Supporting Information

Synthesis and antibacterial potential of novel thymol derivatives against methicillinresistant *Staphylococcus aureus* and *P. aeruginosa* pathogenic bacteria

Ashutosh Shahi,^{#1} Rakshit Manhas,^{#2} Srija Bhattacharya¹, Arti Rathore^{2,3}, Puneet Kumar^{1,3}, Jayanta Samanta⁴, Manish Kumar Sharma¹, Avisek Mahapa,^{2,3}* Prasoon Gupta,^{1,3}* and Jasha Momo H. Anal ^{1,3}*

¹Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

²Infectious Diseases Division, CSIR–IIIM, Canal Road, Jammu-180001, India

³Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

⁴Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603 203, Tamil Nadu, India.

Contributed equally

Correspondence to: avisek.mahapa@iiim.res.in; guptap@iiim.ac.in; hmunshel.jasha@iiim.res.in.

Table of Contents

<u>Contents Page No.</u>	<u>Contents</u> Page No.
1. General	3
Information	
2. General Experimental	4-5
Procedure	
3. Characterization Data of Compounds 1-	5-11
3i	
4. NMR	11-22
Spectra	
5. Crystal	23
Experiment	
6. Theoretically Optimized Structures of the	23-24
Molecules	
7. Biology Experimental Section: Antimicrobial and synergistic effect of	25-30
thymol derivatives with currently used antibiotics	
(Vancomycin):	
8. Referances	30-31

1. General Information

Materials: All glassware was oven-dried (90 °C). Unless mentioned, chemicals and solvents were purchased in high purity grade from commercial suppliers and used without further purification.

Chromatography: Thin layer chromatography (TLC) was carried out on Merck silica plates (60F- 254) and components were visualised by observation under UV light or by treating the plates with a mixture of ceric ammonium nitrate and sulfuric acid solution followed by heating. Silica gel chromatography was performed using silica gel (60–120 or 100-200 mesh) using hexane: ethyl acetate and DCM: MeOH as the eluent to obtain the pure products.

Characterization: NMR spectra for the characterization of compounds were recorded on Bruker Avance DPX FT-NMR 400 MHz instrument (¹H) at 400 MHz and (¹³C) at 100 MHz respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (δ H = 7.26 and δ C = 77.16 ppm) and CD₃OD (δ H = 4.80 and δ c = 48.28ppm) as an internal reference and coupling constants (*J*) are given in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. High-resolution mass Spectra (HRMS) were recorded using Waters XEVO-G2-XS-Q-TOF mass spectrometer using electron spray ionization. Reagents used were mostly purchased from Sigma Aldrich, TCI, Alfa Aesar and Avra Synthesis.

Experimental details: Unless mentioned, reactions were performed in an open atmosphere at room temperature (25-30 °C) in a 50ml round bottom flask. Reagents used were mostly purchased from Sigma Aldrich, TCI, Alfa Aesar and Avra Synthesis. The solvent used for the reaction purpose is of commercial grade and used without further purification.

2. General Experimental Procedure

For DPH thymol derivatives **3(a-c)** the ¹H NMR of the C-4 aryl chemical shift was observed at sharp singlet in the range from 6.0-6.7 ppm, for ¹³C NMR C-4 aryl substituents at a range from 38.71-26.60 ppm, and C-3 and C-5 with ester linkage was observed at 105.11 ppm for **3a**, 60.63 ppm for **3b**, and 105.13 ppm for **3c**. The C-2 and C-6 attached to the nitrogen in the pyridine ring were observed at 151.09 for **3a**, 155.50 for **3b**, and 155.58 for **3c**. The carbonyl for the three DPHs was observed at 168.24, 168.17, and 168.55 ppm. Similarly, for DPHMs thymol derivatives **3(d-i)**, the ¹H NMR of the C-4 aryl chemical shift was observed at sharp singlet in the range from 4.87-6.7 ppm, for ¹³C NMR C-4 aryl substituents at a range from 50.30-60.01 ppm, and C-5 carbon with ester linkage was observed in the range of 101.10-107.19. The C-2 carbon where there was a carbonyl bond in the dihydropyrimidinone ring for **3d**, **3e**, **3f**, and **3g** was observed in a range from 150.66-155.44 ppm, whereas for **3h** at 173.66 ppm due to C-S double bond. The carbonyl ester for the DPHMs was observed in the range of **166**.38-169.71 ppm, depending upon different substituents attached to the ring.

Figure 1: Substituted β-keto ester involves in this study

2.1 HPLC chromatogram of thymol aldehyde 2

Figure 2: HPLC Chromatogram of Thymol Aldehyde 2

2.2 Computational analysis

In this study, to evaluate the ADME parameters of thymol and bioactive derivative (**3i**), we have predicted the physicochemical parameters using a free web tool to SwissADME software. Molecular docking analysis was carried out for thymol (parent compound), and the most active compound **3i** was performed using AutoDock Tool 1.5.7 software using protein receptor (PDB id: 4HEF) of bacterial β -lactamase specimen of *P. aeruginosa* as previously reported in this paper (Swain et al., 2019). The interaction of the protein-ligand complex was visualized by Discovery Studio Visualizer software.

The 3D geometries of all the chiral molecules were optimized using Gaussian 09W programme and analyzed via GaussView 6 (Frisch et al.,2009). The DFT calculations were performed at hybrid exchange correlation functionals B3LYP (Sirianni et al., 2018) and basis set 6–311G (d,p) in the gas phase.

3. Characterization Data of Compounds

Thymol (1)

¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 6.60 (d, *J* = 0.9 Hz, 1H), 3.19 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.30 (s, H), 1.27 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 152.55, 136.61, 131.32, 126.23, 121.63, 115.99, 26.71, 22.69, 20.88.

4-hydroxy-5-isopropyl-2-methylbenzaldehyde (Thymol aldehyde) (2):

White amorphous solid (850.0 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 10.11 (s, 1H), 7.68 (s, 1H), 6.64 (s, 1H), 3.21 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.59 (s, 3H), 1.27 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 158.1, 141.0, 132.8, 131.3, 127.7, 118.2, 26.7, 22.4, 19.01; HR-MS *m*/*z* 179.1073 [M+H]⁺ (calcd for C₁₁H₁₄O₂, 178.0994)

Diethyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-2,6-dimethyl-1,4 dihydropyridine-3,5-dicarboxylate (3a):

¹H NMR (400 MHz, CDCl₃) δ 7.04 – 6.96 (m, 1H), 6.27 (s, 1H), 5.02 – 4.93 (m, 1H), 4.02 (dddd, *J* = 9.2, 10.5, 5.4, 2.7 Hz, 4H), 3.06 – 2.93 (m, 1H), 2.40 – 2.13 (m, 9H), 1.18 (d, *J* = 2.0 Hz, 6H), 1.07 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 168.24, 151.09, 143.31, 139.28, 133.76, 131.58, 127.58, 116.35, 105.11, 59.81, 35.60, 29.71, 26.78, 22.63, 19.60, 18.86, 14.38; MS [M+H]⁻ *m/z* 400.0995 (calcd for C₂₃H₃₁NO₅, 401.2202), Chemical Formula: C₂₃H₃₁NO₅

Dimethyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-2,6-dimethoxy-1,4dihvdropvridine-3,5-dicarboxylate (3b):

White amorphous solid; ¹H NMR (400 MHz, CDCl₃) (71mg, 62% yield) δ ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.13 (s, 1H), 6.47 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 1H), 3.76 (d, *J* = 5.2 Hz, 6H), 3.09 (dt, *J* = 13.7, 6.9 Hz, 1H), 2.21 (s, 3H), 1.99 (s, 1H), 1.11 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 165.1, 155.5, 142.3, 137.8, 132.7, 126.4, 117.3, 60.6, 52.7, 52.6, 26.4, 22.6, 19.4, 14.2; MS *m*/*z* 404.1993 [M+H]⁻ (calcd for C₂₁H₂₇NO₇, 405.1788); Chemical Formula: C₂₁H₂₇NO₇

Dibenzyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (3c):

White amorphous solid (62mg, 42% yield) ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 5.0, 2.0 Hz, 3H), 7.13 (dd, *J* = 6.9, 2.7 Hz, 5H), 7.03 (d, *J* = 9.0 Hz, 3H), 6.60 – 6.49 (m, 2H), 5.27 – 5.10 (m, 4H), 4.05 (q, *J* = 7.2 Hz, 2H), 2.30 (s, 5H), 2.25 (s, 2H), 2.17 (s, 1H), 1.98 (s, 1H), 1.11 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 168.5, 155.6, 143.6, 137.8, 132.8, 132.8, 131.8, 128.6, 128.5, 128.5, 128.4, 128.2, 128.0, 117.4, 105.1, 67.4, 31.3, 26.7, 22.5, 19.4, 19.4; HR-MS *m*/*z* 525.2471 [M+H]⁺ (calcd. for C₃₃H₃₅NO₅, 525.2515); Chemical Formula: C₃₃H₃₅NO₅

Ethyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-6-methyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (3d):

White amorphous solid (75.0 mg, 80 % yield); ¹H NMR (400 MHz, CD₃OD) δ 6.92 (s, 1H), 6.43 (s, 1H), 5.40 (d, *J* = 0.7 Hz, 1H), 3.89 (q, *J* = 7.1 Hz, 2H), 3.05 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.30 – 2.17 (m, 6H), 1.08 – 0.92 (m, 9H). ¹³C NMR (101 MHz, CD₃OD) δ 166.4, 153.4, 153.3, 146.6, 133.2, 133.1, 132.6, 124.8, 116.3, 101.1, 59.6, 51.4, 26.4, 21.7, 21.6, 17.3, 16.5, 13.1; HR-MS *m*/*z* 333.1813 [M+H]⁺ (calcd. for C₁₈H₂₄N₂O₄, 332.1736)

tetrahydropyrimidine-5-carboxylate (3e):

White amorphous solid (81 mg, 73% yield); ¹H NMR (400 MHz, CD₃OD) δ 7.14 – 7.06 (m, 3H), 6.92 (s, 1H), 6.83 – 6.78 (m, 2H), 6.39 (s, 1H), 5.41 (d, *J* = 0.7 Hz, 1H), 4.98 (d, *J* = 12.6 Hz, 1H), 3.05 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.27 (d, *J* = 0.6 Hz, 3H), 2.05 (s, 3H), 1.94 (s, 3H), 1.00 (dd, *J* = 6.9, 2.5 Hz, 6H); ¹³C NMR (101 MHz, CD₃OD) δ 167.8, 155.4, 155.1, 149.5, 138.2, 135.2, 135.2, 134.6, 129.9, 129.3, 129.1, 126.5, 118.4, 102.6, 67.1, 53.1, 28.4, 23.6, 23.5, 19.1, 18.5; HR-MS *m*/*z* 394.1842 [M+H]⁺ (calcd. for C₂₃H₂₆N₂O₄, 394.1893)

4-(4-hydroxy-5-isopropyl-2-methylphenyl)-6-isopropoxy-5-(2,2,2- trifluoroacetyl)-3,4dihydropyrimidin-2(1H)-one (3f):

White amorphous solid (42.0 mg, 37% yield); ¹H NMR (400 MHz, CD₃OD) δ 7.71 – 7.46 (m, 1H), 6.47 (s, 1H), 3.65 – 3.59 (m, 2H), 3.25 (s, 1H), 2.18 (d, *J* = 10.6 Hz, 3H), 1.14 – 1.08 (m, 9H), 0.71 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 169.71, 168.07, 154.51, 153.94, 135.18, 132.13, 131.13, 128.51, 123.90, 104.78, 88.62, 67.80, 60.97, 38.75, 30.22, 28.74,

23.56, 22.65, 21.56.MS *m/z* 341.2481 [M-CH₃COO]⁻ (calcd for C₁₉H₂₃F₃N₂O₄, 400.1610); Chemical Formula: C₁₉H₂₃F₃N₂O₄

5-(cyclopropanecarbonyl)-4-(4-hydroxy-5-isopropyl-2-methylphenyl)-6-methoxy-3,4dihydropyrimidin-2(1H)-one (3g):

White amorphous solid (55mg, 56% yield); ¹H NMR (400 MHz, CD₃OD) δ 6.92 (s, 1H), 6.41 (s, 1H), 5.39 (s, 1H), 3.48 (s, 3H), 3.13 – 3.00 (m, 1H), 2.85 (s, 1H), 2.22 (s, 3H), 1.02 (dd, *J* = 6.9, 1.4 Hz, 6H), 0.92 – 0.76 (m, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 167.0, 153.4, 150.7, 133.1, 133.0, 132.6, 124.5, 116.4, 102.3, 51.2, 50.3, 26.4, 21.8, 21.6, 17.2, 11.2. MS *m/z* 343.2003, [M-H]⁻ (calcd for C₁₉H₂₄N₂O₄, 344.1736); Chemical Formula: C₁₉H₂₄N₂O₄

Ethyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-6-methyl-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (3h):

White amorphous solid (27mg, 62% yield); ¹H NMR (400 MHz, CD₃OD) δ 7.53 (s, 1H), 7.03 (s, 1H), 6.45 (s, 1H), 3.79 – 3.59 (m, 2H), 3.21 (d, *J* = 1.5 Hz, 1H), 3.17 – 3.08 (m, 1H), 2.19 (d, *J* = 2.7 Hz, 3H), 1.24 – 1.03 (m, 9H), 0.71 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 173.66, 168.13, 158.51, 155.01, 151.02, 139.07, 111.87, 108.78, 102.01, 100.20, 92.57,

64.84, 54.78, 33.29, 30.58, 25.67, 25.43, 16.33. MS m/z 365.0542 [M+NH₃]⁻ (calcd for C₁₈H₂₄N₂O₃S, 348.1508); Chemical Formula: C₁₈H₂₄N₂O₃S

Ethyl 4-(4-hydroxy-5-isopropyl-2-methylphenyl)-2-imino-6-methyl-1,2,3,4tetrahydropyrimidine-5-carboxylate (3i):

White amorphous solid (65.0 mg, 69% yield; ¹H NMR (400 MHz, CD₃OD) 7.52 (s, 1H), 6.54 (s, 1H), 4.56 (bs, 1H), 3.13 (q, *J* = 8.0 Hz, 2H), 3.11 (m, 1H), 2.42 (s, 6H), 1.13 (s, 3H), 1.11 (s, 6H).

¹³C NMR (101 MHz, CD₃OD) 160.29, 154.06, 140.84, 133.06, 131.30, 131.00, 126.48, 117.35, 102.45, 61.26, 51.55, 26.38, 21.77, 21.37, 21.37, 17.93, 17.16. MS *m/z* 330.9531 [M-H⁺]⁻ (calcd for C₁₈H₂₅N₃O₃, 331.1896); Chemical Formula: C₁₈H₂₅N₃O₃.

4. NMR spectra

¹H spectra of thymol (1):

¹³C spectra of thymol (1):

¹H spectra of thymol Aaldehyde (2):

¹³C spectra of thymol aldehyde (2):

¹H spectra of compound 3a:

¹³C spectra of compound 3a:

¹H spectra of compound 3b:

¹³C spectra of compound 3b

¹H spectra of compound 3c

¹³C spectra of compound 3c

¹H spectra of compound 3d:

¹³C spectra of compound 3d

¹H spectra of compound 3e

¹³C spectra of compound 3e

¹H spectra of compound 3f

¹³C spectra of compound 3f

¹H spectra of compound 3g

¹³C spectra of compound 3g

¹H spectra of compound 3h:

¹H spectra of compound 3i

¹³C spectra of compound 3i

5. Crystal Experiment

Single crystal X-ray diffraction:

Single crystals, suitable for X-ray diffraction analysis, were grown by slow evaporation of a concentrated solution of the compounds. Data were collected on a Bruker Apex II CCD diffractometer with MoKa ($\lambda = 0.71073$) radiation. Preliminary lattice parameters and orientation matrices were obtained from three sets of frames. The full data were collected using the ω and ϕ scan methods with a frame width of 0.5°. Data were processed with the SAINT+ program for reduction and cell refinement. Multi-scan absorption corrections were applied by using the SADABS program for the area detector. The structures were solved by SHELXT¹ and refined with SHELXL(N.K. Sebbar. al.,2015) using the Olex2 et program(V.O.Dolomanov.et al., 2019). The CIFs are submitted into CCDC 2287405 and can be obtained through https://summary.ccdc.cam.ac.uk/structure-summary-form.

6. Supplementary Figure 3: Theoretically optimized structures of the molecules

3i (R-isomer)

7. Biology Experimental Section:

Antibacterial properties of thymol derivatives:- we have added the MBC value of compound

3i which is represented in Figure 4.

MRSA MBC [50µM]

Figure. 4 MBC value of compound 3i

TABLE 1: Synergy FIC index between standard antibiotic (Vancomycin) an	ıd
compound (3j) against <i>P. aeruginosa</i>	

S. No.	Compound	MIC value (µM) In combination	MIC value (µM) single	FICI	RESULT
1	3i	6.25	12.5	0.50	Partial
	Vancomycin	0.07	12.5		synergy
2	3i	6.25	12.5	0.50	Synergy
	Vancomycin	0.03	12.5		

 TABLE 2: Indifference/Additive FIC index between standard antibiotic (Vancomycin) and compound (3j) against *P. aeruginosa*

S.	Compound	MIC value (µM)	MIC value	FICI	RESULT
No.		In combination	(µM) single		
1	3i	25	12.5	4	Indifference/
	Vancomycin	25	12.5		Additive
2	3i	25	12.5	3	Indifference/
	Vancomycin	12.5	12.5		Additive
3	3i	25	12.5	2.5	Indifference/
	Vancomycin	6.25	12.5		Additive
4	3i	25	12.5	2.2	Indifference/
	Vancomycin	3.1	12.5		Additive
5	3i	25	12.5	2.1	Indifference/
	Vancomycin	1.5	12.5		Additive
6	3i	25	12.5	2.0	Indifference/
	Vancomycin	0.7	12.5		Additive
7	3i	25	12.5	2.0	Indifference/
	Vancomycin	0.3	12.5		Additive
8	3i	25	12.5	2.0	Indifference/
	Vancomycin	0.1	12.5		Additive
9	3i	25	12.5	2.0	Indifference/
	Vancomycin	0.07	12.5		Additive
10	3i	25	12.5	2.0	Indifference/
	Vancomycin	0.03	12.5		Additive
11	3i	12.5	12.5	5	Indifference/
	Vancomycin	50	12.5		Additive
12	3i	12.5	12.5	3	Indifference/
	Vancomycin	25	12.5		Additive
13	3i	12.5	12.5	2	Indifference/
	Vancomycin	12.5	12.5		Additive
14	3i	12.5	12.5	1.5	Indifference/
	Vancomycin	6.25	12.5		Additive
15	3i	12.5	12.5	1.2	Indifference/
	Vancomycin	3.1	12.5		Additive
16	3i	12.5	12.5	1.1	Indifference/
	Vancomycin	1.5	12.5		Additive
17	3i	12.5	12.5	1.0	Indifference/
	Vancomycin	0.7	12.5		Additive
18	3i	12.5	12.5	1.0	Indifference/
	Vancomycin	0.3	12.5		Additive
19	3i	12.5	12.5	1.0	Indifference/
	Vancomycin	0.1	12.5		Additive
20	3i	12.5	12.5	1.0	Indifference/
	Vancomycin	0.07	12.5		Additive
21	3i	12.5	12.5	1.0	Indifference/
	Vancomycin	0.03	12.5		Additive
22	3i	6.25	12.5	4.5	Indifference/
	Vancomycin	50	12.5		Additive

23	3i	6.25	12.5	2.5	Indifference/
	Vancomycin	25	12.5		Additive
24	3i	6.25	12.5	1.5	Indifference/
	Vancomycin	12.5	12.5		Additive
25	3i	6.25	12.5	1	Indifference/
	Vancomycin	6.25	12.5		Additive
26	3i	6.25	12.5	0.7	Indifference/
	Vancomycin	3.1	12.5		Additive
27	3i	6.25	12.5	0.6	Indifference/
	Vancomycin	1.5	12.5		Additive
28	3i	6.25	12.5	0.55	Indifference/
	Vancomycin	0.7	12.5		Additive
29	3i	6.25	12.5	0.52	Indifference/
	Vancomycin	0.3	12.5		Additive
30	3i	6.25	12.5	0.51	Indifference/
	Vancomycin	0.1	12.5		Additive
31	3i	3.12	12.5	4.25	Indifference/
	Vancomycin	50	12.5		Additive
32	3i	3.12	12.5	2.25	Indifference/
	Vancomycin	25	12.5		Additive
33	3i	3.12	12.5	1.25	Indifference/
	Vancomycin	12.5	12.5		Additive
34	3i	3.12	12.5	0.75	Indifference/
	Vancomycin	6.25	12.5		Additive
35	3i	1.5	12.5	4.1	Indifference/
	Vancomycin	50	12.5		Additive
36	3i	1.5	12.5	2.1	Indifference/
	Vancomycin	25	12.5		Additive
37	3i	1.5	12.5	1.1	Indifference/
	Vancomycin	12.5	12.5		Additive
38	3i	1.5	12.5	0.6	Indifference/
	Vancomycin	6.25	12.5		Additive
39	3i	0.7	12.5	4.0	Indifference/
	Vancomycin	50	12.5		Additive
40	3i	0.7	12.5	2.0	Indifference/
	Vancomycin	25	12.5		Additive
41	3i	0.7	12.5	1.0	Indifference/
	Vancomycin	12.5	12.5		Additive
42	3i	0.7	12.5	0.55	Indifference/
	Vancomycin	6.25	12.5		Additive
43	3i	0.3	12.5	4.0	Indifference/
	Vancomycin	50	12.5		Additive
44	<u>3i</u>	0.3	12.5	2.0	Indifference/
	Vancomycin	25	12.5		Additive
45	3i	0.3	12.5	1.0	Indifference/
	Vancomycin	12.5	12.5		Additive
46	3i	0.3	12.5	0.52	Indifference/
	Vancomycin	6.25	12.5		Additive

S.	Compound	MIC value (µM)	MIC value	FICI	RESULT
No.		in combination	(µM) single		
1	3i	25	50	0.50	Synergy
	Vancomycin	0.03	4		
2	3i	25	50	0.50	Synergy
	Vancomycin	0.01	4		
3	3i	25	50	0.50	Synergy
	Vancomycin	0.009	4		
4	3i	25	50	0.50	Synergy
	Vancomycin	0.004	4		
5	3i	12.5	50	0.32	Synergy
	Vancomycin	0.31	4		
6	3i	12.5	50	0.28	Synergy
	Vancomycin	0.15	4		
7	3i	12.5	50	0.26	Synergy
	Vancomycin	0.07	4		
8	3i	12.5	50	0.25	Synergy
	Vancomycin	0.03	4		
9	3i	12.5	50	0.25	Synergy
	Vancomycin	0.01	4		
10	3i	12.5	50	0.25	Synergy
	Vancomycin	0.009	4		
11	3i	12.5	50	0.25	Synergy
	Vancomycin	0.004	4		
12	3i	6.25	50	0.43	Synergy
	Vancomycin	1.25	4		
13	3i	6.25	50	0.28	Synergy
	Vancomycin	0.62	4		
14	3i	6.25	50	0.20	Synergy
	Vancomycin	0.31	4		
15	3i	6.25	50	0.16	Synergy
	Vancomycin	0.15	4		
16	3i	6.25	50	0.14	Synergy
	Vancomycin	0.07	4		
17	3i	6.25	50	0.13	Synergy
	Vancomycin	0.03	4		
18	3i	6.25	50	0.12	Synergy
	Vancomycin	0.01	4		
19	3i	6.25	50	0.12	Synergy
	Vancomycin	0.009	4		
20	3i	6.25	50	0.12	Synergy
	Vancomycin	0.004	4		
21	3i	3.12	50	0.37	Synergy
	Vancomycin	1.25	4		
22	3i	3.12	50	0.21	Synergy
	Vancomycin	0.62	4		

TABLE 3: Synergy FIC index between standard antibiotic (Vancomycin) and compound(3i) against MRSA (Methicillin-Resistant Staphylococcus aureus)

23	3i	3.12	50	0.14	Synergy
	Vancomycin	0.31	4		
24	3i	1.5	50	0.34	Synergy
	Vancomycin	1.25	4		
25	3i	1.5	50	0.18	Synergy
	Vancomycin	0.62	4		
26	3i	1.5	50	0.10	Synergy
	Vancomycin	0.31	4		
27	3i	0.7	50	0.32	Synergy
	Vancomycin	1.25	4		
28	3i	0.7	50	0.17	Synergy
	Vancomycin	0.62	4		
29	3i	0.7	50	0.09	Synergy
	Vancomycin	0.31	4		

 TABLE 4: Indifference/Additive FIC index between standard antibiotic (Vancomycin) and compound (3i) against MRSA (Methicillin-Resistant Staphylococcus aureus)

S.	Compound	MIC value (µM)	MIC value	FICI	RESULT
No.		in combination	(µM) single		
	3i	50	50	1.62	Indifference/
1	Vancomycin	2.5	4		Additive
	3i	50	50	1.31	Indifference/
2	Vancomycin	1.25	4		Additive
	3i	50	50	1.15	Indifference/
3	Vancomycin	0.62	4		Additive
	3i	50	50	1.07	Indifference/
4	Vancomycin	0.31	4		Additive
	3i	50	50	1.03	Indifference/
5	Vancomycin	0.15	4		Additive
	3i	50	50	1.01	Indifference/
6	Vancomycin	0.07	4		Additive
	3i	50	50	1.0	Indifference/
7	Vancomycin	0.03	4		Additive
	3i	50	50	1.0	Indifference/
8	Vancomycin	0.01	4		Additive
	3i	50	50	1.0	Indifference/
9	Vancomycin	0.009	4		Additive
	3i	50	50	1.0	Indifference/
10	Vancomycin	0.004	4		Additive
	3i	25	50	1.75	Indifference/
11	Vancomycin	5	4		Additive
	3i	25	50	1.12	Indifference/
12	Vancomycin	2.5	4		Additive
	3i	25	50	0.81	Indifference/
13	Vancomycin	1.25	4		Additive
	3i	25	50	0.65	Indifference/

14	Vancomycin	0.62	4		Additive
	3i	25	50	0.57	Indifference/
15	Vancomycin	0.31	4		Additive
	3i	25	50	0.53	Indifference/
16	Vancomycin	0.15	4		Additive
	3i	25	50	0.51	Indifference/
17	Vancomycin	0.07	4		Additive
	3i	12.5	50	1.5	Indifference/
18	Vancomycin	5	4		Additive
	3i	12.5	50	0.87	Indifference/
19	Vancomycin	2.5	4		Additive
	3i	12.5	50	0.56	Indifference/
20	Vancomycin	1.25	4		Additive
	3i	12.5	50	1.00	Indifference/
21	Vancomycin	0.03	4		Additive
	3i	6.25	50	1.37	Indifference/
22	Vancomycin	5	4		Additive
	3i	6.25	50	0.75	Indifference/
23	Vancomycin	2.5	4		Additive
	3i	3.1	50	1.31	Indifference/
24	Vancomycin	5	4		Additive
	3i	3.1	50	0.68	Indifference/
25	Vancomycin	2.5	4		Additive
	3i	1.5	50	1.28	Indifference/
26	Vancomycin	5	4		Additive
	3i	1.5	50	0.65	Indifference/
27	Vancomycin	2.5	4		Additive
	3i	0.7	50	1.26	Indifference/
28	Vancomycin	5	4		Additive
	3i	0.7	50	0.63	Indifference/
29	Vancomycin	2.5	4		additive

8. References:

Sebbar. N. K., Ellouz, M., Essassi, E. M., Ouzidan, Y., & Mague, J. T. (2015). Crystal structure of 4benzyl-2H-benzo [b][1, 4] thiazin-3 (4H)-one. *Acta Crystallographica Section E: Crystallographic Communications*, 71(12), 0999-0999.ISSN 2056-9890.

Dolomanov. O.V., Bourhis, L.J., Gildea. R.J., Howard, J.A.K., Puschmann, H. OLEX2: (2009). A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography,

42, 339-341.. http://dx.doi.org/10.1107/S0021889808042726

Swain. S. S., Paidesetty, S. K., & Padhy, R. N. (2019). Synthesis of novel thymol derivatives against MRSA and ESBL producing pathogenic bacteria. *Natural product research*,*33*(22), 3181-3189. https://doi.org/10.1080/14786419.2018.1474465.

Frisch, M. J. E. A gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT. 2009, 201.

Sirianni, D. A., Alenaizan, A., Cheney, D. L., & Sherrill, C. D. (2018). Assessment of density functional methods for geometry optimization of bimolecular van der Waals complexes. *Journal of Chemical Theory and Computation*. *14*(6), 3004-3013. <u>https://doi.org/10.1021/acs.jctc.8b00114</u>.