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Supplementary Note

Supplementary Methods

Relatedness estimation
Relatedness between samples within each cohort was estimated using KING (v2.2) –kinship1.
For DDD, we used common variants (MAF>0.01) that passed the following hard genotype
filters: genotype quality (GQ) > 20, depth (DP) > 7, p-value from a binomial test on allelic depth
> 0.001, and (after applying those genotype-specific filters) low missingness (<5%). For
GeneDx, we used the same set of SNPs as used in the PCA, described in the main Methods.
We used a cutoff of kinship coefficient > 0.04419417 to define related individuals, which is the
lower bound cutoff for third-degree relatives. For each cohort, a list of unrelated parents and
unrelated probands was created in a way that maximized the number of samples retained.

ROH calling
Runs of homozygosity (ROHs) were called using bcftools-roh2 using common variants
(MAF>0.01) with GQ⩾20 and DP⩾7 and low genotype missingness (<10%). Our previous work
noted the effect of LD thinning on the calling of ROHs, with the optimal LD thinning differing by
autozygosity levels3. We repeated the ROH calling for four values of LD thinning,
r2={0.2,0.4,0.6,0.8}. The ROHs were called within each cohort for each GIA group independently
to give a more accurate allele frequency estimate for the common variants used in the analysis.
We retained ROHs that had quality score PHRED⩾20. For each individual, we calculated the
fraction of the genome in runs of homozygosity, FROH. The distribution of FROH values for each
GIA sub-group is shown in Supplementary Figure 7.

Variant QC
Autosomal SNVs and indels underwent quality control (QC) separately within each cohort. In
brief, we restricted to the variants within the intersection of the calling regions of the two cohorts,
calculated metrics to determine the quality of SNV and indels passing a set of different
thresholds, then selected the thresholds so as to optimise these quality metrics
(Supplementary Figures 3 and 4). This is now described in more detail below. The QC was
conducted using bcftools version 1.164.

SNV QC
The following genotype- and variant-level metrics were tested:

Genotype-level metrics:
1. Genotype Quality (GQ > {20,25,30})
2. Depth (DP > {7, 10})
3. Binomial p-value of allelic depth (for heterozygotes) ( P(AD) > {0, 0.001})

Variant-level metrics:
1. VQSLOD (VQSLOD > {-1.5, -2.0, -2.5, -3.0})

https://paperpile.com/c/a9Y10r/8biQU
https://paperpile.com/c/a9Y10r/qXMxa
https://paperpile.com/c/a9Y10r/ypLqw
https://paperpile.com/c/a9Y10r/BmosN
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2. Fraction of non-missing genotypes passing genotype-level QC thresholds (FPASS >
{0.5, 0.7})

For each combination of metrics, we measured the following:
1. Transmission rate of synonymous singletons. Specifically, we identified synonymous

variants seen in a single parent in the dataset, and determined what fraction of these
were transmitted to the child. Since these variants are unlikely to contribute to the
phenotype, we expect them to be transmitted 50% of the time, so we optimised the
choice of QC parameters to get this metric as close as possible to 50% while
simultaneously optimising the other metrics (Supplementary Figure 3).

2. Sensitivity to detect known de novo SNVs. Previous analysis had identified a total of
41,890 (38,038 SNV, and 3,852 indel) likely pathogenic de novo mutations across the
two cohorts that passed stringent quality control5. We wanted to retain as many of these
variants as possible (Supplementary Figure 3).

3. Number of variants that are called as homozygous for the alternate allele in the child and
homozygous for the reference allele in both parents. These candidate de novo mutations
are almost certainly errors.

4. Number of candidate de novo mutations that are seen in multiple individuals across the
dataset (recurrent de novo mutations), likely to be enriched for errors.

5. Rate of Mendelian errors in trios.
6. Total number of variants passing QC. We wish to maximise this while simultaneously

optimising the other metrics.
7. The transition to transversion ratio Ts/Tv (Supplementary Figure 3).

We chose the following thresholds for SNV QC:
For DDD:

● GQ > 20
● DP > 7
● P(AD) > 0.001
● VQSLOD > -2.0
● FPASS > 0.5

For GeneDx:
● GQ > 25
● DP > 10
● P(AD) > 0.001
● VQSLOD > -2.0
● FPASS > 0.7

Indel QC
The following genotype- and variant-level metrics were tested:

Genotypes-level metrics:
1. Genotype Quality (GQ > {20,25,30})
2. Depth (DP > {7, 10})

https://paperpile.com/c/a9Y10r/CzFXt
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3. Allelic Balance (Variant Allele Frequency) for heterozygotes (AB > {0.2, 0.3})
Variant-level metrics:

1. VQSLOD (VQSLOD > {-2.0, -5.0}, and no VQSLOD)
2. Fraction of genotypes passing genotype-level QC thresholds (FPASS > {0.5, 0.7}).

For each combination of metric we measured:
1. Transmission rate of rare inframe variants in low pLI, non-monoallelic DDG2P genes

(Supplementary Figure 4). The logic here is the same as for the synonymous
singletons mentioned above; inframe indels in these genes are likely under minimal
selective pressure, on average, so we calibrated our QC so that the transmission of
these variants was as close as possible to 50% while also optimising the other metrics.
We also filtered to variants with MAF<0.001 in (or absent from) gnomAD6 when checking
this metric.

2. Sensitivity to detect de novo indels. A total of 3,852 de novo indel mutations were
detected across the two cohorts in previous analyses5. We wanted to maximise our
sensitivity to detect these mutations (Supplementary Figure 4).

3. Number of coding indels passing QC (Supplementary Figure 4).
4. Ratio of frameshift to nonsense variants. From previous studies7,8, we expect the ratio of

frameshift to nonsense mutations to be roughly 1.2.

We chose the following thresholds for indel QC:
For DDD:

● GQ > 20
● DP > 7
● AB > 0.2
● No VQSLOD
● FPASS > 0.5

For GeneDx:
● GQ > 30
● DP > 7
● AB > 0.3
● No VQSLOD
● FPASS > 0.7

The number of variants before and after QC is given in Supplementary Table 3 and the
distribution of the number of variants per proband is given in Supplementary Figure 5.

Sample QC
After applying the variant and genotype QC, we carried out sample QC by running regressions
of different quality metrics on several covariates (detailed below), then removing individuals
whose residuals were greater than four median absolute deviations from the median for these
two regressions (Supplementary Figure 6). We ran these two regressions:

ratio of transitions to transversions ~ exome_capture_platform + GIA_subgroup_label

https://paperpile.com/c/a9Y10r/Cxvyp
https://paperpile.com/c/a9Y10r/CzFXt
https://paperpile.com/c/a9Y10r/uTCsz+nJ9MQ
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ratio_of_heterozygous_to_homozygous_genotypes ~ exome_capture_platform +
GIA_subgroup_label + FROH

In addition, we removed individuals with a proportion of genotypes missing greater than 0.2.

The number of individuals in each GIA sub-group before and after QC is given in
Supplementary Table 2.

Filtering of missense and other functional variants
There are many metrics to predict deleteriousness of missense variants, but most of these are
focused on predicting deleteriousness in the heterozygous state. We assessed several of these
metrics (VARITY9, PrimateAI10, MPC11, CADD12,13, ClinPred14, MoI-Pred recessive probability15,
REVEL16, PolyPhen17), comparing the distributions for known pathogenic recessive missense
variants in DDD (i.e., annotated as pathogenic/likely pathogenic in DECIPHER) to all missense
variants on chromosome 20 (Supplementary Figure 11). We observed that PrimateAI and
MPC were less discriminating than the other metrics in this context, and thus removed them
from consideration. (Although CADD was also less discriminating, we retained it since it was
available for all variants, unlike some of the other annotations.) We also removed VARITY-R
since it uses the same model as VARITY-ER but just a different training set. For each of the
remaining six metrics, we defined the threshold which gave us 90% sensitivity to detect the
known pathogenic recessive missense variants (CADD_PHRED⩾24.18; REVEL⩾0.36;
VARITYER_LOO⩾0.25; PolyPhen⩾0.59; ClinPred⩾0.53; MoI-Pred recessive probability⩾0.11).
For inframe indels, we used a filter of CADD_PHRED⩾17.34 (i.e., the CADD value which
captures 90% of known inframe pathogenic recessive variants from DECIPHER18). For the
remaining consequences that are included in the “functional” category (start_lost,
transcript_amplification, protein_altering_variant, splice_region_variant, LoFs predicted to be
low confidence (LC) by LOFTEE, and synonymous variants with a minimum SpliceAI score of
0.8), we use a filter of CADD_PHRED⩾24.18.

We then evaluated the burden (observed/expected) and attributable fraction
([observed-expected]/sample size) (see section on Burden Analysis in the main Methods)
obtained for LoF/functional and functional/functional biallelic genotypes when requiring
missense variants to pass the above cutoffs for different numbers of annotations
(Supplementary Figure 8). Since not all of these deleteriousness metrics were available for all
missense variants, we additionally evaluated the burden and attributable fraction when requiring
missense variants to pass ⩾70% of available annotations (Supplementary Figure 8). This final
filter was the one chosen for the main analyses, on the basis of giving relatively high
observed/expected (i.e., more significant enrichment) as well as relatively high attributable
fraction (i.e., explaining more probands).

Filtering and analysis of de novo mutations
De novo mutations (DNMs) were called by GATK Haplotype Caller, and variant calls were
restricted to -/+ 50bp of RefGene primary coding regions. DNM calls were required to have
greater than 10 reads in the proband, more than 3 supporting reads, a genotype quality of

https://paperpile.com/c/a9Y10r/2vkRK
https://paperpile.com/c/a9Y10r/0ZExD
https://paperpile.com/c/a9Y10r/Ks81g
https://paperpile.com/c/a9Y10r/Hgvt9+RQXCn
https://paperpile.com/c/a9Y10r/wf1ZX
https://paperpile.com/c/a9Y10r/J8kON
https://paperpile.com/c/a9Y10r/wgcgr
https://paperpile.com/c/a9Y10r/0f7mZ
https://paperpile.com/c/a9Y10r/iWN6
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greater than 40 and a strand bias of less than 30, and allele fraction of >0.15 for SNVs and
>0.25 for indels (except for calls on chrX in males, which were allowed to have an allele fraction
of 1). Indels greater than 100bp and variants that were seen in more than 11 parents across the
cohort were removed. Sites with an allele fraction of less than 0.3 were excluded if any one of
the following conditions were met: BaseQRankSum (Z-score from Wilcoxon rank sum test of Alt
Vs. Ref base qualities) <= 0.75, MQ (RMS Mapping Quality) <= 58 or QD (Variant
Confidence/Quality by Depth) <= 8. Variants were annotated with bcftools-csq19 on the canonical
transcript (Gencode GRCh38, version 43).

We calculated the expected number of DNMs in subgroupings of probands using a
gene-specific null mutation rate model for different functional classes of mutations based on
estimated triplet-specific mutation rates, accounting for gene length and sequence context20.
The exome-wide attributable fraction was calculated as follows, for a given group of probands:

𝐷𝑒 𝑛𝑜𝑣𝑜 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑎𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
 (𝑂

𝐿𝑜𝐹
−λ𝐸

𝐿𝑜𝐹
) + (𝑂

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙
−λ𝐸

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙
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# 𝑝𝑟𝑜𝑏𝑎𝑛𝑑𝑠  

where is the exome-wide observed number of de novo variants in consequence class c, is𝑂
𝑐

𝐸
𝑐

the expected number calculated using the model from 20, and is a correction factor calculatedλ

as .
𝑂

𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠

 𝐸
𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠

Burden explained by ClinVar pathogenic variants
Figure 2b shows the estimate of the autosomal recessive attributable fraction after removing
variants annotated as pathogenic/likely pathogenic (P/LP) in ClinVar. For this, we removed
biallelic genotypes if the variant (for homozygotes) or both variants (in a compound
heterozygote pair) fulfilled the following criteria:

- had CLNSIG=Pathogenic OR CLNSIG=Likely_pathogenic, OR
- had CLNSIG=Conflicting_interpretations_of_pathogenicity AND

(CLNSIGCONF~Pathogenic|Likely_pathogenic AND NOT
CLNSIGCONF~Benign|Likely_benign) i.e., if there were conflicting assertions of
pathogenicity, at least one of those assertions was P/LP, but none were “benign” or
“likely benign”

Phenotypic similarity of patients
The phenotypic similarity of patients was calculated following Kaplanis et al.5 with the phenopy
package https://github.com/GeneDx/phenopy. The pairwise similarity of two terms in the Human
Phenotype Ontology (HPO) were compared quantitatively using the Hybrid Relative Semantic
Similarity (HRSS) metric, and similarity for two lists of terms was calculated via a Best Match
Average21. The phenotype similarity between two probands is defined as the listwise HRSS of
the phenotypes describing each proband. Only terms currently in the HPO at the time of
analysis were included, and any updates to retired HPO terms were handled by searching for
the alternate IDs of all current phenotypes and replacing them where appropriate. The set of
HPO terms assigned to each proband were pruned by removing ancestor terms in any
ancestor-descendant pairs. As before, the information content (IC) of each term used for HRSS

https://paperpile.com/c/a9Y10r/EF0N1
https://paperpile.com/c/a9Y10r/7Gqb6
https://paperpile.com/c/a9Y10r/7Gqb6
https://paperpile.com/c/a9Y10r/CzFXt
https://github.com/GeneDx/phenopy
https://paperpile.com/c/a9Y10r/bgMw4
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calculations was the mean of the IC based on the HPO-OMIM-ORPHANET phenotype-to-gene
annotations and the phenotype-to-gene annotations of monogenic diagnosed cases from the
relevant cohort/s (i.e., DDD alone if examining a pair of DDD patients, GeneDx alone if
examining a pair of GeneDx patients, or DDD+GeneDx if examining a pair consisting of one
patient from each cohort).

For the genes that passed FDR<5% in the genotype-based test, the phenotypic similarity of all
pairs of probands with damaging biallelic variants in that gene were calculated. We compared
the distribution of these scores to a null distribution of HRSS scores for 100,000
randomly-chosen pairs (Extended Data Figure 7). This null distribution was created such that
the fraction of randomly-chosen pairs that involved a) two DDD patients, b) two GeneDx
patients or c) one DDD and one GeneDx patient matched the fraction amongst the patients with
damaging biallelic variants in the FDR<5% genes.

Supplementary Results

Phenotypic comparisons of the cohorts
DDD patients were slightly more male-biased than GeneDx patients (58.4% male versus 55.7%
male, Fisher’s exact test p-value = 8x10-8). They were also slightly younger at recruitment on
average (7.3 years versus 9.4 years; t-test p-value <1x10-163), and the age distribution was less
variable (standard deviation 6.1 years for DDD versus 10.2 years for GeneDx) (Supplementary
Figure 1). DDD patients had significantly fewer HPO terms on average than GeneDx patients
(7.0 terms versus 19.8; t-test p-value<1x10-200). This likely reflects differences in how these HPO
terms were recorded. For DDD, clinical geneticists recorded phenotypes that they thought likely
to be relevant to a monogenic diagnosis and that were particularly distinctive amongst the
population of rare disease patients being seen in genetics clinics, whereas in GeneDx, the HPO
terms were extracted from the medical notes (including medical history and primary indication)
through a mixture of automated text mining and manual curation by nurses, contractors and
genetic counsellors trained in the abstraction process. Accordingly, there were multiple organ
systems in which GeneDx patients were substantially more likely than DDD patients to have an
HPO term, even after controlling for age and sex, including the musculature, digestive,
cardiovascular, immune, respiratory and blood systems (Supplementary Figure 2). However,
examination of the most common HPO terms revealed that many of those assigned to GeneDx
patients are nonspecific (e.g., feeding difficulties, bruising susceptibility, failure to thrive) or
represent common diseases (e.g., asthma, eczema) (Supplementary Table 1). These
differences are likely related to differences in coding practices between the clinicians recruiting
to DDD versus GeneDx rather than true phenotypic differences between cohorts.

Contribution of multi-gene causes in DDD and GeneDx
We used this joint DDD-GeneDx dataset to explore the contribution of multi-gene causes to
these two cohorts. In DDD, we previously reported that 121 (2.7%) of the 4484 probands who
had received a diagnosis by means of clinical assertion had two or more different genetic
diagnoses22, which was very similar to the proportion in GeneDx (237/9949, 2.4%). The

https://paperpile.com/c/a9Y10r/dB6uM
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proportion in DDD increased to 359 out of 5502 (6.5%) diagnosed probands after additionally
considering automated ACMG variant classifications22. However, these numbers might
under-estimate the true number of multi-gene diagnoses within the cohorts, since phenotypic
heterogeneity conferred by variants in the same gene may make it difficult to assess putatively
damaging variants clinically. Thus, to investigate this further, we carried out exome-wide burden
analyses of autosomal recessive and de novo variants to see whether there was any excess of
these in diagnosed patients with single diagnoses (i.e., excluding known or predicted composite
diagnoses) once the known diagnostic variants were removed (Extended Data Figure 6). We
found no significant burden of damaging biallelic variants in probands with a de novo diagnosis
or in probands with a recessive diagnosis once the diagnostic variants had been removed
(attributable fractions 0.1% [-0.5-0.8%] and 0% [-7.6-8.7] respectively). However, we found a
significant burden of damaging de novo mutations in patients with a de novo diagnosis, even
after removing the diagnostic variants (attributable fraction 12.5% [9.6-15.5%]; ~502
individuals), as well as in patients with a diagnosis involving inherited dominant, recessive or
X-linked variants (attributable fraction 12.5% [8.3-16.8%]; ~241 individuals). Almost all of the
residual de novo burden in diagnosed individuals was outside of known monoallelic or X-linked
dominant DDG2P genes (11.6% [9.3-14.0%], Extended Data Figure 6B). In DDD, we split the
diagnosed patients into those classified by clinicians as having a full versus partial diagnosis,
and noted that the residual burden of de novo mutations (after removing the diagnostic ones)
was significantly different from 0 in the ‘fully diagnosed’ set (attributable fraction 5.7%
[0.8-10.8%]) but was higher in the partially diagnosed set (attributable fraction 18.0%
[3.4-34.5%]).

Additional information on the genes in Table 2

CRELD1

CRELD1 (p=9.08x10-8) is an established monoallelic (dominant) DD gene on both the DDG2P
and GeneDx lists, in which heterozygous missense variants are associated with susceptibility to
atrioventricular septal defects (AVSD)23,24. CRELD1 (cysteine-rich with epidermal growth factor
(EGF)-like domains 1) is involved in calcineurin/NFATc1 signaling during endocardial and
myocardial development25 and modulates homeostasis in the immune system26. However, in
humans, it is also highly expressed in developing brain, heart branchial arches, and limb buds27.
We observed eight probands with biallelic LoF/functional or functional/functional genotypes in
this gene, all of whom had global developmental delay and seizures, plus variable other
features. A concurrent study involving patients from GeneDx and other cohorts has also
identified CRELD1 as a novel ARDD gene causing a multisystem syndrome including
neurodevelopmental phenotypes in all patients, cardiac defects in 8/18 patients, plus variable
other features28. Three of the five GeneDx patients we identified were also in that study.

Amongst 141,417 patients from GeneDx who were sequenced after the data freeze on which
our main analysis was based, we subsequently identified four additional patients with biallelic
variants in CRELD1 that passed our filters. Of these, two had phenotypes that were similar to
other biallelic CRELD1 patients, and these are included in Supplementary Table 6. However,
two had phenotypes that were distinct from other CRELD1 patients (notably, no developmental

https://paperpile.com/c/a9Y10r/dB6uM
https://paperpile.com/c/a9Y10r/PRftk+LTtwU
https://paperpile.com/c/a9Y10r/AacSO
https://paperpile.com/c/a9Y10r/hXeCI
https://paperpile.com/c/a9Y10r/RpVSZ
https://paperpile.com/c/a9Y10r/41yZt
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delay or seizures). For one of these, their phenotype seemed better explained by variants in
another gene which had been previously reported and deemed diagnostic. The other had a
partial diagnosis in another gene but since their phenotype does not fit well with the other
CRELD1 cases, we would class their CRELD1 variants as VUSs. For both of these probands,
their CRELD1 genotypes involved missense variants that had not been previously seen in any
of the other cases and these may well be benign, despite passing our filters (chr3:9982683:C:T;
ENST00000326434.5:c.610C>T; ENSP00000321856.5:p.Arg204Cys and chr3:9984790:G:A;
c.847G>A; p.Gly283Arg).

Of the ten patients with biallelic CRELD1 variants that we think are likely to be causal, all have
genotypes involving missense variants that disrupt cysteine residues in or around the EGF-like
and calcium-binding EGF-like domains, so they may destroy disulfide bonding, as noted in
Jeffries et al.28; specifically, seven have genotypes involving the p.Cys192Tyr variant Jeffries et
al. reported as recurrent (of which two were previously reported in their paper), one has
p.Cys262Arg in trans with a pLoF (patient also reported by Jeffries et al.), and two siblings are
homozygous for p.Cys218Tyr. The four additional missense variants reported in Jeffries et al.
were all in the transmembrane domains at the C-terminal end of the protein. In contrast, the
missense variants that have been reported to predispose to AVSD do not show any particular
spatial clustering, and none involve cysteine residues. Further functional work would be required
to definitively establish the molecular consequences of missense variants contributing to the
recessive CRELD1 neurodevelopmental disorder versus those predisposing to AVSD in the
heterozygous state.

KBTBD2

Having identified two patients with rare LoF/missense compound heterozygous variants in our
original GeneDx sample (described in the main text), yielding a Bonferroni-significant p-value,
we subsequently identified a female patient in the CENTOGENE Biodatabank who had a
homozygous frameshift variant in this gene (c.1298_1299delTG; p.Val433Aspfs*14)
(Supplementary Table 6). This variant is absent in gnomAD and was only detected in this
individual amongst nearly 900,000 individuals in the CENTOGENE Biodatabank. The patient
was born at 39 weeks to consanguineous parents, and had intrauterine growth restriction
(IUGR), with a birth weight of 1 kg. Dysmorphic features were noted (low set ears,
microphthalmia, micrognathia). She presented with microcephaly, cataracts, fisted clenched
hands, and rocker bottom feet. She died at the age of three months. No hypoglycemia or
features suggestive of diabetes could be documented. It is notable that this individual, with a
homozygous LoF, had a more severe phenotype (i.e., very early death) than our two original
patients, who had compound heterozygous LoF/missense variants, one of whom died in later
infancy and the other was recruited as an adolescent. Two female siblings of the index
Centogene patient died in infancy and had a very similar phenotype. Specifically, the first
affected sister presented with IUGR, dysmorphism, bilateral corneal haziness and contracture of
the joints of the upper and lower limbs. Upon ophthalmic exam, congenital glaucoma was
confirmed. She presented with congenital heart disease (pulmonary stenosis and hypertrophic
cardiomyopathy) and died at the age of two months. The second sister presented with IUGR,

https://paperpile.com/c/a9Y10r/41yZt
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dysmorphic features, rocker bottom feet, clenched hands, microphthalmia, micrognathia, low-set
ears, bilateral corneal haziness, aniridia, pulmonary stenosis, hypertrophic cardiomyopathy and
transaminitis. She died at the age of one month. The genotypes of these two siblings are not
known, but it seems highly plausible that they may also have been homozygous for this private
frameshift variant.

ZDHHC16

Our signal in ZDHHC16 was driven by one patient with a LoF/LoF genotype and two with
LoF/functional genotypes (p=3.04x10-6 when including both diagnosed and undiagnosed
probands, p=6.05x10-7 when using undiagnosed probands only). Two of these unrelated
probands were strikingly similar phenotypically, having microcephaly, seizures, developmental
regression/neurodegeneration, and abnormalities of the respiratory system. However, the third
had a less distinctive phenotype involving generalised developmental delay with seizures, and
had a sibling with a similar phenotype and the same ZDHHC16 variants. Amongst 141,417
patients from GeneDx who were sequenced after the data freeze on which our main analysis
was based, we subsequently identified two more patients with biallelic damaging variants in this
gene that would pass our filtering, one with compound heterozygous LoFs and one with a
homozygous missense variant (Supplementary Table 6). Both of these patients had seizures,
abnormalities of the respiratory system, and structural brain abnormalities. One had
microcephaly, and one had neurodegeneration.

We subsequently also identified a male patient from Centogene with a homozygous variant
affecting the canonical splice donor site (c.1019+2T>C) which is predicted to lead to exon
skipping (Supplementary Table 6). This variant is absent in gnomAD and was only detected in
this individual in the CENTOGENE Biodatabank. The patient was born prematurely to
consanguineous parents. He presented with epileptic encephalopathy at the age of two months.
He had microcephaly, severe axial hypotonia with hyperreflexia and spasticity, talipes
equinovarus, dysmorphic features (curved eyebrows, full cheeks, nasal hypoplasia,
micrognathia) and inguinal and umbilical hernias. He failed to thrive, currently receives feeding
via a nasogastric tube, is unable to walk and has not developed any language. Brain MRI
showed cerebellar hypoplasia. Although he did display laryngomalacia and developmental
regression, similar to two of the original patients, the significance of these is difficult to assess in
the context of his hypotonia and epileptic encephalopathy.

Thus, in summary, of these seven patients identified with damaging biallelic variants in
ZDHHC16, all had seizures, four had microcephaly, four had developmental
regression/neurodegeneration, and five had abnormalities of the respiratory system. Consistent
with the neurodevelopmental features in these patients, ZDHHC16 has been shown to play a
critical role in the regulation of neural stem/progenitor cell proliferation in zebrafish telencephalic
development29. It is part of a co-expression module enriched in human fetal brain30, but further
work is needed to elucidate its function during human brain development.

https://paperpile.com/c/a9Y10r/dQHcT
https://paperpile.com/c/a9Y10r/R9X22
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HECTD4

Biallelic variants in HECTD4 (p=8.80x10-6 in our analysis) were recently reported to cause a
neurodevelopmental disorder characterised by intellectual disability, seizures, movement
disorder, behavioural abnormalities, macrocephaly, abnormality of dentition, and agenesis of the
corpus callosum31. The two unrelated probands we observed with biallelic LoF/LoF genotypes in
this gene also exhibited many of these features. We also subsequently identified two more
GeneDx patients with damaging biallelic variants in this gene, including one with a homozygous
stop gain variant and one with compound heterozygous predicted deleterious missense
variants. Both had abnormalities of the corpus callosum and one had seizures.

HECTD4 encodes a ubiquitin E3 ligase in the HECT E3 family, is part of a co-expression
module enriched in human fetal brain30, and shows particularly high expression in the
cerebellum in adults (https://www.gtexportal.org/home/gene/HECTD4). Variants in other
members of the HECT E3 family are also known to cause neurodevelopmental disorders,
including UBE3A, HERC1, HERC2, HUWE1, and TRIP132.

ATAD2B

Our signal in this gene was driven by two patients (p=1.02x10-5), one with compound
heterozygous LoFs and the other LoF/missense, of whom one had an affected sibling with the
same genotype and a similar phenotype. Amongst the new set of GeneDx patients mentioned
above, we subsequently identified a fourth patient who had biallelic variants passing our
filtering, specifically compound heterozygous predicted damaging missense variants. All four of
these patients had developmental delay or cognitive impairment (which are present in most
patients in our study) and there was no particularly striking phenotypic similarity between them,
other than between the two siblings (Supplementary Table 6).

One of the four patients was classified as “diagnosed” using automated ACMG criteria as part of
the DDD study 22, so this patient was dropped when we restricted the gene-discovery analysis to
undiagnosed patients, explaining the much higher p-value we then obtained (p=2.81x10-3).
However, this diagnosis has not been confirmed clinically. The putatively pathogenic variant was
a de novo splice region variant in a “DDG2P limited” gene, which passed the DDD clinical
filtering pipeline at the time but would fail in the current pipeline (which ignores splice region
variants given the limited evidence that they cause loss-of-function, and genes with only limited
evidence for disease association). It passed the automated ACMG filtering primarily because it
is a de novo with a low MAF, pushing the posterior probability > 0.9. The gene is linked to a
muscle disorder, which may explain part of this patient’s phenotype, but would not explain the
neurodevelopmental features. Hence, we consider this diagnosis very tentative, and partial at
best. It is possible that the biallelic damaging variants in ATAD2B are part of a dual diagnosis in
this patient, although more evidence is needed to confirm this.

ATAD2B encodes a conserved nuclear protein that has been shown to be highly expressed
during neuronal differentiation in chicken 33 and in human fetal brain
(https://www.ebi.ac.uk/gxa/genes/ENSG00000119778?bs=%7B%22homo%20sapiens%22%3A
%5B%22ORGANISM_PART%22%5D%7D&ds=%7B%22kingdom%22%3A%5B%22animals%2

https://paperpile.com/c/a9Y10r/F697O
https://paperpile.com/c/a9Y10r/R9X22
https://paperpile.com/c/a9Y10r/BarKP
https://paperpile.com/c/a9Y10r/dB6uM
https://paperpile.com/c/a9Y10r/D5Zw
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2%5D%7D). Its bromodomain is involved in recognition of mono- and diacetylated histones34,
which is notable since many other genes involved in histone modification are known
neurodevelopmental disorder genes35. A homozygous mouse knockout of Atad2b shows
behavioural abnormalities36. Furthermore, this gene has been implicated as the most likely
causal gene at a locus identified through genome-wide association studies for intelligence37 and
educational attainment38. Finally, ATAD2B is highly constrained, with a pLI score of 17, indicating
that heterozygous LoFs are under strong negative selection. Since it does not appear to cause
a severe dominant disorder (parents with heterozygous LoFs were clinically unaffected), it
seems likely that biallelic loss-of-function may confer a severe phenotype.

All in all, there is considerable circumstantial evidence that biallelic disruption of ATAD2B may
perturb neurodevelopment. However, given the only moderate statistical evidence and lack of
striking phenotypic similarity between the patients, we believe more evidence is needed to
implicate this as a definitive ARDD gene.

https://paperpile.com/c/a9Y10r/mveGG
https://paperpile.com/c/a9Y10r/ZhlZD
https://paperpile.com/c/a9Y10r/DeV6E
https://paperpile.com/c/a9Y10r/MLJXV
https://paperpile.com/c/a9Y10r/U2Jz6
https://paperpile.com/c/a9Y10r/uTCsz
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Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1: Distribution of age at assessment (A) and number of HPO terms (B)
between 13,450 DDD patients and 36,057 GeneDx patients. The vertical lines indicate the
means.
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Supplementary Figure 2

Supplementary Figure 2: Proportion of probands from each cohort with at least one HPO term
within the indicated chapter (green text) or specific phenotype (black text), ordered by the
prevalence in GeneDx. This is based on 13,450 DDD patients and 36,057 GeneDx patients. We
used logistic regression to test whether there was a significant difference in phenotype
prevalence between cohorts after controlling for sex and age. All of the indicated phenotypes
showed a significant association with cohort (two-sided binomial p<0.0001, all passing
Bonferroni correction for multiple comparisons) except the following: any ID/DD/language
impairment, polydactyly, abnormality of the breast and abnormality of the thoracic cavity.
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Supplementary Figure 3

Supplementary Figure 3: Choosing optimal QC metrics for SNVs. A) and B) show the
transmission rate of synonymous singletons vs sensitivity to detect validated de novo variants in
GeneDx and DDD respectively. Panels C) and D) show the transition to transversion ratio
versus the mean number of non-reference genotypes per trio in GeneDx and DDD respectively.
The red triangle represents the value for the final QC threshold chosen.
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Supplementary Figure 4

Supplementary Figure 4: Choosing optimal QC metrics for indels. A) and B) show the
transmission rate of rare inframe variants in low pLI non-monoallelic DDG2P genes vs sensitivity
to detect validated de novo indels in GeneDx and DDD respectively. Panels C) and D) show the
same transmission rate as the previous panels versus the mean number of coding indels per
person in GeneDx and DDD respectively. The red triangle represents the final QC threshold
chosen.
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Supplementary Figure 5

Supplementary Figure 5: Rare variant (MAF<0.01 across the cohort) count distributions for
different exome capture platforms for EUR4 individuals.
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Supplementary Figure 6
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Supplementary Figure 6: Distribution of various metrics per sample before and after sample
QC. A) The residuals of the transition-transversion ratio, after regressing out the effect of
population, and exome capture, split by exome capture before removing sample QC outliers and
B) after removing the sample QC outliers. C) The proportion of genotypes missing, split by
dataset, before removing sample QC outliers, and D) after removing sample QC outliers. E) The
residuals of the heterozygous to homozygous alternative ratio, after regressing out the effect of
population, exome capture, and FROH, split by exome capture, before removing sample QC
outliers, and F) after removing sample QC outliers. The vertical lines represent the thresholds
for outlier removal (see Sample QC section of the Supplementary Methods for details).
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Supplementary Figure 7

Supplementary Figure 7: Density plots of distribution of FROH amongst the probands per GIA
sub-groups on a pseudo-log scale (FROH+0.0001). The vertical line represents FROH=0.0156
which is the expected value for the offspring of second cousins.
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Supplementary Figure 8

Supplementary Figure 8: Effect of different strategies for filtering missense variants on
exome-wide burden and attributable fraction. A) Ratio of observed to expected genotypes and
B) attributable fraction [(Observed-Expected)/N], for LoF/functional and functional/functional
genotypes, using different numbers of missense pathogenicity filters (see section on “Filtering of
missense and other functional variants” in the Methods). Results are from the same samples as
Figure 1 (i.e., the seven large GIA sub-groups with the cross-continental admixture filter, for
GeneDx and DDD combined, N=25,523). Error bars show 95% confidence intervals.
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Supplementary Figure 9

Supplementary Figure 9: The estimated attributable fraction versus the average FROH for all
twenty-two GIA sub-groups included in Table 1, split by cohort. The line of best fit is shown, with
a 95% confidence interval around it shown in grey shading, with an adjusted r2 of 0.52. The
centre of the error bars represents the point estimate for the attributable fraction (y-axis) and
average FROH (x-axis) for that sub-group. Error bars on the points show 95% confidence
intervals around these estimates.
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Supplementary Figure 10

Supplementary Figure 10: Performance of the per-gene tests. A) and B) are a comparison of
the p-values, across every consequence class (i.e., four tests per gene plotted here), from the
sum-of-Poissons method (one-sided Poisson test) used in this paper with the sum-of-binomials
method (equivalent to a one-sided binomial test) used in Akawi et al. 39 and Martin et al. 3.
These show that the methods agree well for low p-values (Pearson correlation of 0.98 for panel
A). Panel C) shows QQ-plots of the sum-of-Poissons method applied to the genotypes in the
indicated consequence classes, after removing genes with zero observed counts. These are
based on 29,745 unrelated trios without cross-continental admixture from the twenty-two GIA
sub-groups shown in Table 1.

https://paperpile.com/c/a9Y10r/ENPso
https://paperpile.com/c/a9Y10r/ypLqw
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Supplementary Figure 11

Supplementary Figure 11: Distributions of pathogenicity predictors for 122 known pathogenic
recessive missense variants from DECIPHER versus all missense variants on chromosome 20.
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Supplementary Figure 12

Supplementary Figure 12: Comparison of p-values from the per-gene tests (one-sided Poisson
test) obtained using missense variants passing A) one, B) two, C) three or D) four
deleteriousness filters versus passing 70% of the available missense deleteriousness filters
(used in the main analysis). Only the p-value for the consequence combination that was most
significant in the main analysis is shown. Genes highlighted in Table 2 are coloured in green. No
adjustment has been made to the p-value for multiple comparisons here.




