Cell Reports Medicine, Volume 5

Supplemental information

Loss of p53 and SMAD4 induces adenosquamous

subtype pancreatic cancer in the absence

of an oncogenic KRAS mutation

Daowei Yang, Xinlei Sun, Rohan Moniruzzaman, Hua Wang, Citu Citu, Zhongming Zhao, Ignacio I. Wistuba, Huamin Wang, Anirban Maitra, and Yang Chen

В

Figure S1. Characterization of the genotype and tissue histology for KPPC and PPSSC mice. Related to Figure 1.

(A) PCR product detection confirming the Pdx1-Cre specific deletion of Smad4 and Trp53, as well as the presence of LSL- $Kras^{G12D}$ and Pdx1-Cre in DNA samples from indicated mice. Kras recombination (Kras-rec) primers, Smad4 recombination (Smad4-rec) primers, and Trp53 flox primers were used to validate the Pdx1-Cre-mediated recombination of LSL- $Kras^{G12D}$, $Smad4^{loxP/loxP}$, and $Trp53^{loxP/loxP}$ alleles, respectively.

(B) Comparison of the histology by H&E staining on a variety of tissues from KPPC mice (2.5-month-old) and

PPSSC mice (8-month-old), as compared with tissues from normal (WT) mice (2.5-month-old). Scale bar: 100 µm.

Figure S2. Additional characterization of the tumor histology for PPSSC and KPPC tumors. Related to Figure 1.

(A) Pancreatic tissue histology of PPSSC mice at various ages from 1 month to 10 months. Scale bar: 100 $\mu m.$

(B) Representative images of immunohistochemistry staining for alpha-smooth muscle actin (α SMA), type I collagen (Col1), and CD45 on pancreatic tumor sections from KPPC mice (2.5-month-old) and stage-matched PPSSC mice (8-month-old). Picrosirius red staining was used for collagen fibers visualization. Quantitative results were shown with Student's *t* test. Scale bar: 100 µm. * *P* < 0.05, *** *P* < 0.001. ns: not significant.

С

В

Figure S3. Expression profile of cytokeratin (CK) markers in orthotopic pancreatic tumors formed by KPPC and PPSSC cancer cell lines. Related to Figure 3.

(A) qRT-PCR analysis of Δ Np63, *Notch1*, *Irf3*, *Irf7*, and *Ifit1* expression levels in PPSSC cancer cells transfected with either a vector of SMAD4 expression or a control vector (n = 3 biological replicates). Western blot assay validated the SMAD4 expression in PPSSC cancer cells transfected with SMAD4-expressing vector. Gene expression levels were compared with Student's *t* test. *** *P* < 0.001, **** *P* < 0.0001.

(B) Representative images of immunofluorescence staining for CK5 (green), CK8 (red), and nuclei/DAPI (blue) in orthotopic pancreatic tumors (n = 5 per group) formed by KPPC and PPSSC cancer cell lines. Scale bar: 100 μ m. (C) Quantitative analysis of CK5 and CK8 positive staining shown in (B). Results were shown with Student's *t* test. ** *P* < 0.01, **** *P* < 0.0001.

Figure S4 A

В

Figure S4. Characterization of epithelial-to-mesenchymal transition (EMT) phenotype in KPPC and PPSSC cancer cell lines. Related to Figure 3.

(A) Gene Set Enrichment Analysis (GSEA) of RNA-seq data on KPPC and PPSSC cancer cell lines. EMTassociated genes were downregulated in PPSSC cancer cells, as compared with KPPC cancer cells.

(**B** and **C**) Heatmap showing the gene expression levels of EMT-related genes between KPPC and PPSSC cancer cell lines (**B**). The mean Z-score of these genes was compared with Student's *t* test (**C**). **** P < 0.0001.

(**D**) Representative images of immunohistochemistry staining for E-Cadherin, Vimentin, and ZEB1 on pancreatic tumor sections from KPPC mice (2.5-month-old) and stage-matched PPSSC mice (8-month-old). Quantitative results were also shown with Student's *t* test. Scale bar: 100 μ m. *** *P* < 0.001, **** *P* < 0.0001.

(E) Representative images of transwell migration assay on KPPC and PPSSC cancer cell lines (n = 3 biological replicates). The migrated cells attached to the bottom layer of transwell membrane were counted. Results were shown with Student's *t* test. ** P < 0.01.

Α

В

Figure S5. The expression levels of basal-like and classical subtype genes in KPPC and PPSSC cancer cells.

Related to Figure 3.

(A) Heatmap showing the expression profiles of basal-like and classical subtype genes in KPPC and PPSSC cancer cells.

(B) Box plots comparing the mean Z-scores of basal-like and classical subtype genes shown in A.

Figure S6. Characterization of primary cancer cell lines from KPPC and PPSSC tumors. Related to Figure 3.

(A) Cell proliferation of KPPC and PPSSC cancer cell lines over time (n = 3 biological replicates). One-way

ANOVA with Tukey's multiple comparison test was used to compare these two groups. *** P < 0.001.

(**B**) Cell viability of KPPC and PPSSC cancer cell lines (% normalized to the untreated group of each cell line) treated with MRTX1133 (n = 3 biological replicates). IC50 values of MRTX1133 in PPSSC and KPPC cancer cells were also shown.

(C) Detection of phospho-ERK (P-ERK) and total ERK in KPPC and PPSSC cancer cell lines treated with MRTX1133 at indicated concentrations for three hours by Western blot assay.

(**D-O**) Cell viability of KPPC and PPSSC cancer cell lines (% normalized to untreated group of each cell line) treated with MEK inhibitor GSK1120212 (**D**), YAP inhibitor Verteporfin (**E**), Gemcitabine (Gem) (**F**), STAT3 inhibitor Niclosamide (**G**), PARP inhibitor Olaparib (**H**), BET inhibitor JQ1 (**I**), AKT inhibitor MK-2206 (J), DDR1 inhibitor 7RH (with or without type I collagen coating) (**K**), FAK inhibitor VS-4718 (**L**), mTOR inhibitor Rapamycin (**M**), GPX4 inhibitor RSL3 (**N**), and VDAC inhibitor Erastin (**O**) (n = 3 biological replicates).

Figure S7. Pancreatic tissue histology of PPTTC mice at various ages. Related to Figure 4.

Comparison of pancreatic tissue histology by H&E staining of PPTTC mice at various ages from 1 month to 8 months. Scale bar: 100 µm.

webidt	well with	
		Identity Myeloid-1 Expression 2 1 0 -1 -2

Figure S8. Single-cell analysis showing the expression profiles of signature genes of Myeloid-1 and Myeloid-2

cell subclusters. Related to Figure 5.

Expression profiles of signature genes shown in heatmap for Myeloid-1 and Myeloid-2 in KPPC and PPSSC tumors.

PPSSC

KPPC

Figure S9. The signaling pathways of cell-cell communication networks across various immune cells in KPPC and PPSSC tumors. Related to Figure 5.

The cell-cell communication intensity of indicated signaling pathways across various immune cell populations in PPSSC and KPPC tumors. The outgoing signaling and incoming signaling patterns were separately shown in the heatmap.

Figure S10. Characterization of T cells in KPPC and PPSSC tumors. Related to Figure 7.

(**A and B**) Quantitative analysis of immunofluorescence staining images described in **Figure 7F**. The numbers of total CD4⁺ T cells (**A**), FoxP3⁺/CD4⁺ T cells (**B**), and FoxP3⁻/CD4⁺ T cells (**B**) were quantified respectively. Results were shown with Student's *t* test. * P < 0.05, *** P < 0.001.

(C) The correlation analysis of Cd8a and cytotoxic T cell-related genes in CD8⁺ T cells. Correlation strength was shown in the heatmap.

(**D** and **E**) Representative images of H&E staining, Ki67 staining, CD8 staining, and CD4/FoxP3/DAPI immunofluorescence staining on orthotopic pancreatic tumors with indicated treatments. The numbers of total CD4⁺ T cells, FoxP3⁺/CD4⁺ T cells, and FoxP3⁻/CD4⁺ T cells were quantified respectively and were shown in **E**. Scale bar: 100 μ m. * *P* < 0.05, ** *P* < 0.01.