Supplementary Information

Structure of the turnover-ready state of an ancestral respiratory complex I

Bozhidar S. Ivanov¹, Hannah R. Bridges^{1,2}, Owen D. Jarman^{1,3} and Judy Hirst¹*

¹The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, United Kingdom

²Curent address: Structura Biotechnology Inc., Toronto, Canada

³Current address: Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

*e-mail: jh480@cam.ac.uk

This file includes: Supplementary Figs. 1 to 11 Supplementary Tables 1 to 4

Supplementary Figure 1. Cryo-EM data processing pipeline for *Pd*-CI-DDM and comparison of classes 1 and 2. a) Cryo-EM data processing pipeline, with the red arrows indicating particles that were excluded. The orientation distributions for each class are shown. b) Comparison of the density maps for classes 1 and 2 aligned on the hydrophilic domain showing the different global conformations of the membrane domain. The cleft that opens up in class 2 between subunits ND2 and ND4, allowing the ND4-5 distal subdomain to move relative to the rest of the enzyme, is marked with an arrow. Processing steps in blue were carried out in *CryoSPARC v3.3.2*.

Supplementary Figure 2. Local resolution and FSC curves for all *Pd***-CI maps.** Local resolution plots calculated in RELION and visualised in UCSF ChimeraX (left) are shown with 3D FSC curves and histograms showing the distribution of resolution shells (middle) and half-map/map-to-model FSC curves (right) for a) *Pd*-CI-DDM class 1; b) *Pd*-CI-DDM class 2; c) *Pd*-CI-ND (consensus); and d) *Pd*-CI-ND focussed map for the distal membrane subdomain.

Supplementary Figure 3. Comparison of the stability of *Pd*-CI-DDM and *Pd*-CI-ND preparations by nano-DSF. The data are presented as the first derivative of the change in fluorescence as the temperature is increased with peak positions labelled. a) *Pd*-CI-DDM in the buffer used for size-exclusion chromatography (20 mM MES (pH 6.5 at 4 °C), 150 mM NaCl, 10 mM CaCl₂, 10% (v/v) glycerol, 0.05% (w/v) DDM). b) *Pd*-CI-DDM in the buffer for cryo-EM grid preparation (the buffer from (a) but without glycerol). c) *Pd*-CI-DDM in 20 mM MES (pH 6.5 at 4 °C), 25 mM NaCl, 1 mM CaCl₂ and 0.05% DDM. d) *Pd*-CI-ND in ND reconstitution buffer (20 mM MES (pH 6.5 at 4 °C) and 25 mM NaCl). e) *Pd*-CI-ND in the buffer for cryo-EM grid preparation (ND reconstitution buffer plus 1 mM CaCl₂). f) *Pd*-CI-ND with FOM in the buffer for cryo-EM grid preparation (ND reconstitution buffer plus 1 mM CaCl₂ and 0.01% FOM). Panels (c) and (e) (red) directly compare *Pd*-CI-DDM and *Pd*-CI-ND under matching conditions, and asterisks denote conditions that were used to make cryo-EM grids. Each trace was repeated three times, and the peak positions were consistent within 0.5 °C ranges. Source data are provided as a Source Data file.

Supplementary Figure 4. Catalytic activities of the two *Pd*-CI-ND preparations analyzed by cryo-EM. a) Rates of NADH:ubiquinone-10 oxidoreduction using the ubiquinone-10 contained in the nanodiscs and recycled by AOX. b) Rate of NADH:dQ oxidoreduction by *Pd*-CI-ND (grids 1 and 2). Assays were carried out using 200 μ M dQ as described in *Materials and Methods*, with the addition of asolectin and CHAPS to solubilise the nanodiscs, AOX to recycle ubiquinol, and piericidin A to inhibit catalysis as indicated. c) and d) Equivalent data for *Pd*-CI-ND (grid 3) frozen in the presence of FOM. All rates have been normalised for the complex I content determined using the NADH:APAD⁺ oxidoreduction assay. The activities of the two *Pd*-CI-DDM preparations before reconstitution were 22.0 ± 1.9 (grids 1 and 2) and 19.5 ± 0.2 μ mol min⁻¹ mg⁻¹ (grid 3) (208 and 184 s⁻¹, respectively). The units can be converted using a factor of 9.45. Source data are provided as a Source Data file.

Supplementary Figure 5. Cryo-EM data processing pipeline for grids 1 and 2 for *Pd*-CI-ND. The red arrows indicate particles that were excluded, and the orientation distributions are shown.

Supplementary Figure 6. Cryo-EM data processing pipeline for grid 3 for *Pd*-CI-ND in the presence of FOM. The red arrows indicate particles that were excluded, and the orientation distributions are shown.

Supplementary Figure 7. The processing pipeline to combine data from cryo-EM grids 1, 2 and 3 for *Pd*-CI-ND, and the focussed refinement of the distal membrane subdomain. The distal section contains subunits ND4 (orange) and ND5 (red).

Supplementary Figure 8. Identification of two nanodisc populations and subclassification to identify the *bc1* complex. Small and large NDs are indicated in solid (top-view) and transparent (bottom-view) densities. The red arrows indicate excluded classes. The structure of the *P. denitrificans* cyt *bc1* complex PDB-2YIU is shown fitted into the 3.4-Å density map (EMDB: 19977).

	MIDFAQKKIMMVDIQVRPNEVI-SYPVIEAMLNVP	REQFVPESRRD-VAYVGNNID	54	Pd-CI-PIMT
trlQ6N6N4 Q6N6N4_RHOPA trlQ6N5Y0 Q6N5Y0_RHOPA splQ6NCU3 PIMT_RHOPA splA1B5M0 PIMT_PARDP splP0A7A5 PIMT_CCUI splQ56308 PIMT_THEMA splQ8TZR3 PIMT_PYRFU splQ42539 PIMT_ARATH splQ27869 PIMT_DROME splP22061 PIMT_HUMAN	MLEFERARQNMVDGQIRPASVT-DWRIIDAMRALP MPSPAAPPPEKMMFQLSLRRRGIS-DQAVLRTMEAVP MSDDPETAERKMRFLFALRQRGVT-DPRVLAAMRKVP MSDDPETAERKMRFLFALRQRGVT-DPRVLEAMERID MVSRRVQALLDQLRAQGIQ-DEQVLNALAAVP MVEKLFWILKKYGVSDHIAKAFLEIP MDEKELYEKWMRTVEMLKAEGIIRSKEVERAFLKYP MKQFWSPSSINKNKAMVENLQNHGIVTSDEVAKAMEAVD MAWRSVG-ANNEDLIRQLKDHGVIASDAVAQAMKETD MAWKSGG-ASHSELIHNLRKNGIIKTDKVFEVMLATD TGQV	REAFVPESKRE-LVYLDLDLQ RDQFVDPGYRD-GAWRDTALP REAFLPEPMRD-LAYEDAPVP RGEFVRGHEED-RAYDDTPLP REKFVDEAFEQ-KAWDNIALP REFLTKSYPLSYVYEDIVLV RYLFVEDKYKK-YAHIDEPLP RGVFVTDRS-SAYVDSPMS RKHYSPR-NPYMDAPQP RSHYAKC-NPYMDSPQS	54 56 44 56 51 47 57 57 52 52	R. palustris R. palustris R. palustris Pd-Free-PIMT E. coli T. maritima P. furiosus A. thaliana D. melanogaster H. sapiens
	R59 S62L			
tr A1B5L6 A1B5L6_PARDP	LAPGRVLLEPRTLGKMMDILNLQNGDLVLDVGC	GYGYSAAVMARIA	100	Pd-CI-PIMT
tr Q6N6N4 Q6N6N4_RHOPA tr Q6N5Y0 Q6N5Y0_RHOPA sp Q6NCU3 PIMT_RHOPA sp A1B5M0 PIMT_PARDP sp P0A7A5 PIMT_CEOLI sp Q6G308 PIMT_THEMA sp Q8TZR3 PIMT_PYRFU sp Q42539 PIMT_ARATH sp Q27869 PIMT_DROME sp P22061 PIMT_HUMAN	IEGRDDHKHELLNPIMTARMLQAAELQHDDRVLVVGC IACGQTUSQPFVVAFMTEQLELRPRDRVLEIGT IAAEQTMSQPYIVALMVEALLLQGSDNVLEIGA IPCGQTUSQPSVVGLMTQALEVGPRDKVLEIGT IGQGQTISQPYMVARMTELLELTPQSRVLEIGT SVDDGEEYSTSSQPSLMALFMEWVGLDKGMRVLEIGG IPAQQTVSAPHMVAIMLEIANLKPGMNILEVGT IGYNVTISAPHMHAFALEYLRDHLKPGARILDVGS IGGQATISAPHMHAFALEYLRDHLKPGARILDVGS	PTGYTAAVAAKLA GSGYHAAVLSRLA GSGYQAAVLSLLC GSGYQTAILAHLV GTGYNAAVMSRVVGEK GTGYLTACFAVMVGTE GSGVLTACFAVMVGTE GSGILTACFARMVGCT	104 102 90 102 97 100 104 108 108 103	R. palustris R. palustris R. palustris Pd-Free-PIMT E. coli T. maritima P. furiosus A. thaliana D. melanogaster H. sapiens
	D134A	C125		
		(GISSE		
tr A1B5L6 A1B5L6_PARDP	EAVVAVEEDAAMAAEAEGRLAAQDVFNVAVVQG		154	Pd-CI-PIMT
tr A1B5L6 A1B5L6_PARDP tr Q6N6N4 Q6N6N4_RHOPA tr Q6N5Y0 Q6N5Y0_RHOPA sp Q6NCU3 PIMT_RHOPA sp A1B5M0 PIMT_PARDP sp P0A7A5 PIMT_ECOLI sp Q56308 PIMT_THEMA sp Q8T2R3 PIMT_PYRFU sp Q42539 PIMT_PYRFU sp Q27869 PIMT_DROME sp P22061 PIMT_HUMAN	EAVVAVEEDAAMAAEAEGRLAAQDVFNVAVVQG ARVTTTIDDESLAQRIRATLPALGLSNVNVRVA ADVLSFERFKTLADRARKRLAELGCRNVEVVFG GHVTTVERIATLADAAAKLAELGYGDVDVHRS RRVYTIDRHRRLVAEAEALFRHLGLPNITALVG QHVCSVERIKGLQWQARRRLKNLGLPNITALVG GLVVSVEYSRKICEIAKRNVERLGIENVIFVCG TDVYTIERIPELVEFAKRNLERAGVKNVHVILG GRAIGVEHIPELVASSVKNIEASAASPFLKEGSLAVHVG TRIVGIEHQAELVRRSKANLNTDD-RSMLDSGQLLIVEG GKVIGIDHIKELVDDSVNNVRKDD-PTLLSSGRVQLVVG	ALAEGCPGQAPYDAILIEGAV ALAEGCPGQAPYDAILIEGAV DGFDLPETAGTFDRILITAAV DGFRGWPAAAPYDAIVVAAGG DGSRGLPEQAPFDAIIVTAAA DGWQGWQARAPFDAIIVTAAP DGYYGVPEFSPYDVIFVTVGV DGSKGFPPKAPYDVIIVTAGA DGRCGWAEFAPYDAIHVGAAA DGRKGYPPNAPYNAIHVGAAA	154 158 156 144 156 151 154 158 168 167 162	Pd-CI-PIMT R. palustris R. palustris Pd-Free-PIMT E. coli T. maritima P. furiosus A. thaliana D. melanogaster H. sapiens
tr A1B5L6 A1B5L6_PARDP tr Q6N6N4 Q6N6N4_RHOPA tr Q6N5Y0 Q6N5Y0_RHOPA sp Q6NCU3 PIMT_RHOPA sp A1B5M0 PIMT_PARDP sp P0A7A5 PIMT_PARDP sp Q6308 PIMT_THEMA sp Q8T2R3 PIMT_PTHEMA sp Q42539 PIMT_ARATH sp Q27869 PIMT_ARATH sp P22061 PIMT_HUMAN	EAVVAVEEDAAMAAEAEGRLAAQDVFNVAVVQG ARVTTTIDDESLAQRIRATLPALGLSNVNVRVA ADVLSFERFKTLADRARKRLAELGCRNVEVVFG GHVTTVERIATLADAAAAKLAELGUFNTALVG QHVCSVERIKGLQWQARRRLKNLGLPNITALVG GLVVSVEYSRKICEIAKRNVERLGIENVIFVCG TDVYTIERIPELVEFAKRNLERAGVKNVHVILG GRAIGVEHIPELVASSVKNIEASAASPFLKEGSLAVHVG TRIVGIEHQAELVRRSKANLNTDD-RSMLDSGQLLIVEG GKVIGIDHIKELVDDSVNNVRKDD-PTLLSSGRVQLVVG	ALAEGCPGQAPYDAILIEGAV ALAEGCPGQAPYDAILIEGAV EAAKGDLHDAPFDAILLCGAT DGFDLPETACTFDRILITAAV DGFRGWPAAAPYDAIVVAAGG DGFRGLPEQAPFDRIMVTAAA DGWQGWQARAPFDAIIVTAAP DGYYGVPEFSPYDVIEVTVGV DGSKGFPPKAPYDAIIVGAAA DGRXGYPPNAPYDAIHVGAAA DGRKGYPAEEAPYDAIHVGAAA	154 158 156 144 156 151 154 158 167 162	Pd-CI-PIMT R. palustris R. palustris Pd-Free-PIMT E. coli T. maritima P. furiosus A. thaliana D. melanogaster H. sapiens
tr A1B5L6 A1B5L6_PARDP tr Q6N6N4 Q6N6N4_RHOPA tr Q6N5Y0 Q6N5Y0_RHOPA sp Q6NCU3 PIMT_RHOPA sp A1B5M0 PIMT_PARDP sp P0A7A5 PIMT_PARDP sp Q5308 PIMT_THEMA sp Q2539 PIMT_ARATH sp Q27869 PIMT_ARATH sp P22061 PIMT_HUMAN tr A1B5L6 A1B5L6_PARDP	EAVVAVEEDAAMAAEAEGRLAAQDVFNVAVVQG ARVTTTIDDESLAQRIRATLPALGLSNVNVRVA ADVLSFERFKTLADRARKRLAELGCRNVEVVFG GHVTTVERIATLADAAAAKLAELGUPNITALVG QHVCSVERIKGLQWQARRRLKNLGLPNITALVG GLVVSVEYSRKICEIAKRNVERLGIENVIFVCG TDVYTIERIPELVEFAKRNLERAGVKNVHVILG GRAIGVEHIPELVASSVKNIEASAASPFLKEGSLAVHVG TRIVGIEHQAELVRRSKANLNTDD-RSMLDSQQLLIVEG GKVIGIDHIKELVDDSVNNVRKDD-PTLLSSGRVQLVVG	ALAEGCPGQAPYDAILIEGAV ALAEGCPGQAPYDAILIEGAV EAAKGDLHDAPFDAILLCGAT DGFDLPETACTFDRILITAAV DGTRGWPAAAPYDAIVVAAGG DGSRGLPEQAPFDRIMTAAA DGWQGWQARAPFDAIIVTAAP DGYYGVPEFSPYDVIEVTVGV DGSKGFPPKAPYDAIIVGAAA DGRVGWPPNAPYDAIHVGAAA DGRKGYPPNAPYDAIHVGAAA	154 158 156 144 156 151 154 158 168 167 162 207	Pd-CI-PIMT R. palustris R. palustris Pd-Free-PIMT E. coli T. maritima P. furiosus A. thaliana D. melanogaster H. sapiens Pd-CI-PIMT

Supplementary Figure 9. Sequence alignment of PIMT across different species. Figure showing the sequence alignment of Pd-CI-PIMT (A1B5L6) against the free PIMT paralog from Pd-CI (A1B5M0) and orthologues from Rhodopseudomonas palustris (Q6N6N4, Q6N5Y0, Q6NCU3), Escherichia coli (P0A7A5), Thermotoga maritima (Q56308), Pyrococcus furiosus (Q8TZR3), Arabidopsis thaliana (Q42539), Drosophila melanogaster (Q27869) and Homo sapiens (P22061). Universally conserved residues are highlighted in maroon while divergent mutations in Pd-CI-PIMT and R. palustris Q6N6N4 are shown in cyan. Lighter shades indicate small side-chain amino acids residues that are mutated to bulkier residues in Pd-CI-PIMT to fill the space occupied by the permanently bound SAM cofactor in functional PIMTs.

Supplementary Figure 10. Comparison of closed structures with Q_{10} , menaquinone-9 (MQ₉) and short-chain decylubiquinone (dQ) bound to the Q_{10} -bound structure of *Pd*-CI. a) The dQ bound in *Ec*-CI (blue, PDB-7Z7S) overlayed with the partially bound Q_{10} in *Pd*-CI. b) Comparison of the fully and partially inserted dQ molecules in ovine CI (green, PDB-6ZKC) with the Q_{10} bound in *Pd*-CI. c) Partially bound MQ₉ in *M. smegmatis* CI (grey, PDB-8E9G) overlayed with partially bound Q_{10} in *Pd*-CI. d) Fully inserted Q_{10} or MQ₉ positions in bovine (pink, PDB-7QSK), porcine (wheat, PDB-7V2C) and *M. smegmatis* complex I showing the ~20 Å distance between the two Q head groups binding positions.

Supplementary Figure 11. Grotthuss competent pathways in *P. denitrificans* **complex I at the ubiquinone site, Echannel, and central axis.** a) A potential ubiquinone-10 protonation pathway leading to the active site (route 1). b) A second potential ubiquinone-10 protonation pathway leading to the secondary Q-binding site (route 2). c) The locally sharpened cryo-EM densities of key acidic residues (cryo-EM density outlines at a 1.5 Å range from the displayed atoms are shown as a semi-transparent surface in UCSF ChimeraX at map threshold of 0.01) with residues or water molecules within 3 Å distance. d) Grotthuss competent network of the lower section of the ubiquinone-10 binding site and the E-channel (routes 2 and 3). e) Grotthuss competent networks in the ND2, ND4 and ND5 subunits in *Pd*-CI (route 4). The networks are shown with purple lines and the gaps are indicated by black lines (with distances displayed) and open circles highlighting protein unobstructed routes. Red lines with full circles indicate protein obstructed gaps.

Supplementary Table 1. Cryo-EM data collection, refinement, and validation statistics for *Pd*-CI-DDM.

Data collection and processing	Pd-CI-DDM			
Voltage (kV)	3	300		
Nominal magnification	130	×000		
Electron exposure $(e^{-} Å^{-2})$	2	48		
Defocus range (µm)	-1.5	to -2.9		
Calibrated pixel size (Å)	1	.05		
Number of frames	2	25		
Energy filter slit width (eV)	2	20		
Symmetry imposed	(Cl		
Number of micrographs	2,3	2,278		
Initial particle images (no.)	128,270			
Final particle images (no.)	51	51,308		
Final Global Classification	Class 1 (EMDB: 19975) Class 2 (EMDB: 199			
Final particle images (no.)	19,736	31,572		
Map sharpening <i>B</i> factor ($Å^2$)	-76.26	-95.39		
Map resolution (Å) (FSC = 0.143)	4.5	4.5 4.2		
Map resolution range (Å) 3.75 - 12.65 3.99 - 12.5				

<i>Pd-</i> CI subunit	Human CI subunit	Chain identity	Total residues	Modelled residues (%)	Q-score	Cofactors & modification
Nqo1	NDUFV1	F	431	1-421 (97.7)	0.83	FMN, 4Fe4S
Nqo2	NDUFV2	Е	239	1-236 (98.7)	0.83	2Fe2S
Nqo3	NDUFS1	G	674	2-667 (98.8)	0.84	2Fe2S, 2 x 4Fe4S, Na ⁺
Nqo4	NDUFS2	D	412	3-412 (99.5)	0.87	Dimethyl-Arg65, Ca ²⁺
Nqo5	NDUFS3	С	208	6-196 (91.8)	0.86	
Nqo6	NDUFS7	В	175	28-175 (84.6)	0.87	4Fe4S
Nqo9	NDUFS8	Ι	163	3-163 (98.8)	0.87	2 x 4Fe4S
Nqo8	ND1	Н	345	1-342 (99.1)	0.86	
Nqo14	ND2	Ν	499	1-479 (96.0)	0.86	Ca ²⁺
Nqo7	ND3	А	121	1-121 (100)	0.86	N-formyl
Nqo13	ND4	М	513	1-503 (98.1)	$0.83, 0.83^2$	Ca^{2+}
Nqo11	ND4L	K	101	1-101 (100)	0.86	
Nqo12	ND5	L	703	1-506, 551-703 (93.7)	$0.78, 0.82^2$	
Nqo10	ND6	J	200 ¹	1-82, 88-200 (97.5)	0.84	N-terminus 2 x Met
<i>Pd</i> NUYM	NDUFS4	Q	103	1-103 (100)	0.84	
<i>Pd</i> NUMM	NDUFS6	R	62	3-61 (95.2)	0.83	Zn^{2+}, Ca^{2+}
PdN7BM	NDUFA12	q	124	1-124 (100)	0.84	
PIMT	-	t	217	2-217 (99.5)	0.83	

Supplementary Table 2. Summary of the model for *Pd*-CI-ND (PDB-8QBY).

¹The total number of residues for ND6 is 200, taking into account the two Met residues observed at the N-terminus ²Q-score determined for the focused map of the membrane ND4-ND5 subdomain

	Relative to	B. taurus complex			
Subunit	Sequence	Length (%)	RMSD ¹ values (Å)		
	identity (%)	(N of residues)	B. taurus	Y. lipolytica	E. coli
NDUFV1 (Nqo1)	64.0	92.9 (-33)	0.60	0.89	2.34
NDUFV2 (Nqo2)	40.2	96.0 (-10)	6.66	9.00	1.35
NDUFS1 (Nqo3)	47.5	92.7 (-53)	3.14	2.25	11.68
NDUFS1 N/C-domains	61.9/40.5	92.7 (-18/-35)	1.07/3.89	1.11/2.55	3.49/13.97
NDUFS2 (Nqo4)	59.0	89.0 (-51)	5.17	5.69	2.72
NDUFS3 (Nqo5)	46.9	78.2 (-58)	1.97	1.51	19.89
NDUFS7 (Nqo6)	68.0	81.0 (-41)	1.13	1.43	1.41
NDUFS8 (Nqo9)	73.0	76.9 (-49)	0.80	1.07	3.20
ND1 (Nqo8)	39.1	108.5 (+27)	2.51	3.25	1.81
ND2 (Nqo14)	25.7	143.8 (+152)	4.51	3.75	3.31
ND3 (Nqo7)	37.5	105.2 (+6)	1.31	3.57	2.30
ND4 (Nqo13)	31.4	111.8 (+54)	3.01	4.81	2.32
ND4L (Nqo11)	22.9	103.1 (+3)	1.64	1.73	1.17
ND5 (Nqo12)	34.7	116.0 (+97)	4.09	3.48	4.05
ND6 (Nqo10)	23.6	114.3 (+25)	7.25	6.99	4.77
NDUFS4 (dNUYM)	36.0	58.9 (-72)	2.51	3.03	-
NDUFS6 (PdNUMM)	32.7	50.0 (-62)	2.21	4.27	-
NDUFA12 (PdN7BM)	37.0	85.5 (-21)	9.56	8.94	-
PIMT	-	-	_	-	-

Supplementary Table 3. Sequence and structural comparison of *Pd*-CI to other CI species.

¹The structures used for the RMSD comparisons were PDB-7QSL (2.8 Å-resolution bovine structure in the closed state), PDB-6YG4 (2.7 Å-resolution *Y. lipolytica* structure) and PDB-7Z7S (2.4 Å-resolution *E. coli* structure in the closed state). RMSD values were calculated using UCSF ChimeraX including all pairs of residues.

Sunnlementary '	Table 4	Structural investigation	of the inter-	domain angle d	of complex I
Supplementary		Structural mycsugation	of the musi-	uomani angie (n complex i.

	<u>Creation</u>	Given name PDB		Interdomain angle ¹ (°)		
	Species			4Fe-ND1-ND5	4Fe-ND1-ND2	N2-ND1-ND4L
	Paracoccus denitrificans	Active/closed	this work	117.0	124.2	127.5
Bacteria	Mycobacterium smegmatis	Active	8E9G	118.3	126.0	128.8
	Escherichia coli	Closed	7Z7S	118.7	119.2	126.9
Single cell eukaryote	Tetrahymena thermophila	Closed	7TGH	112.4	121.1	130.7
Insect	Drosophila melanogaster	Active (closed)	8B9Z	113.1	120.5	127.6
Mammal Bos taurus	Bos	Active-apo (closed)	7QSL	112.0	120.3	120.4
	taurus	Deactive-apo (open)	7QSN	113.5	121.2	125.3

¹The conserved reference points chosen to measure the inter-arm angles were the N2 [4Fe-4S] cluster in NDUFS7, the 4Fe all-Cys ligated [4Fe-4S] cluster in NDUFS1 and the C α of *Pd*-ND1-L126, *Pd*-ND5-F349 and *Pd*-ND4L-E36. Angles were measured using UCSF ChimeraX. The structures used in this analysis were PDB-8E9G, PDB-7Z7S, PDB-7TGH, PDB-8B9Z, PDB-7QSL and PDB-7QSN.