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§1. Overview.

To simulate associative conditioning and extinction processes in Drosophila melanogaster, we created 

a computational model of the Drosophila mushroom body’s neural circuit dynamics. The model 

describes the activity and plasticity patterns of Kenyon cells (KCs), mushroom body output neurons 

(MBONs), and dopamine neurons (DANs) in 3 interconnected learning modules (γ1, α2, and α3) of the 

mushroom body (MB) (Fig. 5a). The KCs sparsely encode the odor stimuli used in our conditioning 

experiments. The DANs encode shock punishments received by the fly and modulate the strengths of 

synaptic connections between KCs and MBONs, thereby shaping the storage and extinction of memories 

stored in the MB. The MBONs gather signals from the KCs to control motor behaviors. The model thus 

depicts how associative information is stored and retrieved in both the short-term (γ1 module) and long-

term (α2 and α3 modules) learning compartments, including via the interactions between compartments. 

The implementation of associative learning and memory in the model depends crucially on both the 

network architecture, which is based on the fly connectome, and two different forms of neural plasticity, 

sensory adaptation that affects the incoming olfactory signals and anti-Hebbian plasticity that modifies 

the strengths of KC→MBON synapses. As the modeling results reveal, the feedback connection from 

the output of the γ1 module to the input of the α3 module is pivotal for a previously unknown gating 

effect, through which an existing short-term memory trace gates the formation of a long-term memory. 

Specifically, after a short-term associative memory trace has been formed, during subsequent 

conditioning the expression of the short-term memory trace gates the initial encoding of the long-term 

memory trace. This gating effect is distinct from memory consolidation, in that the gating is only active 

during additional bouts of conditioning, whereas memory consolidation typically occurs offline, between 

bouts of conditioning. Experimental data strongly support the model’s predictions regarding the 

influence of this feedback-mediated gating (Fig. 4i–m).  
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In §2, we first model the circuit comprised of KCs, DANs and MBONs as a recurrent network 

by using data from the fly connectome1,2 to define the set of neural connections in the model. We 

mathematically model the dynamical interactions between the different neurons in the model using a 

coupled set of ordinary differential equations, one equation for each neuron. 

In §3, we mathematically model the two forms of plasticity. We implement an adaptation of 

olfactory sensory neuron activity, such that sensory neurons decrease the amplitudes of their odor-

evoked responses during a sustained odor presentation (Fig. 5b); further, after the termination of an odor 

cue, these neurons gradually recover their odor sensitivity3. In addition to this form of sensory adaptation, 

we implement an anti-Hebbian plasticity rule that modifies the strengths of KC→MBON synaptic 

connections. Specifically, if a KC spikes just before its corresponding DAN activates, the strength of the 

corresponding KC→MBON connection decreases; if the KC spikes just after DAN activation, the 

strength of the KC→MBON connection increases4,5 (Extended Data Fig. 10b). The inclusion of both 

forms of plasticity in the model is important to account for the full range of phenomena seen in our 

experimental data. For instance, both forms of plasticity are needed for the model to capture the influence 

of odor valence on the formation and extinction of long-term memory in the α3 compartment (Fig. 5g–

k and Extended Data Fig. 10l, m).  

In §4 and §5, we describe several mathematical simplifications and approximations that we used 

to speed the solution of the ordinary differential equations developed in §2 and §3. While these 

differential equations provide a rigorous and complete definition of the model, in practice we found that 

full simulations of the model dynamics were unduly time-consuming. Using the fact that our experiments 

had temporally defined bouts of conditioning, rest, and extinction training, one can simplify the 

differential equations governing the network interactions and plasticity processes into a set of recursive 

equations, for which the discrete time steps correspond to the different bouts of our experiments. In §4, 
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we first transform the differential equations governing the neural dynamics into recursive equations. We 

also use several additional approximations to simplify the activation functions of the KCs, DANs, and 

MBONs. In §5, we transform the differential equations that describe the plasticity dynamics into 

recursive equations. This transformation makes use of the fact that our experiments had a fixed interval 

(3 s) between the onset of the CS+ odor stimulus and that of the US electric shock. This fixed interval 

implies that, by design, our experiments did not explore how anti-Hebbian plasticity at the KC→MBON 

synapse depends on the CS+–US interval; the fixed interval also reduces to two the number of anti-

Hebbian plasticity-related parameters needed to fit our spiking data. Readers wishing to apply our model 

to more variable experimental conditions should use the general formulations of §2 and §3, while those 

seeking mainly to understand our fits of the model to experimental data can concentrate on §4 and §5. 

In §6, we analyze the recurrent feedforward and feedback interactions between the DANs and 

MBONs in the model, with the aim of understanding how a previously formed short-term memory gates 

the formation of a long-term memory during subsequent rounds of associative conditioning. In §7, we 

describe the statistical procedures used to fit model parameters to the experimental data, for both the full, 

three-compartment version of the model and a two-compartment version in which the α2 compartment 

is omitted. §8 presents tables showing how the fly connectome constrained the neural connections in the 

model, the values of numerical parameters that we input directly into the model, and the values of 

parameters determined for both model versions through statistical fits to the experimental data. 

§2. A neural network model comprised of KCs, DANs and MBONs.

In this section, we formulate a recurrent neural network to characterize the dynamics of the individual 

neurons in the model and their interactions. The recurrent circuit architecture of the model is based 

directly on the physical connections revealed in recent electron microscopy studies of the fly brain 

connectome1,2 (Fig. 5a).  
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The fly connectome data show the feedback and feedforward interactions between MBONs and 

DANs. For each MBON→DAN or MBON→MBON interaction, if the number of synapses between 

each pair of cells is <5 in the electron microscopy data2, we set the corresponding synaptic weights in 

our model to be zero (Supplementary Table 1). However, after applying the threshold, we did not use 

the numbers of synapses found in the connectome data to determine the model’s non-zero synaptic 

weight values (Supplementary Tables 1, 3). The rationale for this choice was that we did not want to 

over-constrain or oversimplify the important role that synaptic plasticity might play in setting the 

functional strengths of the MB neural connections. Instead, we determined the values of all non-zero 

synaptic weights in the model through parametric fits to the spiking rate data recorded experimentally. 

We did, however, set the signs of the MBON→DAN and MBON→MBON connections in the model 

based on the neurotransmitter used by each pre-synaptic neuron.  

The fly connectome data also show that KCs influence DANs and MBONs via combinations of 

direct and indirect neural activation and inhibition. Consequently, unlike for MBON→DAN and 

MBON→MBON connections, we did not constrain the signs of the KC→DAN and KC→MBON 

connections. This lack of constraint allows the model to capture the net effects of how the KCs influence 

the DANs and MBONs via direct and indirect interactions; thus, the synaptic weight values in the model 

for these connections can be thought of as characterizing the effective functional interactions. 

In our experiments, olfactory conditioning involved odor pairs with distinct molecular structures, 

implying that the two odors were likely to be encoded orthogonally. To capture this, the model has 4 

KCs, each of which responds to a single odor. The 4 odors included in the model are an attractive CS+ 

odor, an attractive CS– odor, a repulsive CS+ odor, and a repulsive CS– odor. Using the subscript i to 

refer to an individual KC, Eq. (2.1) describes the sparse activation of each KC by its preferred odor input, 

   , (2.1) ( ) ( )( ), , , , , , , ,KC i KC i a KC i odor i odor i KC i KC i
d x f w x t b
t

t x
d

t = + -
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where  is the spiking rate of the ith KC,  is the activation function of this KC,  is a 

time-constant characterizing the rate at which the cell’s spiking rate converges to its steady state value, 

 equals 1 when the cell’s preferred odor is presented to the fly and 0 otherwise,  is the 

time-dependent amplitude of neural input signals conveying the presence of odor i, and  is a bias 

term that sets the cell’s baseline spiking rate ( ) in the absence of odor i and prior to any conditioning, 

.

DANs are activated by electric shocks and receive feedforward, feedback, and cross-module 

signals from KCs and MBONs (Fig. 5a). The MBONs gather signals from the KCs and transmit signals 

between different MB learning units. For the DANs, we used the subscripts 1, 2, and 3 to refer to PPL1-

γ1pedc, -α’2α2, and -α3. For the MBONs, these subscripts refer to each DAN’s corresponding MBON, 

namely MBON-γ1pedc>α/β, -α2sc and -α3. Defining  as the spike rate of DAN j,  as the 

spike rate of MBON j, and  and  as activation functions, the dynamics of  and 

 are governed by 

(2.2) 

   , (2.3) 

where  and  are time-constants of spiking adaptation,  is the synaptic weight from 

KC i to DAN j,  is the synaptic weight from KC i to MBON j,  is the synaptic weight from 
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MBON l to DAN j,  is the synaptic weight from MBON l to MBON j,  ,  and 

are baseline spiking rates, and  and  are bias terms analogous to that in Eq. (2.1). 

For the MBONs, the signs of  and  are set according to the MBON 

neurotransmitters. MBON-γ1pedc>α/β neurotransmission is GABAergic6; thus,  and  are 

set to be non-positive. MBON-α2sc and -α3 signaling are cholinergic6–8. Thus, , , 

and  are set to be non-negative. We did not set sign constraints on  and based on 

KC neurotransmission, because these two weights reflect the net results of direct and indirect neural 

activation and inhibition. KCs may activate or inhibit DANs through various indirect pathways, such as 

through lateral horn, anterior paired lateral (APL), and dorsal paired medial neurons1,2. One subtype of 

KCs releases neurotransmitter at the synapses between KCs and MBONs. However, another subtype of 

KCs also regulates the dynamics of other KCs through the APL neurons9–11. The weight 

summarizes the net effect of the direct and indirect inputs from KC i to MBON j. Similarly, we also 

refrained from constraining the sign of  based on the valence of odor i. While it is true that the 

DANs represent an odor’s net valence, DAN activity is shaped by both inputs from KCs and feedback 

from MBONs. These two sources of input could in principle oppose each other. Hence, we left the sign 

of  unconstrained during parametric fitting of the model to empirical data. 

When a fly receives an electric shock punishment,  equals 1; otherwise, it equals 0. 

 is the weight of punishment signals received by DAN j. Because the spiking rate of PPL1-α´2α2 

did not significantly increase during electric shocks (Fig. 2a,d), this DAN received no punishment 

signals in the model. We also found that the change in the spike rate of PPL1-γ1pedc is ~2.44-fold that 

of PPL1-α3 during the electric shocks (Fig. 2a,d). Thus, we manually set = 2.44, and 
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= 0 as input values to the model (Supplemental Table 2). Further, since the presentation of 

different odors with similar innate valences led to comparable levels of DAN activation (Fig. 2i; 

Extended Data Fig. 3), we modeled this empirical result by setting  and . 

In other words, the model incorporates the finding that each odor of an attractive odor pair with similar 

innate valences drives equivalent levels of DAN spiking, as do the two odors of a repulsive odor pair 

with similar innate valences. 

§3. Modeling synaptic plasticity: sensory adaptation and an anti-Hebbian learning rule.

Our model has two types of plasticity in the circuit of KCs, DANs and MBONs (Fig. 5b): the adaptation 

of olfactory sensory neurons and the anti-Hebbian plasticity rules of the KC→MBON synaptic weights. 

By combining the network architecture articulated in §2 and the plasticity here in §3, we will arrive at a 

full set of ordinary differential equations that characterize both the firing rate dynamics and the neural 

plasticity in the model. In §4 and §5, we will simplify these dynamics into a set of recursive equations 

that we used for parametric fitting of the experimental data. Readers wishing to apply the more general 

formulation of the model to their own experiments, e.g., for studies with variable CS+–US intervals, 

should use the equations developed in §2 and here in §3, where we treat the plasticity dynamics.  

When odor is present continuously at a uniform level, the activity levels of olfactory sensory 

neurons do not stay uniform but instead adapt over time3 (Fig. 5b). The model captures this phenomenon 

through the time-dependence of : 

   ,  (3.1) 

where  denotes the amplitude of odor i, and  and  are time-constants that 

respectively characterize the rates of adaptation in the presence of odor and following the offset of odor 

presentation. 
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Based on the biological finding that concurrent activation of a DAN and KCs leads to plasticity 

of the odor-evoked spiking responses by the DAN’s corresponding MBON4,5, in our model the 

concurrent activation of KC i and DAN j modifies the weight of the KC i to MBON j synapse, , 

according to an anti-Hebbian rule (Extended Data Fig. 10b). If the fly receives a punishment following 

odor presentation (a forward pairing),  decreases, whereas  increases if the punishment 

occurs before odor presentation (a backward pairing) (Extended Data Fig. 10b). We modeled these 

effects as follows12: 

(3.2) 

(3.3) 

(3.4) 

   . (3.5) 

In Eqs. (3.2) and (3.3),  and  are low-pass filtered versions of the spiking signals conveyed 

to the MBON by KC i and DAN j. Unlike past modeling studies12 but in accord with prior experimental 

findings4,5, our model has distinct amplitudes (  and ) and time-constants (  and ) 

characterizing the plasticity that arises from forward vs. backward pairings. In Eq. (3.4),  is a 

plasticity time constant for MBON j.  is the synaptic weight between KC i and MBON j. 

is an intermediate variable used to calculate  and  is the time-constant of the low-pass filter 

in Eq. (3.5), which ensures that the synaptic weight  is a temporally low-pass filtered version of 

. This prevents rapid fluctuations of the synaptic weights in the model, which might have occurred 
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if we had directly used  as the synaptic weight between KC i and MBON j. 

The KC→MBON-γ1pedc>α/β synaptic connections store short-term memories, and the 

KC→MBON-α2sc and KC→MBON-α3 connections store long-term memories5,13,14. In our experiments, 

learning-induced plasticity in MBON-γ1pedc>α/β persisted for <1 hr (Fig. 3f and Extended Data Fig. 

7a), whereas MBON-α3 plasticity lasted >24 hrs (Fig. 4a–d). Our modeling efforts accounted for this 

difference between short- and long-term memory in two ways.  

First, we assigned distinct time-constants for the weights of the KC→MBON-γ1pedc>α/β 

synapse ( ) and those of the KC→MBON-α2sc and -α3 synapses (  and ). Parametric fits of 

the model to the spiking data confirmed that the KC→MBON-γ1pedc>α/β synaptic time-constant is 

much briefer than the time-constants of the KC→MBON-α2sc and KC→MBON-α3 connections 

(Supplementary Table 3). 

Second, to allow for the possibility of long-term memory consolidation processes, we let the 

model use two different sets of values for the time-constants,  and . When we parametrically fit 

the model to the experimental spiking data, one pair of values for  and  was used for data 

collected in the first 3 hours after associative conditioning; these time-constant values were relatively 

brief. Another set of values for  and  was used for data collected at time points after 3 hours; 

these values for  and  were considerably longer (Supplementary Table 3). The rationale for 

implementing this switch in the values of  and  was the key finding that memory decay in the 

first 3 hours after conditioning is much faster than that afterward (Fig. 4c,d). Notably, we were unable 

to fit the empirical data by modeling memory decay with a single decaying exponential function; this 

inability led us to introduce the second set of time-constant values, which in actuality could arise from a 

bi-exponential memory decay process15–17. 
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§4. Mathematical simplifications of the neural network dynamics.

We simulated the differential equations governing the neuronal firing rate (2.1–2.3) and plasticity (3.1–

3.5) dynamics using the MATLAB (Mathworks Inc.) function ode15s(), which solves differential 

equations numerically. This approach was time-consuming and required ~14 s to provide results for a 

single, fixed set of parameter values. To accelerate the simulations and analyze key features of the neural 

network across many different sets of parameter values, we simplified the model by applying several 

approximations regarding the spiking dynamics (§4) and plasticity processes (§5). 

Here, in §4, we simplify equations 2.1–2.3 into recursive equations. We also simplify the 

activation functions of the KCs, DANs, and MBONs based on the following three observations. (1) In 

our experiments, we set the odorant concentrations within ranges that do not saturate the flies’ odorant 

receptors (Extended Data Fig. 3). (2) Our voltage imaging studies of DANs showed that the spiking 

rate changes triggered by an odor and shock presented jointly approximately equal the sum of the spiking 

rate changes triggered by the individual stimuli (Fig. 4e–h). This indicates that DANs operate 

approximately in their activation functions’ linear range. This is a key property of our model and implies 

that DANs linearly integrate the valences of jointly presented stimuli. (3) Our experiments showed that, 

unlike for KCs and DANs, the spiking rates of MBONs can attain upper and lower bounds (Fig. 4a–d; 

Extended Data Figs. 4,6). Hence, while we approximated the activation functions of KCs and DANs as 

linear functions, this approximation would be incorrect for MBONs, for which we retain baseline and 

maximum firing rates in the model (Supplementary Table 2). Further, after transforming the model 

equations from a continuous time formulation to a recursive version with discrete time steps, at each 

time step we describe each cell’s activity using mean values of its spike rate, time-averaged across each 

individual training, testing, or resting bout. 

First, we approximated the activation functions of KCs and DANs as linear functions. This 
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approximation allows us to cancel the baseline firing rates of KCs and DANs from their respective 

dynamical equations and reduces the number of parameters needed to fit the model to data. In multiple 

of this paper’s figures and extended data figures, we plotted changes in neural spiking rates from baseline 

levels prior to conditioning: 

(4.1) 

 (4.2) 

   . (4.3) 

In our studies, we did not use extremely high concentrations of odorants, which might have saturated the 

flies’ odorant receptors (Extended Data Fig. 3). Thus, we approximated KC activation functions as 

linear, . Using this approximation and combining equations (2.1) and (4.1) yields: 

   . (4.4) 

In our imaging studies of DANs, we found that they linearly integrate the valences of jointly presented 

stimuli, such that spiking rate changes triggered by an odor and shock presented jointly approximately 

equal the sum of the spiking rate changes triggered by the individual stimuli (Fig. 4e–h). Thus, DANs 

operate approximately in the linear range of their activation function, i.e., , implying that 

Eq. (2.2) can be simplified as follows: 

   . (4.5) 

Unlike our results from DANs, we observed experimentally that MBON spiking rates could 

attain upper and lower bounds (Fig. 4a–d; Extended Data Figs. 4,6). Thus, we did not approximate 

MBON activation functions as linear. Instead, we used piecewise linear functions: 
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   , (4.6) 

where  is the maximum spiking rate of MBON j. Based on our empirically measured values, we 

set  = 71.6 s–1,  = 17.9 s–1,  = 31.2 s–1,  = 35.2 s–1,  = 9.0 s–1, and 

 = 11.25 s–1 (Extended Data Figs. 4,6; Supplementary Table 2). Plainly, the baseline spiking 

rates of MBONs do not reach the upper and lower limits. Thus, we concluded that . 

Combining (2.3), (4.1) and (4.3) yields (4.7), which describes the spike rate changes: 

   . (4.7) 

The time-constants ,  and  are sufficiently brief (~10 ms) that the dynamics of Eqs. 

(4.4) and (4.5) quickly reach steady-state values when the input values of  and  

change. This allows us to simplify (4.4), (4.5), and (4.7) as follows: 
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   . (4.10) 

During resting bouts,  = 0 and  = 0. From Eqs. (4.8), (4.9), and (4.10), one 

finds that ,  and  are all zero during resting bouts. During training, testing and 

imaging bouts, at least one of  and  is non-zero, implying that ,  and 

 may be non-zero. Since the durations of training, testing and imaging bouts are much less than 
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the rest intervals between them (Figs. 3a, 3d, 4k and 5j,k), we focused on the set of discrete time points, 

{ }, corresponding to each training, testing, and imaging bout, and we used a single, time-averaged 

mean spiking rate to represent each cell’s activity level at each time point. With this approach, Eqs. (4.8), 

(4.9) and (4.10) become: 

 (4.11) 

 (4.12) 

   , (4.13) 

where, for any variable , the notation  denotes the mean value of , time-averaged over 

the kth training, testing, or imaging bout, i.e., at time-point . Hence, ,  and 

 denote mean spike rates for the kth bout.  is the mean weight of odor i on KC i, 

and  is the mean connection weight from KC i to MBON j at the kth bout. 

§5. Mathematical simplifications of the synaptic plasticity dynamics.

Having simplified the neural dynamics and interactions into a coupled set of recursive equations in §4, 

in this section we reduce the plasticity dynamics to a set of recursive equations. The plasticity rule 

derived here in §5 shows how the linear integration of innate and learnt valences by the DANs shapes 

plasticity in the long-term (α3) memory module. Altogether, the use of the combined set of recursive 

equations developed in §4 and §5 accelerated our simulations of the model, facilitated fits to 

experimental data, and yielded a clearer understanding of the model dynamics.  

To simplify the model’s implementation of KC→MBON synaptic plasticity, we exploited the 
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linear dependence of the anti-Hebbian plasticity rule as a function of its input levels of neural spiking, 

the finding that DANs linearly integrate the valences of jointly presented stimuli (Fig. 4e–h), and the 

observation that odors’ innate and learnt valences concurrently activate the DANs and KCs (Fig. 5b). 

These observations imply that, during associative conditioning, the plasticity induced at a KC→MBON 

connection is the linear sum of the plasticity that would be induced by the US valence and the innate and 

learnt odor valences, if these were hypothetically presented individually to the fly in conjunction with 

odor delivery (Extended Data Fig. 10a). The innate and learnt odor valences are signaled concurrently 

by the DAN and hence use a shared weighting parameter in the computation of plasticity induction. 

Since our experiments used a fixed value ( = 3 s) for the CS+–US interval, the weight of the US 

on plasticity induction in our model is determined by a single fitted parameter value. 

In equations (4.11–4.13) above,  and  change with time, due to sensory adaptation 

and anti-Hebbian plasticity, respectively, whereas the other synaptic weights remain constant. First, we 

sought recursive equations from which we could calculate the mean weight,  , of the odor input: 

 (5.1) 

(5.2) 

(5.3) 

   , (5.4) 

where  and  are the weights with which odor i activates KC i at the 
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such bout.  is the duration of the rest interval after the kth experimental bout. Since  can be 

absorbed into , we set  = 1. We set  = 20 s based on past results from fly olfactory 

receptor neurons3 (Supplementary Table 2) and determined the value of  via our fits to data 

(Supplementary Table 3). 

We used the changes in the time-averaged KC and DAN spike rates to calculate the changes in 

the KC→MBON synaptic weights. Since the durations of training, testing and imaging bouts are much 

less than the time constant, , we approximated  as follows: 

(5.5) 

   , (5.6) 

where  and  are the values of  at the starting and ending time-

points of the kth training, testing or imaging bout. 

Because the time constant is much greater than  but much smaller than , the weight 

 does not significantly change during the kth experimental bout but instead converges to  at 

the end of the subsequent resting bout: 

   . (5.7) 

By combining Eqs. (5.5–5.7), we derived the recursion formula Eq. (5.8): 

   , (5.8) 

where  is the change of the time-averaged weight from KC i to MBON j at the kth 

experimental bout: 
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The initial value of the formula Eq. (5.8) is the synaptic weight from KC i to MBON j at the start 

of our experiments. Before our experiments, flies had no preference between the CS+ and CS– odors. 

Therefore, we set the initial values of synaptic weights from all KCs to MBON j to be the same: 

   . (5.10) 

To perform the integration in Eq. (5.9), we derived the analytic solution of Eqs. (3.2) and (3.3), 

and defined a functional ΔW: 

(5.11) 

(5.12) 

 .  (5.13) 

The  defined in Eq. (5.9) equals . The ΔW defined by Eq. (5.13) 

is a linear functional of the two input functions  and . Eq. (4.9) implies that the spike 

rate of each DAN is a linear combination of the punishment-related (US) input and the spike rates of KC 

and MBON inputs to the DAN. Thus, the changes in the KC→MBON synaptic weights are linear sums 

of the contributions from the punishment and the spike rates of KCs and MBONs: 

. (5.14) 
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 if . Thus, the term  can be simplified into 

. To calculate the terms , 

, and  from the mean spike rates of KCs, DANs 

and MBONs, we first defined two square-wave functions [Eqs. (5.15) and (5.16)] to describe the time-

dependence of CS and US presentation: 

(5.15) 

    , (5.16) 

where  and  are constants that set the square-wave amplitudes, Δt is the time interval 

between KC and DAN activity, and τ is the duration of odor or punishment delivery. (In our experiments, 

odor and shock delivery were of equal durations). We then inserted (5.15) and (5.16) into Eq. (5.13), 

used the linear dependence of ΔW on its inputs, and defined the anti-Hebbian amplitude function 

  as follows in Eq. (5.17): 
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Given the fixed value of = 3 s (Extended Data Fig. 10b), a single parameter value, 

, characterizes the joint influence of the CS and US on the plasticity of the KC→MBON 

synapses. In addition to the US, the odor used for conditioning also has a valence and drives DAN 

activity, which is shaped by the concurrent odor-evoked inputs from KCs and MBONs (Fig. 5a,b; 

Eq. (5.14)). The influence of this concurrent odor-evoked KC and DAN activity on plasticity of the 

KC→MBON synapse can also be characterized by a single parameter value, . We thereby 

achieved Eq. (5.18) using (5.8) and (5.14): 

   . (5.18) 

Overall, we see that owing to the fixed value of  = 3 s in our studies, the effects of the 

parameters , ,  and  in Eqs. (3.2) and (3.3) can be summarized with just two parameters, 

 and . The values of these latter two parameter were determined directly through 

fits to experimental data (see §7). 

Notably, (5.18) can be more easily understood by converting it into a form that highlights the 

role of odor valence on the change in the KC→MBON synaptic weights. Here, we define the component 

of firing by DAN j that is triggered by the net valence of odor i:  

   . (5.19) 

The first term of (5.19) is shaped purely by the innate odor valence, because the KC→DAN 

weight, , does not change during training. The second term of Eq. (5.19) is influenced by both the 
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training and causes  to differ between the CS+ and CS– odors. Using (5.19), Eq. (5.18) 

simplifies into (5.20), which describes plasticity at the KC→MBON synapse in the models’ recursive 

formulation: 

  . (5.20) 

In Extended Data Fig. 10a, we plot Eq. (5.20) with  on the x-axis and  on 

the y-axis (in units of  ) for different DANs, either with or without electric shock. The plots 

are linear with a slope of  and y-intercepts of . The plots are 

distinct for different DANs, because  differs between DANs. 

Altogether, through the above approximations we achieved a complete set of recursive equations 

[Eqs. (4.11), (4.12), (4.13), (5.1), (5.2), (5.3), (5.4), (5.8) and (5.18)]. The time needed to simulate the 

model with this equation set and one set of parameter values was ~0.02 s, about ~700-fold faster than 

simulating the full set of differential equations, (2.1–2.3) and (3.1–3.5). We used the recursive 

formulation for fits of the experimental data to two different versions of the model, one with three 

memory modules (γ1, α2, and α3 compartments; Fig. 5a) and one with just two modules (γ1 and α3; 

Extended Data Fig. 10i). Results from these fits are discussed below in §7 and §8. 

§6. Theoretical analysis of the recurrent circuitry connecting DANs and MBONs.

In this section, we show why it was important to represent the MBON activation functions as nonlinear 

(piecewise linear) functions and to include the baseline and maximum MBON spike rates in the set of 

model parameters (Supplementary Table 2). This was not the case for KCs and DANs, for which we 

used linear activation functions.  
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The main nonlinearity in the model indeed arises via the piecewise linear MBON activation 

function in Eq. (4.6). If the MBON spike rates are between their lower and upper bounds, we find from 

Eq. (4.7) 

   , (6.1) 

where  is a column vector whose jth element is ,  is a column vector 

whose jth element is , and  is a matrix whose element in row i and column j is . 

The reason for using these vector and matrix forms is that they allow us to simplify the format of (5.18) 

through the use of the expression for the inverse matrix, : 

   . (6.2) 

Here,  is a column vector whose jth element is ,  is a column vector whose 

jth element is , and  is a weight matrix whose element in row i and column j is . To 

identify the temporal stability or instability (6.2), we must determine whether the matrix in front of 

 has a positive eigenvalue or not. This matrix is: 
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We note that  is non-negative,  is negative owing to the anti-Hebbian plasticity rule, 

and  is negative owing to the GABAergic transmission at the MBON-γ1→PPL1-γ1 synapse6. 

Thus, at least one eigenvalue of the matrix,  , is non-negative. This implies 

that the connection from MBON-γ1pedc>α/β to PPL1-γ1pedc constitutes a positive feedback loop that 

steadily increases the weight of the KC→MBON-γ1 synapse. Further, we can again use the known 

neurotransmitter identities within the MB circuitry6–8 (Supplementary Table 3; Fig 5a) to conclude that 

 and  are also negative. Therefore, the 

feedback connections from MBON-γ1pedc>α/β to PPL1-α’2α2 and -α3 have the net effect of increasing 

KC→MBON synaptic weights and memory formation in the MB α-lobe.  

Crucially, however, this positive feedback does not lead to a divergence of the weight values. 

When the absolute values of the KC→MBON weights are very large, MBON spike rates reach their 

lower bounds, and activity in the circuit’s feedback and feedforward pathways becomes saturated, 

precluding any further increases in DAN activity (Extended Data Fig. 11). This crucial prevention of 

divergence in the model stems directly from the piecewise linear form of the MBON activation function. 

§7. Estimating the parameter values of the model.

We fit the experimental data (Figs. 2i, 3e, 3f, 4c, 4d, 5c; Extended Data Figs. 8b,c and 10c,d,j) using 

the recursive model equations to estimate values for the set of model parameters, θ. We assumed that 

the measured spike rates of neuron i at time point k were drawn from independent normal distributions, 

. Thus, the log-likelihood of the empirical data given a set of parameter values, θ, is: 
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where,  and  are the mean and SEM values of the spike rate of neuron i at time point k, and 

 is the spike rate of neuron i at time point k as computed from the model with parameter set θ. 

Maximum likelihood estimation of the model’s parameters is equivalent to minimizing the weighted 

sum of squared errors (WSSE):  

   . (7.2) 

To find the parameter set minimizing the WSSE in Eq. (7.2), we used an algorithm that combined 

the MATLAB (Mathworks) genetic algorithm function ga() and the gradient descent algorithm function 

fmincon(). Although gradient descent optimized the parameter set faster than the genetic algorithm, it 

sometimes caused the parameter set to be trapped in a local minimum of the WSSE. Therefore, we first 

used the genetic algorithm to find a rough estimate of the parameter set, and then we used gradient 

descent to fine-tune the parameters (Supplementary Table 3). The function fmincon() provides the 

matrix of second derivatives of the WSSE (i.e., the Hessian matrix of WSSE, ) for the optimized 

parameter set (Eq. (7.3)):  

   , (7.3) 

where  is the set of optimized parameter values, and the symbol  denotes second derivatives. 

Based on Eqs. (7.1) and (7.3),  equals the observed Fisher information provided by the 

optimized parameter set about the underlying, real biological parameter values. Using the Fisher 

information approach, the Hessian matrix can be used to estimate the 68% confidence interval (16th–84th 

percentiles) for each parameter: 

, (7.4) 

,i kx ,i ks

( ),i kµ q

( )( )2 2
, , ,

,
i k i k i k

i k

WSSE x µ s-=å θ

WSSEH

( )( )2 2
, , ,

, ˆ

2
i k iWS k

i
SE i k

k

H x µ s
=

-=Ñ åq
θ θ

θ

θ̂ 2Ñq

2WSSEH

( )( )1ˆ 2
j WSSEj

jj
HCIq q -= ±



p. A24

where  is the optimized value of the jth parameter and is the element in the jth row and 

the jth column of the covariance matrix . 

Supplementary Table 3 below shows the optimized values and confidence intervals of the 

parameter set for the two- and three-module versions of the model. Supplementary Fig. 1 shows that 

the fit parameters used in both model variants were statistically indistinguishable and unchanged by the 

omission of the α2 module in the simpler variant. This indicates that inclusion of the α2 compartment is 

not needed to account for our results about the other compartments, suggesting a minimal role for α2 in 

the conditioning and extinction protocols explored in this paper.  

We compared the numbers of synapses between pairs of neurons, as found in the connectome 

data, to the synaptic weight values found via parametric fits. Linear regression analyses showed that 

these two sets of synaptic weights are uncorrelated, regardless of whether the model has two or three 

modules (P = 0.319 and P = 0.572, respectively). There are several reasons why it may be hard to infer 

the relative weights of synapses in the model directly from synapse number counts. One possibility is 

that while there may be several types of synapses that use different neurotransmitters or neuromodulators, 

these distinctions and their impact on functional connection strengths cannot be readily inferred from 

the electron microscopy data. Another possible reason is that the connectome data are from a single fly, 

but the synaptic weight values in the fitted models were determined from the large number (>500) of 

flies tested in our experiments. A third possibility is that, in our model, the synaptic weights represent 

functional connection strengths that summarize the cumulative impact of both direct and indirect 

connections between two neurons, the latter of which is not reflected in the synapse counts. 

When we used our model to predict neural spike rates, we determined the spike rate values 

generated from the model with the maximum a posteriori probability by inputting the values of the 

optimized parameter set into our model (Fig. 5; Extended Data Fig. 10). To estimate the confidence 

ˆ
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WSSEH -

( ) 12WSSEH -



p. A25

intervals of the predicted spike rate values, we sampled 10,000 different sets of parameters from the 

normal distribution with the covariance matrix  and ran the model simulation with each of 

them. We used the 16th–84th percentiles of the distribution of the model-predicted values to determine 

the confidence intervals.  

To evaluate whether the fitted parameter values for the two-module model differed significantly 

from the values of the corresponding parameters in the three-module model, we calculated the ratios of 

the parameter values for the two models and tested whether these ratios were significantly different from 

one (Supplementary Figure 1). To do this, we took 10,000 sets of parameters for each model and 

calculated the ratios of the parameter values between the two models. We used the 50th percentile value 

of each parameter ratio to determine its median value. We used the 16th–84th percentile range for each 

parameter ratio to determine its 68% confidence interval. As shown in Supplementary Figure 1, all of 

the 68% confidence intervals flank unity, implying that none of the parameter values in the two-module 

model differ significantly (P > 0.32) from the corresponding values in the three-module model. 

( ) 12WSSEH -
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§8. Supplementary Tables and Figure.

Supplementary Table 1 | Synapse numbers in the MB circuit of the fly connectome. 

Pre-synaptic neuron Connectome ID#* Post-synaptic neuron Connectome ID#* Number of synapses 

MBON-γ1pedc>α/β 424767514 

PPL1-γ1pedc 393766777 71 

PPL1-α'2α2 5813019513 12 

PPL1-α3 331662710 25 

MBON-γ1pedc>α/β 424767514 0 

MBON-α2sc 5813020828 48 

MBON-α3 300972942 40 

MBON-α3 5813068729 51 

MBON-α2sc 5813020828 

PPL1-γ1pedc 393766777 0 

PPL1-α'2α2 5813019513 12 

PPL1-α3 331662710 17 

MBON-γ1pedc>α/β 424767514 1 

MBON-α2sc 5813020828 0 

MBON-α3 300972942 0 

MBON-α3 5813068729 0 

MBON-α3 300972942 

PPL1-γ1pedc 393766777 0 

PPL1-α'2α2 5813019513 0 

PPL1-α3 331662710 4 

MBON-γ1pedc>α/β 424767514 0 

MBON-α2sc 5813020828 0 

MBON-α3 300972942 0 

MBON-α3 5813068729 41 

MBON-α3 5813068729 

PPL1-γ1pedc 393766777 2 

PPL1-α'2α2 5813019513 0 

PPL1-α3 331662710 24 

MBON-γ1pedc>α/β 424767514 0 

MBON-α2sc 5813020828 0 

MBON-α3 300972942 97 

MBON-α3 5813068729 0 

* The Connectome ID# is the neuron ID# in the fly hemi-brain connectome database (version 1.2.1)1,2.
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Supplementary Table 2 | Empirically measured parameter values input directly into the model. 

Category Neuron(s) Symbol Equation Value Source 

Ratios of 
Punishment 

weights 

PPL1-γ1pedc / PPL1-α3 (5.18) 2.44 
Fig. 2a,d 

PPL1-α’2α2 / PPL1-α3 (5.18) 0 

Maximum 
spiking rates 

(s–1) 

MBON-γ1pedc>α/β (4.6) 7.17E+01 

Extended Data 
Figs. 4,6 MBON-α2sc (4.6) 1.79E+01 

MBON-α3 (4.6) 3.12E+01 

Baseline 
spiking rates 

(s–1) 

MBON-γ1pedc>α/β (4.13) 3.52E+01 

Extended Data 
Figs. 4,6 MBON-α2sc (4.13) 0.90E+01 

MBON-α3 (4.13) 1.12E+01 

Time- 
constants (s) Kenyon cells (5.2) 2.00E+01 Murmu, M. S. et al., 

(2011) 3 

,1 ,3/punish punishw w

,2 ,3/punish punishw w

,1MBONM

,2MBONM

,3MBONM

,1MBONB

,2MBONB

,3MBONB

,KC adaptt
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Supplementary Table 3 | Definitions and values of parameters found by model fitting. 

Three-module model Two-module model 

Category Name Symbol Equation Value 16th 
percentile 

84th 
percentile Value 16th 

percentile 
84th 

percentile 

Anti-Hebbian 
amplitudes 

Anti-Hebbian 
amplitude of KCs and 
MBONs 

(5.18) -7.12 -9.21 -5.50 -7.04 -8.78 -5.64

Anti-Hebbian 
amplitude on PPL1-α3 (5.18) -2.13E+01 -2.73E+01 -1.65E+01 -2.02E+01 -2.40E+01 -1.70E+01

Synaptic 
weights 

KC to PPL1-γ1pedc 
(Attractive odor) (4.12), (5.18) -2.11 -3.25 -9.79E-01 -1.94 -2.55 -1.34

KC to PPL1-α’2α2 
(Attractive odor) (4.12), (5.18) -3.75 -6.10 -1.41

KC to PPL1-α3 
(Attractive odor) (4.12), (5.18) 4.68 3.77 5.59 3.97 2.43 5.52 

KC to PPL1-γ1pedc 
(Repulsive odor) (4.12), (5.18) 5.14 3.97 6.31 5.02 4.02 6.02 

KC to PPL1-α’2α2 
(Repulsive odor) (4.12), (5.18) 2.94 1.37 4.51 

KC to PPL1-α3 
(Repulsive odor) (4.12), (5.18) 1.37E+01 1.22E+01 1.52E+01 1.26E+01 1.08E+01 1.43E+01 

Initial value of KC to 
MBON-γ1pedc>α/β (5.10) 2.54E+01 2.36E+01 2.73E+01 2.48E+01 2.30E+01 2.67E+01 

Initial value of KC to 
MBON-α’2α2 (5.10) 1.73E+01 1.48E+01 1.99E+01 

Initial value of KC to 
MBON-α3  (5.10) 1.63E+01 1.50E+01 1.77E+01 1.66E+01 1.53E+01 1.78E+01 

MBON-γ1pedc>α/β to 
PPL1-γ1pedc (4.12), (5.18) -3.83E-02 -1.16E-01 -1.27E-02 -3.68E-02 -7.29E-02 -1.86E-02

MBON-γ1pedc>α/β to 
PPL1-α’2α2 (4.12), (5.18) -7.48E-02 -1.35E-01 -4.15E-02

MBON-γ1pedc>α/β to 
PPL1-α3 (4.12), (5.18) -3.82E-01 -4.41E-01 -3.30E-01 -3.50E-01 -4.22E-01 -2.90E-01

MBON-γ1pedc>α/β to 
MBON-α2sc (4.13) -3.09E-01 -3.99E-01 -2.39E-01

MBON-γ1pedc>α/β to 
MBON-α3  (4.13) -2.09E-09 -8.61E-09 -5.07E-10 -2.07E-09 -8.62E-09 -4.99E-10

MBON-α2sc to PPL1-
α’2α2 (4.12), (5.18) 1.55E-01 8.21E-02 2.92E-01 

MBON-α2sc to PPL1-
α3 (4.12), (5.18) 2.09E-09 5.04E-10 8.66E-09 

MBON-α3 to PPL1-α3 (4.12), (5.18) 2.09E-09 5.04E-10 8.67E-09 2.07E-09 4.95E-10 8.69E-09 

Time- 
constants (s) 

τMBON-STM (KC to 
MBON-γ1pedc>α/β)  (5.18) 2.02E+03 1.73E+03 2.37E+03 1.87E+03 1.64E+03 2.14E+03 

τMBON-STM (KC to 
MBON-α’2α2 and KC 
to MBON-α3) 

 (t ≤ 3 hrs) (5.18) 6.22E+03 5.53E+03 7.00E+03 6.30E+03 5.70E+03 6.96E+03 

τMBON-LTM (KC to 
MBON-α’2α2 and KC 
to MBON-α3) 

 (t > 3 hrs) (5.18) 2.43E+05 1.22E+05 4.82E+05 2.61E+05 1.30E+05 5.21E+05 

τKC-recover (5.2), (5.3) 7.92E+02 6.75E+02 9.29E+02 7.12E+02 5.85E+02 8.68E+02 

( )0AHA

( ) ,3AH punish punishA t wD

,1,1 ,2,1,KD KDw w

,1,2 ,2,2,KD KDw w

,1,3 ,2,3,KD KDw w

,3,1 ,4,1,KD KDw w

,3,2 ,4,2,KD KDw w

,3,3 ,4,3,KD KDw w

, ,1KM initialw

, ,2KM initialw

, ,3KM initialw

,1,1MDw

,1,2MDw

,1,3MDw

,1,2MMw

,1,3MMw

,2,2MDw

,2,3MDw

,3,3MDw

,1ut

,2 ,3,u ut t

,2 ,3,u ut t

,KC recovert
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Supplementary Figure 1 | Comparisons of parameter values in the 2- and 3-module model variants. 

To compare parameter values in the two-module model with the corresponding values in the three-

module model, we plotted the ratios of the parameter values obtained by fitting the two different models 

to the experimental spike rate data. We then tested whether each ratio differed significantly from unity. 

In this plot, the data points (´ symbols) mark the median values of the parameter ratios, and the error 

bars denote the 68% confidence intervals, based on 10,000 sets of parameters for each model. All of 

these confidence intervals flank unity (vertical dashed line). Thus, all fitted parameter values in the two-

module model are statistically indistinguishable (P > 0.32; Monte Carlo testing) from the corresponding 

parameter values in the three-module model.  
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