PGS models (x-axis) from Non-
additive GenoBoost (a), snpnet (b), snpboost (c¢), lassosum (d), and C+T (e) and the
proportion of SNVs with non-additive genetic dominance effects in the Non-additive
GenoBoost PGS model (y-axis) are shown. The estimated additive heritability with standard
error (x-axis) and the proportion of SNV with estimated non-additive genetic dominance
effects (y-axis) is also shown (f). A gray line represents linear regression fit. We show
Pearson’s correlations in each comparison in the plot. For panel (f), we analyzed all
phenotypes (gray) as well as eleven phenotypes psoriasis (orange). Source data are provided
as a Source Data file.
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Supplementary Figure 14. Overlap of SNVs with non-additive effects and reported SNVs
in GWAS catalog. The SNVs selected in the earliest iteration in £1 million bp by Non-additive
GenoBoost were classified in two perspectives: genetic inheritance mode and whether SNVs
within £1 million bp were reported in GWAS catalog. SNVs in Figure 4 for psoriasis were the
first five SNVs in or close to genes out of SNVs with non-additive effects and not reported
SNVs in GWAS catalog.
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Supplementary Figure 15. Locus zoom plot of neighboring regions of non-additive SNV
effects in Figure 4 for rheumatoid arthritis. Non-additive GenoBoost’s predictive utility,
additive and non-additive p-values of selected SNVs (colored) and neighboring ones (gray)
are shown for rheumatoid arthritis. Colored and annotated variants are the first selected
variants in the neighboring 1 million bp shown in Figure 4. The regions are ordered by non-
additive GenoBoost selection order. The p-values are by logistic regression (two-sided, no
adjustments for multiple comparisons) with n=215,768 sample.



Non-additive

Additive

Non-additive

Additive

a b c
2] . . [%2] . . %] . .
o Psoriasis: rs7291930 3 Psoriasis: rs13395354 " Psoriasis: rs11751451
%] wn wn
o 157291930 o o
O > 151 O > O >
m e me 5 1513395354 me
o= o= o=
S 5 S 5 S 5 _rs11751451
21" © 2] S 2]
o2 o2 o2
23 2% * 2% ¢
=T 59 =T =T
3¢ 3¢ 3¢
c Q c o
e 0 C C
o — 1 T [ T T T T [ T 1T 1T 1T 5 — 1 1t 1 1T T [ T T 1T T 1 T o UM RN B B N B NN BN B B B |
Z g z z
157291930
—~ 6 ] >
) 5 o rs13395354 S _rs11751451
> S| a x )
=1 a et <
S 547 o] a
g ® g * g
o i ° | °
O —_—_ ————— e ———
8_ - -
157291930
3 EN = 51513395354 =37
T o a® Q® _rs11751451
T o4 o] o7 ®
4 o Q ke
2_ - -
o———TTT—T—TTT T B T e e S e N —T T
20.5M 21M 111M 111.5M 112M 168M 168.5M 169M
Position in chromosome 22 [bp] Position in chromosome 2 [bp] Position in chromosome 6 [bp]
i A P LT MALLH  LIMS3— ACOXLi-H-HH-H-H UNCO3AH C60rf123) FRMD1K  SMOC2 i
Zomico coTiel scan2n SNa2oHaPIRGH NPHP1HH LIMS3L} BCL2L11H TTLL2H AL009178.1| DACT2H
Acoussa7101 LIz prrioie R PO um Tepiha MLLT4 s
KIF254
d e
(%] . . (92 . .
B Psoriasis: rs12479220 B Psoriasis: rs10193337
080315— §b_ Genetic model
o= o= Overdominant
petr=t =] /1510193337 )
o > 104 51512479220 o > | Dominant
(G} [GR) ”
o2 o2 ® Additive
>9 >0
= 0 = 0 H
25 59 254 % Recessive
T o T o .
S 2 S o Overrecessive
o o
i - Not selected
o 0 T 1 T T T T 1 T T T 17 o LIS LAL AL AL EO NN N B B R N
=z g z
6 24 1510193337
o S
o Q? rs12479220 E
2 0'14_ x 5; N
© o o))
> - o
& 2 1
n-— —————————— ——,
8_ -
/‘\6— —_ -
e} e}
g 3 3 rs10193337
=2 a % 7512479220 a
[ 4 =3
Z o o
0 0
2_ -
0 — T 1 T T 1 T 17T T 1 —r1 T T T T 1 1 1117
228.5M 229M 229.5M 65M 65.5M 66M
Position in chromosome 2 [bp] Position in chromosome 2 [bp]
MFFH SLC19A3#H SPHKAP j—H— AFTPH§  SLC1A4H SPRED2HH—
TM4SF20H CCL20] SERTAD2H—  CEP68H
AGFG1HH  DAWLHM RAB1A4H
C20rf83H ACTR24

Supplementary Figure 16. Locus zoom plot of neighboring regions of non-additive SNV
effects in Figure 4 for psoriasis. The same figure as Supplementary Fig. 15 but for
psoriasis.
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Supplementary Figure 17. Manhattan plot and plot of predictive utility of asthma for non-
additive GenoBoost without and with a learning rate. a-b Manhattan plots show additive p-
values of asthma by logistic regression (two-sided, no adjustments for multiple comparisons)
with n=215,768 samples on the primary training dataset. c-d The predictive utility, where an SNV
with a larger predictive utility means the more associated SNV to the phenotype for
GenoBoost without a learning rate by setting learning rate 1 (¢) and GenoBoost with a
learning rate of 0.1 (d). Red dots highlight SNVs selected in the next five iterations for
GenoBoost without a learning rate and the next 15 iterations for GenoBoost with a learning
rate. Underlying gray dots show unselected SNVs. SNV predictive utility at the first iteration
was generally similar to the p-value. GenoBoost without a learning rate suggests that only one
SNV could explain the variance in the region with the gray background, but GenoBoost with a
learning rate selects several times from the region.
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Supplementary Figure 18. Prediction Accuracy for parameter candidates of GenoBoost.
Covariate-adjusted pseudo-R? of the test dataset for each parameter candidate and the best
parameter of additive GenoBoost (a) and non-additive GenoBoost (b) for Type 2 Diabetes.

The best parameter was determined in the validation dataset.



Phenotype Variant MAF Gene GenoBoost Association Test
[%]
Nearest Variant Reference inheritance P-value under Additive
gene type (PubMed ID) mode genetic model p-value
to suggest inferred by inferred by
the GenoBoost GenoBoost
association
of gene to
phenotype
Rheumatoid
arthritis TNFRSF11A 32149122,
rs7237982 24 |(RANK) Intron 17341304 |Dominant 1.7e-6| 1.1e-5|
rs2731561 25|ARHGAP15 Intron 26359667 Dominant 8.2e-7| 7.0e-6
rs6773050 47 |ARHGAP31 Intron - Overrecessive 1.5e-4 1.7e-3|
Psoriasis
rs7291930 23|MED15 Intron 30061880 Dominant 1.0e-7| 6.2e-7|
rs13395354 18JACOXL Intron - Recessive 1.3e-5 4.8e-6|
rs11751451 14|KIF25 Intron - Overdominant 9.8e-6| 3.7e-5)
rs12479220 23|SPHKAP Intron - Recessive 9.3e-5 6.2e-5
rs10193337 5.2|SPRED2 Intron 26086874 Overdominant 7.9e-6 4.7e-4]

Supplementary Table 7. Association p-values of non-additive SNV effects in or close to
genes included in the GenoBoost PGS model. In addition to Figure 4, p-values by logistic
regression (two-sided, no adjustments for multiple comparisons) with n=215,768 samples
under additive model and genetic model inferred by GenoBoost are shown. MAF, minor allele
frequency.
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