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Input files
MHC Hammer requires every individual to have a whole exome sequencing (WES) germline
BAM file, which is used to predict the HLA allele types. In addition, MHC Hammer requires the
following:

To estimate DNA HLA allelic imbalance and somatic mutations:
● A tumour WES BAM file.

To estimate DNA HLA copy number and loss of heterozygosity (LOH):
● A tumour WES BAM file with purity and ploidy estimates.

To estimate RNA HLA allelic expression, allelic imbalance and alternative splicing:
● A tumour or normal RNA sequencing (RNA-seq) BAM file.

To estimate RNA HLA allelic repression, tumour-enriched and tumour-depleted alternative
splicing:

● A tumour and normal RNA-seq BAM file. The normal sample should be from the same
patient and tissue as the tumour.

Steps in the MHC Hammer pipeline

Preprocessing steps

Estimating the library size
The number of paired and aligned reads in the input BAM file is used as an estimate of the
library size of the sample. Alternatively, the library size can be estimated as the number of
aligned and unaligned paired reads in the input BAM file by using the MHC Hammer parameter
include_unmapped_reads_in_library_size = TRUE.

Creating the HLA FASTQ files
To reduce the computational resources required by MHC Hammer, the input WES and RNA-seq
BAM files are first filtered to keep only reads that may have originated from the HLA region.
These reads are stored in a FASTQ file called the HLA FASTQ file. The following MHC Hammer
parameters can be used to control which reads from the input BAM file are included in the HLA
FASTQ file:

● unmapped_reads: can be true or false. If true, unmapped reads in the input BAM file
are included in the HLA FASTQ file.

● contig_reads: can be true or false. If true, reads that map to either any alternative
contig in the input BAM files (if the input parameter contigs_file is empty), or contigs
specified by the user (if contigs_file is a file path), are included in the HLA FASTQ
file.



● contigs_file: can be empty or the path to a file. This file should contain a list of
contig names.

● fish_reads: can be true or false. If true, reads in the input BAM files that contain a
30-mer sequence that is also present in a sequence in the ImMunoGeneTics1 (IMGT)
database are included in the HLA FASTQ file.

● fish_reads_only: can be true or false. If true, only reads in the input BAM files that
contain a 30-mer sequence that is also present in a sequence in the IMGT database are
included in the HLA FASTQ file.

● mhc_coords: path to the file containing a set of genomic coordinates (chr:star-stop).
Any read in the input BAM file that lies within these coordinates is included in the HLA
FASTQ file.

Predicting the germline HLA allele types
MHC Hammer uses the bioinformatic tool HLA-HD2 (v1.7.0) to predict the HLA allele types from
the germline WES HLA FASTQ file. HLA-HD was chosen as it has been demonstrated as an
accurate HLA typing algorithm designed for next-generation sequencing data 3. It also can be
configured to use new releases of the IMGT database as they become available.

If an allele candidate has not been determined by the end of the run, HLA-HD will output
multiple candidates. MHC Hammer will randomly choose an allele pair from the equally likely
candidates, but give priority to those that have a full sequence available in the IMGT database.
If only a partial sequence is available, the missing section of the genomic sequence is replaced
with the corresponding section from the most similar allele that does have a full sequence.

Constructing the patient-specific HLA references
A set of reference files are created for each individual, containing the sequence information of
the individual’s class I alleles. These reference files include:

● A genomic reference, which contains the complete allele sequence
● A transcriptomic reference, which contains the exon allele sequence

Alignment steps
Three sets of alignments are created with MHC Hammer: NovoAlign (v3.09.4,
http://novocraft.com/) is used with both the WES and RNA-seq data, and STAR4 (v2.7.10a) is
used with the RNA-seq data.

Aligning the WES and RNA-seq data using NovoAlign
The reads in the HLA FASTQ file are mapped to the HLA reference using NovoAlign
with parameters that allow reads to map to multiple locations (-R 0 -r All 9999 -o SAM -o
FullNW). The genomic reference is used if the input FASTQ files are from WES and the
transcriptomic reference is used if the input FASTQ files are from RNA-seq.

https://paperpile.com/c/Ge30RF/coSa
https://paperpile.com/c/Ge30RF/kFUxO
https://paperpile.com/c/Ge30RF/g1Fd6
http://novocraft.com/
https://paperpile.com/c/Ge30RF/8yKKz


Aligning the RNA-seq data using STAR
The RNA-seq reads in the HLA FASTQ file are also mapped to the HLA genomic reference
using the STAR aligner, which can account for gaps in the alignment resulting from introns or
alternative splicing.

When mapping to a small region of the genome, such as the 6 class I HLA alleles, STAR will
spend a large amount of time trying to find poor quality alignments for reads that originate
outside the small region. Therefore, to reduce the computational time required by STAR, the
RNA-seq reads in the HLA FASTQ are further filtered to only include those that contain a
30-base pair sequence from the IMGT database.

A two-pass alignment strategy is used to improve accuracy of novel splice junction detection 5.
This involves:

1. Aligning the HLA reads to the patient specific reference using STAR. This results in a
table of splice junctions for each sample. In this run, the STAR parameters changed from
default are:

a. outFilterMultimapNmax=20
b. alignSJoverhangMin=3

2. The splice junction tables across all the samples are concatenated and filtered such that
a splice junction must pass the following thresholds in at least one sample to make it into
the final concatenated table:

a. intron motif (column 5) > 0 (i.e. must be a canonical splice junction)
b. At least 2 uniquely mapping reads supporting the splice junction
c. Must be an unannotated splice junction (column 6 = 0)

3. On a per sample basis we add to the filtered HLA reads any read in the input BAM file
that contains the 14-base pair sequence around any novel splice junction detected in the
first STAR alignment

4. These reads are then realigned with STAR to the patient-specific reference to get, for
each sample, a STAR BAM file and a table of splice junctions. In this run the following
STAR parameters are changed from the default:

a. outFilterMultimapNmax=10
b. outFilterMismatchNmax=1
c. alignSJoverhangMin=3
d. alignSJDBoverhangMin=1
e. sjdbScore=1

Filtering the HLA allele BAM files
The WES and RNA-seq HLA BAM files from NovoAlign and STAR are then filtered such that
reads with more than one mismatch to the HLA reference are removed. The number of
mismatches allowed can be adjusted using the parameter max_mismatch.

https://paperpile.com/c/Ge30RF/XjGqa


Calculating HLA SNP positions
For each HLA gene, the HLA allele sequences are aligned to identify the positions at
which the sequences differ, called the SNP positions.

DNA analysis

Calculating the DNA HLA allelic copy number
The DNA HLA allelic copy number is calculated using the B-Allele Frequency (BAF) and logR
at the SNP positions. These SNP positions are filtered to only include SNPs with depth higher
than the input parameter min_depth in the germline HLA BAM file. For each filtered SNPi, the
BAF is calculated as

𝐵𝐴𝐹
𝑖

= 𝑎𝑙𝑙𝑒𝑙𝑒 1 𝑡𝑢𝑚𝑜𝑢𝑟 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑆𝑁𝑃 𝑖
𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑎𝑡 𝑆𝑁𝑃 𝑖

where the choice of allele 1 is arbitrary.

The logR is calculated at each position in the allele that has a depth higher than the input
parameter min_depth, as

𝑙𝑜𝑔𝑅 = 𝑙𝑜𝑔2( 𝑡𝑢𝑚𝑜𝑢𝑟 𝑑𝑒𝑝𝑡ℎ
𝑔𝑒𝑟𝑚𝑙𝑖𝑛𝑒 𝑑𝑒𝑝𝑡ℎ ✕

𝑔𝑒𝑟𝑚𝑙𝑖𝑛𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒
𝑡𝑢𝑚𝑜𝑢𝑟 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 )

The allele is then split into 150-base pair bins and the median logR is calculated for
each bin.

The copy number of each filtered SNP in allele 1 and allele 2 is then calculated as

𝑎𝑙𝑙𝑒𝑙𝑒1 𝐶𝑁
𝑖

=
ρ−1+𝐵𝐴𝐹

𝑖
×2

𝑙𝑜𝑔𝑅
𝑖×(2(1−ρ)+ρφ)

ρ

𝑎𝑙𝑙𝑒𝑙𝑒2 𝐶𝑁
𝑖

=
ρ−1−2(𝐵𝐴𝐹

𝑖
−1)𝑙𝑜𝑔𝑅

𝑖×(2(1−ρ)+ρφ)

ρ

where is the purity of the tumour region, the ploidy of the tumour region and logRi isρ φ
the median logR of the bin that SNPi falls in. The allele copy number is the median copy
number across the SNPs.

Calculating the DNA HLA allelic imbalance
To measure DNA allelic imbalance (AIB) in the HLA genes, we use the logR at the SNP
positions. These SNP positions are filtered to only include SNPs with depth higher than the
input parameter min_depth in the germline HLA BAM file. Before calculating the logR, the
coverage at the SNP positions is first adjusted so that each sequencing read is only counted
once per SNP. To do this, a read that overlaps more than one SNP is randomly assigned to



count towards one of the SNPs it overlaps. A paired Wilcoxon test with a significance threshold
of p<0.01 is used to determine if there is a significant difference in the logR at the filtered SNP
positions between the two alleles.

Evaluating loss of heterozygosity
For a given class I HLA gene, HLA LOH is called if both of the following are true:

● The copy number of the minor allele is less than 0.5
● There is DNA AIB

Calling HLA allelic somatic mutations
To call somatic HLA allelic mutations, Mutect26 (v4.1.8.1) is run on the germline/tumour pairs of
WES HLA BAM files. The mutation calls are filtered using the GATK7 function FilterMutectCalls
(v4.1.8.1). The Ensembl Variant Effect Predictor8 (VEP, v109.3) is used to predict mutation
consequence.

Calculating the DNA expected depth
The expected depth (ED) estimates the depth of the reads that are coming solely from the
cancer cells. This is calculated from the depth of the matched germline sample and the purity of
the tumour region. For a given allele, the expected depth of is:𝑆𝑁𝑃

𝑖

𝐸𝐷
𝑖

=    𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑆𝑁𝑃
𝑖 
𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑟𝑚𝑙𝑖𝑛𝑒 × ρ × 𝑡𝑢𝑚𝑜𝑢𝑟 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒

𝑛𝑜𝑟𝑚𝑎𝑙 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒  

where is the purity of the tumour region. The expected depth of the allele is the median ofρ
the expected depth at the filtered SNP positions. If the expected depth is too low, we would not
expect to have the required coverage to accurately classify LOH, even if it were present.

RNA analysis

Quantifying HLA allelic expression
Some individuals may carry two very similar or identical (homozygous) alleles for a given HLA
gene. In these cases, sequencing reads may map equally well to both alleles for that gene. In
addition, it is possible that two alleles from different genes share similar sequences, and in this
case reads may map equally well to the two alleles from different genes. If these multi-mapping
reads are not accounted for when calculating HLA expression, the estimates of HLA allele
expression may be inflated.

To quantify HLA allelic expression, an updated read count for each allele that accounts for
multimapping reads is first calculated. To do this, the fraction of reads that map uniquely to allele
1 ( ) is defined as:𝑓

1

https://paperpile.com/c/Ge30RF/gBkgh
https://paperpile.com/c/Ge30RF/qPMzU
https://paperpile.com/c/Ge30RF/urHoL
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read count for allele 1, and is the updated read count for allele 2.𝑅
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Using this updated read count, the allele expression, with units reads per kilobase million
(RPKM), is calculated for allele 1 ( ) and allele 2 ( ) as:𝑅𝑃𝐾𝑀
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where is the library size divided by a factor of one million, and are the lengths of allele 1𝑙 𝑎
1

𝑎
2

and allele 2 in kilobase units, respectively.

The gene level expression ( ) is calculated as:𝑅𝑃𝐾𝑀
𝑅𝑃𝐾𝑀 = 𝑅𝑃𝐾𝑀

1
 +  𝑅𝑃𝐾𝑀

2

Calculating RNA allelic imbalance
To measure RNA AIB in the HLA genes, we use the read depth at the SNP positions. The read
depth is adjusted so that each sequencing read is only counted once per SNP. To do this, a read
that overlaps more than one SNP is randomly assigned to count towards one of the SNPs it
overlaps. A paired Wilcoxon test per gene with a significance threshold of p<0.01 is used to
determine if there is a significant difference in the read depth at the SNP positions.

Calculating HLA allelic repression
We define a given HLA allele as being repressed if it has significantly lower expression in the
tumour sample compared to the normal sample.

To calculate this, for a given allele, the read depth at the SNP positions are normalised to
account for differences in the library size between the two samples by multiplying the normal
read depth by the tumour library size divided by the normal library size.



A given allele is called as repressed in the tumour compared to the normal if the following are
true:

1. There is a significant difference in the normalised read depths between the tumour and
the normal sample. This is determined using a paired Wilcoxon test with a significance
threshold of p<0.01.

2. The median normalised depth at the SNP positions in the tumour sample is lower than
the median normalised depth at the SNP positions in the normal sample.

Calling HLA alternative splicing

Detecting complete exon skipping, partial exon skipping and partial intron retention
To detect complete exon skipping, partial exon skipping and partial intron retention in the HLA
alleles we use the novel splice junctions identified by STAR in the two-pass alignment. A splice
junction is the position at which two spliced fragments of mature mRNA join after splicing and
can be represented as two genomic coordinates that indicate the start (Ss) and end (Se) of the
sequence of nucleotides that is spliced out of the mRNA transcript. Each splice junction can be
classified as “known”, meaning that it represents an intron described in the sequence
information in the IMGT database, or “novel”, meaning that it is not described in the IMGT
database. Each novel splice junction is classified as either a complete exon skipping event, a
partial exon skipping event or a partial intron retention event using the definitions outlined in
Figure 1.

Detecting complete intron retention
A complete intron retention event will not cause a novel splice junction as no nucleotides will be
spliced out. However, if an intron is retained in the mature mRNA, it will increase the number of
RNA-seq reads aligning to that intron. Therefore, to investigate the presence of complete intron
retention, MHC Hammer calculates the coverage of the exons and introns across all the alleles
using the bioinformatic tool mosdepth9. The depth is normalised by dividing by the length of the
exon or intron.

Calculating the novel transcript proportion
To estimate the relative abundance of the novel (alternatively spliced) transcripts compared to
the canonical (non-alternatively spliced) transcripts (the novel transcript proportion), MHC
Hammer calculates the number of uniquely mapping reads containing the novel splice junction
(yellow in Figure 1) divided by the total number of reads that could contain the splice junction.
The total number of reads that could contain the splice junction is calculated as the sum of the
number of uniquely mapping reads containing the novel splice junction (yellow in Figure 1), and
the number of reads that contain the corresponding known splice junction (green in Figure 1).

Calculating the purity-scaled novel transcript proportion
To estimate the fraction of cancer cells that harboured an alternative splicing event, a
purity-scaled novel transcript proportion is calculated. To do this, the novel transcript proportion

https://paperpile.com/c/Ge30RF/xoGui


is divided by the purity to account for the non-cancer cells in the tumour region. As the
purity-scaled proportion represents the fraction of cancer cells that carry the somatic alternative
splicing event, the purity-scaled proportion is capped at 1.

Consequences of the HLA alternative splicing events
An alternative splicing event will change the mRNA sequence of the allele and in doing so may
introduce a frameshift or a premature termination codon.

To determine the consequence of an alternative splicing event, the new sequence that results
from the novel splice junction is calculated. For complete or partial exon skipping, the new
sequence is calculated by removing the coding sequence that falls between the start (Ss) and
end (Se) of the novel splice junction. For events where the start of an intron is retained, the new
sequence is calculated by inserting the sequence from the start of the intron (iis ) to the start of
the novel splice site (Ss). For events where the end of an intron is retained, the new sequence is
calculated by inserting the sequence from the end of the novel splice junction (Se) to the end of
the intron (iie ).

Once the new sequence has been determined, the alternative splicing event is defined as
inframe if the number of bases in the new sequence is divisible by 3 and a framshift event
otherwise. The alternative splicing event is defined as introducing a premature termination
codon if a stop codon has been introduced into the new sequence.

Tumour-enriched and tumour-depleted HLA alternative splicing
We use a Fisher’s exact test with a significance threshold of p<0.01 to determine if a HLA
alternative splicing event is enriched in the tumour (tumour-enriched), depleted in the tumour
(tumour-depleted), or neither. Specifically, we test whether there is an enrichment in the number
of reads that do/do not support the alternative splicing event in the tumour compared to the
number of reads that do/do not support the alternative splicing event in the normal.

Tumour-to-normal change in the novel transcript proportion
If the novel splice junction proportion in the tumour is greater than the novel splice junction
proportion in the normal, the tumour-to-normal change in the novel splice junction proportion is
defined as:

𝑠𝑝𝑙𝑖𝑐𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑢𝑚𝑜𝑢𝑟 − 𝑠𝑝𝑙𝑖𝑐𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 
𝑠𝑝𝑙𝑖𝑐𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑢𝑚𝑜𝑢𝑟

If the novel splice junction proportion in the tumour is less than or equal to the novel splice
junction proportion in the normal, the tumour-to-normal change in the novel splice junction
proportion is defined as:

− 1 *  𝑠𝑝𝑙𝑖𝑐𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑠𝑝𝑙𝑖𝑐𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑢𝑚𝑜𝑢𝑟 
𝑠𝑝𝑙𝑖𝑐𝑒 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑜𝑟𝑚𝑎𝑙





Figure 1 | The classification of a novel splice junction with start site Ss and end site Se.
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Exon 4 Exon 5 Exon 6

Exon 6Exon 4

Wildtype sequence

Sequence of transcript with exon 5 skipping

Supplementary Figure 1 | a PCR product highlighting the different lengths of the wildtype transcript and 
transcript with exon 5 skipping. b The sequence of the wildtype transcript and transcript with exon 5 skipping, 
determined from Sanger sequencing. Each peak represents a single nucleotide; A is green, T is red, C is 
blue and G is black. 
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Supplementary Figure 2 | The rate of HLA loss of heterozygosity (LOH) and repression in the TCGA 
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) cohorts. 
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Supplementary Figure 3 | The relationship between the tumor-to-normal ratio of TNF alpha (TNF) 
expression and the number of transcriptionally repressed alleles in the tumor region. P values were 
derived from a two-sided Wilcoxon test. Boxplots show median and first and third quartiles, and whiskers 
extend up to 1.5 × IQR above and below the IQR. LUAD: lung adenocarcinoma; LUSC: lung 
squamous cell carcinoma; ER+: estrogen receptor positive.
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Supplementary Figure 4 | For each TCGA sample, the average methylation beta value in each of the four 
regions of the HLA genes is shown. BRCA: breast cancer, LUAD: lung adenocarcinoma, LUSC: lung 
squamous cell carcinoma, TSS1500: the region 1500-200 bp upstream of the transcription start site, 
TSS200: the region 200 bp upstream of the transcription start site.   
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Supplementary Figure 5 | The correlation between the average methylation beta value and the expression 
of the HLA gene in the TCGA LUAD tumor samples. Correlation coefficients (r) and corresponding P values 
were calculated with the Pearson’s correlation method. LUAD: lung adenocarcinoma; TSS1500: the region 
1500-200 bp upstream of the transcription start site; TSS200: the region 200 bp upstream of the transcription 
start site; RPKM: reads per kilobase per million.  
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Supplementary Figure 6 | The correlation between the average methylation beta value and the expression 
of the HLA gene in the TCGA LUSC tumor samples. Correlation coefficients (r) and corresponding P values 
were calculated with the Pearson’s correlation method. LUSC: lung squamous cell carcinoma; TSS1500: the 
region 1500-200 bp upstream of the transcription start site; TSS200: the region 200 bp upstream of the 
transcription start site; RPKM: reads per kilobase per million.  
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Supplementary Figure 7 | The correlation between the average methylation beta value and the expression 
of the HLA gene in the TCGA ER+ tumor samples. Correlation coefficients (r) and corresponding P values 
were calculated with the Pearson’s correlation method. ER+: estrogen receptor positive; TSS1500: the 
region 1500-200 bp upstream of the transcription start site; TSS200: the region 200 bp upstream of the 
transcription start site; RPKM: reads per kilobase per million.   



Supplementary Figure 8 | The relationship between total HLA expression and the amount of CD8 T 
cell infiltration. Correlation coefficients (r) and corresponding P values were calculated with the Pearson’s 
correlation method. LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; ER+: estrogen 
receptor positive.
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