

What does I_{50} mean?

Studies of enzyme inhibition are an important part of the overall enzyme research. Inhibitors are very effective tools for studying the active site and reaction mechanism of enzymes. Usually K_1 (inhibition constant, i.e. dissociation constant of the enzyme-inhibitor complex) is used to measure the effectiveness of an inhibitor. Unfortunately, a parameter called I_{50} (concentration of inhibitor at which the enzyme is inhibited by 50%) is still used (see, e.g., De Vrij *et al.*, 1983). Here we would like to show the interrelation between K_1 and I_{50} for different types of inhibition and how I_{50} can misrepresent the inhibitory capability of an inhibitor. We will consider reversible inhibition and the simple two-step Michaelis-type reaction only:

$$\mathbf{E} + \mathbf{S} \xrightarrow{K_{\bullet}} \mathbf{ES} \xrightarrow{k_{+2}} \mathbf{E} + \mathbf{P} \qquad (1)$$

where E, S, ES and P are enzyme, substrate, enzyme-substrate complex and product, respectively. The expression for the reaction rate for eqn. (1) is given in eqn. (2):

$$v_0 = \frac{V[S]}{K_s + [S]} \tag{2}$$

where V is the limiting (maximum) reaction rate, equal to $k_{+2} \times [E]_0$.

Let us examine the relationship between K_1 and I_{50} for different types of inhibition.

(1) Competitive type. In this case of competitive inhibition the reaction rate in the presence of inhibitor (v_i) is:

$$v_{i} = \frac{V[S]}{K_{s}(1 + [I]/K_{ic}) + [S]}$$
 (3)

where I is inhibitor and K_{ic} is the inhibition constant for a competitive inhibitor. From eqns. (2) and (3):

$$v_{\rm o}/v_{\rm i} = \frac{K_{\rm s} \left(1 + [{\rm I}]/K_{\rm ic}\right) + [{\rm S}]}{K_{\rm s} + [{\rm S}]}$$
 (4)

when $[I] = I_{50}$, $v_i = v_o/2$, and from eqn. (4) we can derive:

$$I_{50}/K_{ic} = 1 + [S]/K_s$$
 (5)

(all other expressions for I_{50}/K_1 are derived in analogous ways).

So $K_{\rm lc}$ is always less than I_{50} and, depending on the values of $K_{\rm s}$ and [S], the ratio can be of any value greater than 1, i.e. $1 < I_{50}/K_{\rm lc} < \infty$. In this case I_{50} will always underestimate the inhibiting capacity of the inhibitor $(I_{50} < K_{\rm lc})$. However, if the initial substrate concentration is much lower than $K_{\rm s}$, $K_{\rm lc}$ will be almost equal to I_{50} .

(2) Uncompetitive type. In this case

$$I_{50}/K_{iu} = 1 + K_s/[S]$$
 (6)

where K_{iu} is the inhibition constant for an uncompetitive inhibitor. Here also $1 < I_{50}/K_{iu} < \infty$ and I_{50} underestimates the inhibiting capacity of the inhibitor. However, for the uncompetitive type of inhibition, initial substrate concentration must be much larger than K_s for the ratio I_{50}/K_{iu} to approach 1.

(3) Pure non-competitive type. In this case only, $I_{50} = K_1$ and I_{50} can be a true measure of the inhibitory capacity of the inhibitor.

(4) Mixed type. Let us use the general scheme for enzyme inhibition (Berezin & Martinek, 1971):

For eqn. (7):

$$I_{50} = K_{i} \left[\frac{\alpha(K_{s} + [S])}{K_{s}(\alpha - 2\beta) + [S](1 - 2\beta)} \right]$$
(8)

As can be easily seen from eqn. (8) $I_{50} \neq K_i$ and I_{50} depends on [S], K_s , α and β . I_{50} can be equal to K_i only if $\alpha = 1$ and $\beta = 0$, i.e. when the inhibitor is of pure non-competitive type. This has been stated earlier.

A few special cases of the mixed type of inhibition need comment. (i) When $\alpha = 1$, $\beta = 0.5$, the ratio I_{50}/K_1 is equal to infinity; (ii) when $\alpha = \beta = 0.5$, the ratio I_{50}/K_1 has a negative value, which by definition has no physical meaning; (iii) eqn. (8) can be rearranged as:

$$K_{1}/I_{50} = 1 - \frac{2\beta}{\alpha} + \frac{(1-\alpha)[\mathbf{S}]}{\alpha(K_{s} + [\mathbf{S}])}$$
(9)

and in a given case, K_1/I_{50} , depending on the values of α , β , K_s and [S], can be less, equal to or greater than 1. Hence I_{50} can either underestimate or overestimate the inhibiting capacity for mixed inhibition.

In conclusion, it should be noted that I_{50} , the concentration of inhibitor at which the enzyme is inhibited by 50%, is not a constant like K_1 and hence is not recommended to be used as a measure of inhibition.

The author is indebted to Prof. B. Chance for his encouragement and support.

Ali NAQUI

Johnson Research Foundation, The School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

(Received 4 July 1983)

- Berezin, I. V. & Martinek, K. (1971) Mol. Biol. (Moscow) 5, 347–350
- De Vrij, W., Azzi, A. & Konings, W. N. (1983) Eur. J. Biochem. 131, 97-103