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1 Supplementary Methods
1.1 DeepRVAT model
1.1.1 Method overview
Model The DeepRVAT gene impairment module (Section 1.1.3) is trained as part of an end-to-end multi-phenotype
prediction model. This model combines gene scores from the gene- and phenotype-agnostic impairment module
using phenotype-specific weights to predict one or more phenotypes. During training, we restrict the genes used for
phenotype prediction to a set of pre-defined seed genes, e.g. with known associations to the phenotypes of interest.

Applications Subsequently, using the trained DeepRVAT gene impairment module, impairment scores for all protein
coding genes can be computed. The derived continuous scores can be leveraged in various downstream tasks, e.g.,
finding phenotype-associated genes through rare-variant association testing in large cohorts, such as the UK Biobank
(UKBB). In addition, DeepRVAT gene impairment scores may be leveraged to augment conventional polygenic risk
score (PRS)-based phenotype predictors by including the DeepRVAT scores to capture rare variant effects.

In the remainder of this section, we present a comprehensive description of the DeepRVAT model and how it is trained.
Downstream analyses are described in subsequent sections.

1.1.2 Input and target data
Variant sets The input data for DeepRVAT consists of unordered sets of variants. The variant set for individual i
and gene j is defined as

Vij = {(akl)l=1,...,d | variant k present in individual i, gene j} , (1)

where akl is the l-th annotation of variant k. Thus, Vij is an unordered set of d-dimensional vectors, with each vector
representing the d annotations of a given variant.

Targets As targets, we use a collection of P phenotypes, with the p-th phenotype of indivdidual i denoted by y(p)i .
We used quantitative (continuous-valued) phenotypes in this study. DeepRVAT is trained in a multi-task model setup
to predict all P phenotypes simultaneously (details below).

1.1.3 Gene impairment module
The DeepRVAT gene impairment module builds on a set neural network architecture to learn a trait-specific but gene-
agnostic scoring function in a data-driven manner [1]. Specifically, the gene impairment module (denoted ψ in what
follows) operates on sets of annotated variants and outputs a scalar score.

Architecture The variant set is first passed through a learnable submodule φ, which computes a variant embedding
φ(x) for each x = (ak1, . . . , akd) ∈ Vij . From the full set of variant embeddings, a fixed aggregation function f
computes a gene embedding, then a second learnable submodule ρ computes a scalar gene impairment score ψ(Vij)
from this embedding. Finally, we pass the result through a sigmoid function. In full,

ψ(Vij) = σ
(
ρ
(
f
(
{φ(x)}x∈Vij

)))
Both φ and ρ are multi-layer perceptrons (MLPs), i.e., feed-forward neural networks with multiple fully connected
layers, and σ is the sigmoid (logistic) function.

Aggregation function The aggregation function f is required to be permutation-invariant, from which permutation
invariance of the full phenotype prediction network follows. We also require that f produces outputs at a fixed
dimension, independent of the number of elements in the variant set Vij , since the MLP ρ requires fixed-dimensional
input. Possible choices for f are the element-wise sum, product, or maximum, with output dimension d, or the top2
function, with output dimension 2d, containing the two largest values of each annotation.

1.1.4 Training procedure on seed genes
We describe here the full training procedure of the DeepRVAT model on training samples. Note that in practical
scenarios, we employ a cross-validation scheme to restrict association testing to samples held out during model trainig;
cf. Section 1.4.1.

Seed genes Training of the gene impairment module begins by selecting, for each training phenotype, a set of trait-
specific seed genes from the set of all protein-coding genes. In this study, we base these on the results of alternative
RVAT methods, specifically the ”Burden/SKAT combined” method described in Section 1.3. We provide a pipeline to
select seed genes by this method.
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Training objective For a given individual i, we form variant sets Vij for all seed genes j and compute the gene
impairment score for gene j as ψ (Vij). Following this, we estimate the p-th phenotype y(p)i for individual i as a linear
combination of the gene impairment scores and covariates:

ŷ
(p)
i = XT

i α
(p) +

∑
j∈S(p)

w
(p)
j ψ (Vij) ,

where Xi is the vector of covariates for individual i, α(p) is a learnable vector of weights for the covariates, S(p) is
the set of seed genes for phenotype p, and w(p)

j is a learnable weight for gene j.

Loss function We employed a simple multi-task learning objective across phenotypes, with the loss function given
by the mean loss across all phenotypes. That is,

L(yi, ŷi) =
1

P

P∑
p=1

L(y(p)i , ŷ
(p)
i ),

where again, P is the total number of phenotypes. The weights α(p) and w(p)
j , as well as the parameters of ψ, are

learned via backpropagation and minibatch gradient descent.

Parameter sharing The parameters of ψ are shared across all variants, genes, and phenotypes, while α(p) and w(p)
j

are phenotype-specific. For the downstream analyses we describe in this work, the covariate and gene weights α(p)

and w(p)
j are not needed – only the optimized gene impairment module ψ∗ is used.

1.1.5 Model implementation and hyperparameters
We provide here the specific modeling setup as used to obtain the results reported in the manuscript.

Software versions All DeepRVAT models were implemented in PyTorch v1.13.1 and PyTorch-Lightning v1.5.10.

Training-validation split A data point for the DeepRVAT multi-phenotype model was given by an individual-
phenotype pair. The target was that individual’s value for phenotype p. The input was that individual’s sets of an-
notated rare variants, one set for each seed gene. Prior to training, data points were shuffled, and a validation set
consisting of 20% of individuals was selected at random for each phenotype. The validation set was randomly chosen
on a per-phenotype basis, meaning it could differ across phenotypes.

Architecture hyperparameters For the variant embedding φ, we used a two-layer MLP with width 20. We used an
MLP with two hidden layers of width 10 for ρ. In both networks, leaky ReLUs with negative slope 0.01 were used as
the activation functions.

Training hyperparamters During training, we used the mean-squared-error (MSE) loss and the AdamW optimizer
[2] with learning rate 0.001. The batch size was 1024. During training, the MSE loss was monitored every epoch
on the validation set, and the training checkpoint with lowest validation MSE loss was retained. Training proceeded
for a minimum of 50 and a maximum of 1,000 epochs, with early stopping implemented by the PyTorch-Lighting
EarlyStopping callback with metric the validation MSE, patience 3 and min delta 1e-5.

Ensembling DeepRVAT models can be ensembled, with the gene impairment score computed as the mean of all
trained models. For each trained model, we randomly sampled a new training and validation dataset as in Section
1.1.5. We used six models in our ensemble, finding improvements in performance saturated after this. Since the
DeepRVAT model is comparatively small, we trained all six models simultaneously on a single GPU using GNU
parallel ([3]).

1.1.6 Practical considerations for input data
Variant and annotation data Input data preparation begins with computing all annotation scores for all variants
present in the analyzed cohort if they lie in the genomic regions to be considered (e.g., all protein-coding genes).
Next, using the cohort genotype data together with genome annotations, the variant set for each individual–gene com-
bination must be determined to obtain matrices of annotations x variants. These matrices for each individual
and each gene are then combined to obtain the final input tensor. In our practical implementation of DeepRVAT,
we achieved the greatest computational efficiency by forming a padded tensor with dimensions of individuals x
genes x annotations x variants, where, in a given minibatch, the final dimension is padded to the largest num-
ber of variants in any individual/gene combination. For model training, the input tensor only comprises the seed genes,
with one input tensor used per phenotype.
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Phenotypes and covariates Besides the variant information, DeepRVAT training and association testing requires
the true phenotype values (individuals x phenotypes) and the covariates (individuals x covariates) to be
considered (e.g., age, sex, genetic principal components).

1.2 Relationship with prior work
Broadly, rare variant association testing methods can be categorized into burden tests (also called collapsing tests) and
variance-component tests. To increase power, both kinds of tests require a grouping of variants into variant sets (e.g.,
genes), and incorporate filtering to include only putative causal variants (e.g., pLOF and/or missense variants). They
also require applying a predetermined weighting function to individual variants.

1.2.1 Principles of burden tests and SKAT
The most widely-used methods remain conventional burden tests and the sequence kernel association test (SKAT). Al-
though these models do not conduct any specific modeling to handle more complex annotations, they remain canonical
baselines and underpin many more advanced choices [4, 5].

Burden tests Burden tests [6] collapse variant weights by, e.g., sum or a binary indicator (presence/absence of a
qualifying variant), into a single score per sample and variant set. This score is then tested for association with traits.
This simple form of burden test, which is also the most commonly applied, assumes all filtered variants are causal and
have the same direction of effect.

Variance component tests Variance component tests such as SKAT [7] treat variant effects as random effects and
assume that the effects in a given variant set are normally distributed around zero. They test against the null hypothesis
that the distribution of effects is a delta distribution at zero. Thus, these tests can handle situations where variants of
opposite effects and non-causal variants are present.

SKAT and SKAT-O SKAT is a specific type of variance component test for association, utilizing a kernel matrix to
estimate the similarity between individuals based on their genotype. More specifically, the kernel in SKAT is given by
K = GWWGT , where G is the n× p genotype matrix (with n the number of samples and p the number of variants)
and W = diag(w1, . . . , wp) is a specified vector of variant weights. An extension of SKAT, SKAT-O [8], interpolates
between SKAT and burden tests, based on the observation that a burden test can be viewed as a special type of kernel
test. Annotations enter both SKAT and burden tests as part of the preprocessing of the input data. Variants are typically
filtered by allele frequency and pLOF or missense annotations (see also [9, 10] for guidelines and examples). This
can comprise simply including all variants of one type (e.g., missense or pLOF [4]). In other schemes, additional
annotations indicating the degree or probability of deleteriousness are taken into account (e.g., [5]). Also, instead of
commonly used variant weighting based on variant MAF only, single or combinations of annotation scores might be
used to weight variants in both burden tests and SKAT [11].

1.2.2 Existing methods that handle more complex variant annotations
Building on SKAT and burden tests, there has been a history of model refinements and advances to allow for making
use of more complex annotations. In the following, we review the most relevant developments and their relationship
to DeepRVAT (see also Supplementary Table. 1).

Hierarchical mixed-effect models An early example of a method that utilizes functional annotations in a data-
driven manner is MiST [12], which introduces a hierarchical mixed-effects model for RVAT. Later, BATI [13] has
been proposed as a Bayesian generalization of this model, which uses Integrated Nested Laplace Approximation to
improve robustness. While being capable of considering different variant characteristics jointly, both models are linear
and learn the relevance of annotations indivdually for each gene, which in practice limits the number and complexity
of annotations that can be considered.

Meta-models Another emerging group of methods, which we classify here as meta-models, perform post-hoc meta-
analysis of multiple tests, which can comprise different variant filters (e.g., pLOF or missense variants), test types
(e.g., burden test or SKAT), and/or weightings based on single annotation scores or groups of related annotations [14,
15, 16, 11].

Kernel methods for multiple annotations For example, Konigorski et al. [16] and Monti et al. [11] proposed
linear mixed-effect models that can learn variant effects based on variant weights or on annotations directly. They
also developed kernels which allow for user-specified mappings of variants into a feature space, with variant effects
modeled linearly based on their representations in feature space. Roughly, then, variant effects are modeled based
on their similarity in feature space. Practically, multiple tests for different types of variants are used, each of which
defines a weighting or variant similarity kernel based on a set of related annotations.
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STAAR The STAAR method [15] takes a different perspective on combining multiple annotations into a single test,
by first testing for association between each single annotation and a trait, then using statistical methods (namely, the
Cauchy combination test [17, 18]) to combine the p-values from these individual tests into a single score. Additionally,
the authors use PCA to reduce the total number of annotations tested and the empirical cumulative distribution of
annotations to estimate the probability of a variant being causal.

Limitations of existing methods While STAAR, the methods of Konigorski et al. and Monti et al. have been shown
to be scalable to handle biobank-scale datasets, these meta-models are limited to test individual variant annotations or
groups of related annotations in isolation rather than jointly. They are also not suitable for computing a single gene
score that can be used in related tasks, such as phenotype prediction.

Novel characteristics of DeepRVAT These existing RVAT methods and our method share some conceptual ad-
vances over burden tests and SKAT, including data adaptivity, the usage of functional annotations—including those
derived from predictions of deep neural networks—and the mapping of variants into feature space. However, to the
best of our knowledge, our approach is the first to learn, in a data-driven manner, nonlinear feature mappings from
sequencing studies, and also the first to directly incorporate deep neural networks into an RVAT framework. Fur-
thermore, DeepRVAT contrasts with these methods in that it learns from signal across multiple genes during training
time, applying these jointly learned variant representations to other genes in the association testing phase. Finally,
DeepRVAT is a single model that is directly applicable to phenotype prediction, while methods based on meta-models
require a scheme to combine predictions across multiple models, and have not been considered for this task.

1.3 Implementation of comparison partners
We compared DeepRVAT to burden tests, SKAT, STAAR, and Monti et al. [11], and, for binary traits, REGENIE [19]
with default settings. In the following, we provide details on the implementation of these methods.

1.3.1 Burden tests and SKAT
Test types, variant annotation We implemented burden and SKAT tests following [4], using the score test from
the SEAK package1 (v0.4.3) [16, 11]. For quantitative (resp. binary) phenotypes, a null model was computed using
the ScoreTestNoK (resp. ScoreTestLogit) class, followed by calling the pv alt model() method to compute a
p-value.

All combinations of burden and SKAT tests restricted to either pLOF or missense variants were carried out, giving
four method/variant type combinations. The pLOF variant category comprised all variants annotated as stop gained,
start lost, splice donor, splice acceptor, stop lost or frameshift by Ensembl Variant Effect Predictor (VEP) [20, 5].
Annotation of missense variants was also carried out using VEP. Each method/variant type combination was carried
out for all protein-coding genes. To reduce the data sparsity due to ultra-rare variants in SKAT tests, variants with a
with minor allele count (MAC) ≤ 10 were collapsed and then tested together with all other variants with MAC > 10
as described by [21]. Due to computational constraints, we skipped genes with over 5000 markers, impacting only one
gene (Titin) for missense variant tests.

Variant weights The weight for each variant vj was wj = Beta(MAF(vj); 1, 25) where Beta(·; 1, 25) denotes the
Beta density function with parameters (1, 25), which upweights rarer variants.

Combination test, multiple testing correction In addition to the four individual tests, we created a combination
test (Burden/SKAT combined) using the full set of p-values from all four individual tests. The resulting significant
gene-trait associations from this combined test were subsequently used as seed genes for training DeepRVAT (see
Sec. 1.1 below).

1.3.2 STAAR
Software STAAR tests were implemented in R using the STAAR package provided by the authors2 and following the
vignette provided in the package, as well as the procedures in the original publication [15].

Variant annotation STAAR requires annotations of variants, and to insure optimal comparability with DeepRVAT,
the same annotations as described below in Sec. 1.5 were used. As required for the STAAR procedure, each annotation
ajk for variant j was PHRED-scaled according to the formula

aPHRED
jk = −10 log10(1− qjk),

where qjk represents the quantile of ajk when considering the distribution of annotation k across all variants in the
dataset.

1https://github.com/HealthML/seak
2https://github.com/xihaoli/STAAR
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Variant groups, multiple testing correction Following [15], STAAR p-values were computed for five variant
groups, namely (1) putative loss-of-function (stop gain, stop loss and splice), (2) missense, (3) disruptive missense,
(4) putative loss-of-function and disruptive missense, and (5) synonymous variants. We defined disruptive missense
variants to be those that were predicted to be both ”deleterious” by SIFT [22] and ”probably damaging” by PolyPhen2
[23]. This yielded five p-values per gene.

1.3.3 Monti et al.
We conducted various collapsing and kernel tests following the methodology described by Monti et al.[11]. We used
the same annotations, variant weight thresholds, and variant kernel architectures as outlined in their study. Annotation
scores were obtained according to the details provided in Supplementary Table 3 and Sec. 1.5.

Test types Specifically, we performed the following tests for different types of variants:

• Protein loss of function: Gene-based collapsing test.

• Missense variants: Weighted gene-based variant collapsing and kernel-based association tests. We used SIFT
and PolyPhen2 scores for variant weighting and a local (amino-acid level) collapsing kernel to aggregate
variants.

• Splicing: Weighted gene-based variant collapsing and kernel-based association tests. We used SpliceAI delta
scores for variant weighting together with a linear kernel.

• RBP-binding: We employed a weighted, kernel-based association test using DeepRiPe predictions for six
RBPs (QKI, MBNL1, TARDBP, ELAVL1, KHDRBS1, and HNRNPD). Following the approach described in
Monti et al. (2022), the kernel matrix was generated using the Cholesky decomposition of the element-wise
product of Q ◦ R, where Q represents the similarity of variants based on their six DeepRiPe scores and R
represents the similarity based on variant position.

Combination of p-values For all the aforementioned tests, we utilized the score test from SEAK. In the case of
missense and splicing tests, if either the collapsing or kernel-based association test yielded nominal significance (p <
0.01), we performed joint testing with pLOF variants. The p-values from these tests were integrated using the Cauchy
combination method, as described in [11]. In total, we obtained six p-values per gene.

1.3.4 REGENIE
Test types Burden and SKAT tests were run using both missense and pLOF masks, yielding four combinations as in
1.3.1. For burden tests, we used the default REGENIE strategy of collapsing variants to gene level using the maximum
number of ALT alleles across sites. We used the approximate Firth likelihood ratio test for p-values less than 0.01.

Variant weights As in 1.3.1, weights for SKAT tests were computed using the Beta(·; 1, 25) function.

1.3.5 Combination of multiple p-values per gene and multiple testing correction
The methods Burden/SKAT combined, Monti et al., and STAAR yielded multiple p-values per gene. These were
aggregated at the gene level by adjusting for multiple testing via the Bonferroni procedure. We retained only the
smallest p-value per gene for subsequent analyses. To account for multiple testing across all 19,388 tested genes, we
applied Bonferroni correction, setting the genome-wide significance threshold at α = 0.05/19388 = 2.510−7.

1.3.6 Expected allele frequency filtering
Since burden and variance-component tests (that is, all comparison partners listed above) use variant filters to define
qualifying variants (e.g., pLOF, missense, or disruptive missense), we followed the methodology of [4] to improve
the reliability of the tests. Specifically, we restricted testing to genes that passed an expected allele frequency (EAF)
filter of at least 50. The EAF is defined as CAF · n, where CAF is the cumulative allele frequency (the sum of allele
frequencies of all qualifying variants j in the gene) and n is the cohort size for quantitative traits or the number of
cases for binary traits.

1.4 Rare-variant association testing with DeepRVAT
Applying DeepRVAT can include training and association testing, or association testing with pretrained models. To
avoid overfitting to a given dataset and obtaining inflated p-values, training and association testing with DeepRVAT
is carried out in a cross-validation (CV) scheme. Additionally, DeepRVAT gene impairment scores can be seamlessly
integrated into any framework for single-marker association testing. We give details on each of these points in this
section.
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1.4.1 CV scheme
Training The dataset D is first used for seed gene discovery using the Burden/SKAT combined method described
in Section 1.3.1. Next, D is partitioned across samples into K equally-sized subsets, D1, . . . , DK . For each k =

1, . . . ,K, a gene impairment module ψ∗
k is fit on the training set D̂k = D \Dk and discovered seed genes. Finally, a

gene impairment score hij = ψ∗
k(Vij) is computed for each sample i in the test set Dk and each gene j. This yields a

dataset of the same sample size as D which can be used for association testing, but avoiding overfitting by computing
gene impairment scores on samples not used during training of the given model.

Association testing Once all gene impairment scores have been computed, we follow the standard burden-testing
approach and fit a linear model for each gene j:

g
(
y
(p)
i

)
= Xiγ

(p) + β
(p)
j hij + ε.

Here, g is an appropriate link function, y(p)i is the value for target phenotype p in sample i, Xi is the vector of
covariates for sample i, γ(p) and β(p)

j are learned weights, hij is the gene impairment score for gene j of sample i,

and ε is unexplained variance. We are interested in the effect size β(p)
j and its p-value.

1.4.2 Leveraging pre-trained models and precomputed scores
In addition to a full training and association testing pipeline, the DeepRVAT package contains pipelines for:

Pretrained models To perform association testing (as in Section 1.4), gene impairment scores hij are calculated
for all sample/gene pairs of interest using the pre-trained DeepRVAT gene impairment modules across all repeats, as
detailed in Section 1.4.1. These modules require variant annotation vectors (akl) with the same d annotations used
during DeepRVAT gene impairment module training. Once the gene impairment scores hij are computed for the
desired gene/individual pairs, they can be used to discover associations with quantitative or binary traits of interest,
resulting in one p-value per tested trait and DeepRVAT repeat.

Precomputed gene impairment scores For UK Biobank data, we have returned DeepRVAT gene impairment scores
computed as described in Section 1.5.5 below. This allows users to carry out new rare variant association studies
without the necessity of directly working with genetic variant data or implementing the logic to compute burden
scores with the correct model from the CV scheme in the previous subsection.

1.4.3 Integration into single-marker association testing frameworks
Since DeepRVAT provides a single score per gene and sample, it can be seamlessly integrated into any tool that carries
out single-marker association testing with genotype dosages.

Conversion to BGEN Practically, we implement this by providing a script that uses the bgen package3 v1.6.1 to
convert the samples×genes matrix of DeepRVAT scores to a BGEN file [24]. The DeepRVAT gene impairment score
hij is stored as the probability pij = (hij , 0, 1 − hij) of homozygous alternate, heterozygous, and and homozygous
reference alleles, resp., so that the dosage dij = 2hij . Since 0 < hij < 1, this puts DeepRVAT scores within the usual
range of [0, 2] for genotype dosages.

DeepRVAT+REGENIE The BGEN file can be used for single-marker association testing with REGENIE; for more
details, see Section 1.5.5 below. However, any other single-marker association testing framework could also be used,
as the BGEN file we output can be readily converted to any other standard genetic format.

1.5 Application to UK Biobank WES data
1.5.1 Sequencing data preprocessing and quality control
Exome sequencing for model training and benchmarking Whole-exome sequencing (+100 bp overhang) was
performed on 200,633 participants from the UK Biobank [25], for which the methods have been described in the
earlier release of data from approximately 50,000 individuals [26]. We will refer to this as the UKBB 200k WES
dataset in what follows.

Full exome-sequencing cohort Whole-exome sequencing was also carried out on a larger cohort of UK Biobank
participants. This resulted in a dataset totaling 469,779 participants, which we will refer to as the UKBB 470k WES
dataset.

3https://github.com/jeremymcrae/bgen
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Variant data and QC For both cohorts above, variant calling data was downloaded from the UK Biobank as project-
level VCF (pVCF) files. Since the dataset had not been subjected to variant- or sample-level filtering prior to release by
the UK Biobank, we applied additional quality control(QC) following [26]. All filtering steps were performed using
bcftools v1.10.2 [27]. We required a minimum read depth of 7 for SNPs and 10 for indels. After read-depth filtering,
only variant sites with at least one homozygous variant genotype or where at least one sample per site had an allelic
balance ratio greater than 15% for SNPs and 10% for indels were retained. Indels were left-aligned and normalized,
and multi-allelic variants were represented as multiple bi-allelic variants. Finally, we removed duplicate variants and
filtered for variants where the fraction of missing genotypes was < 10% and the Hardy-Weinberg equilibrium p-value
was > 10−15. In total, our filtering criteria removed 5,336,543 out of 17,981,684 initial variants (29.67%). After
excluding sex chromosomal variants, we ended up with 12,417,590 variants. Additionally, we filtered out individuals
with > 10% missing genotype rate, which did not result in any individuals being dropped. Additionally, following the
analysis best practices recommended by UK Biobank, we applied an additional coverage filter, requiring that at least
90% of all genotypes for a given variant have a read depth of at least 10. After these filters and additionally dropping
all participants who had withdrawn from the study, we obtained datasets with 200,583 individuals and 12,704,497
variants (UKBB 200k WES), resp. 469,382 individuals and 26,141,967 variants (UKBB 470k WES).

1.5.2 Custom sparse genotype data format
Raw data After QC, we required the data to be stored in a format that allowed for fast, repeated loading over multiple
epochs of DeepRVAT model training. To meet our needs, we constructed a custom sparse genotype data format as
follows.

Genotype extraction After using the bcftools norm function for normalization and left alignment, we obtained BCF
output files. Next, we extracted triplets of variant metadata, sample ID, and genotype from the BCF files, where the
genotype was encoded as 1 (heterozygous) or 2 (homozygous-alternative), thereby generating a set of gzipped TSV
files of 71 GB total, with one line for every variant present in a sample. Homozygous-reference genotypes were
ignored for the purposes of these files. Following this, each unique variant was assigned an integer ID.

Custom HDF5 format As the last step, we created our custom sparse dataset in Hierarchical Data Format 5 (HDF5
v1.10.6). Genotype data was encoded as two equal-sized matrices, a variant and a genotype matrix, with the rows
corresponding to individuals and the number of columns equal to the maximum number of variants found in any
sample (60,247). Each row of the variant matrix provided the IDs of variants present in the corresponding individual,
while the row of the genotype matrix provided the corresponding genotypes (1 or 2). Unnecessary elements at the
end of each row were padded with -1. Sample IDs corresponding to the rows of the matrices were stored as an
additional sample vector. Details on variants such as position and chromosome, as well as reference and alternative
allele, were provided as a variants dataframe in Apache Parquet format. In total, the HDF5 dataset had a storage size
of approximately 100 GB, compared to multiple terabytes for the original pVCF files.

1.5.3 Covariates and variant annotation
Covariates We retrieved genetic sex, sample age, age2, age·sex and the first 20 genetic principle components (PCs)
directly from UK Biobank (Supplementary Table 5). All of these covariates were included in association testing and
when training DeepRVAT.

Variant-to-gene assignments Variants were assigned to genes using those protein-coding genes genes and their
exons marked as golden in the merged Ensembl/HAVANA genome annotations (GENCODE release 38). We assigned
a variant to a gene if it was located at most 300 bp from an exon of that gene. Multiple gene assignments were possible
for a single variant.

Annotations The full collection of variant annotations used and their sources is provided in Supplementary Table 3.
Here, we give details on processing for those annotations which were not used directly in the form output by the
source.

MAF MAF values for variants were first replaced with the maximum of the MAF in the UK Biobank cohort and
in gnomAD release 3.0 (non-Finnish European population). Following [6], The MAF pj of each variant j was then
transformed according to the formula [pj(1− pj)]

− 1
2 for use in modeling.

VEP consequences We used 11 moderate- and high-impact consequences from VEP. These were encoded for each
variant as multi-hot vectors, with a 1 in the corresponding column indicating that a consequence was predicted, and 0
if not.

DeepSEA DeepSEA predicts 919 different predicted variant effects on transcription factor binding, DNase I sensi-
tivities, and histone marks in various cell types [28]. To improve model fitting and avoid overfitting, we performed
principal components (PC) analysis and restricted to the first 6 PCs, explaining approximately 58% of variance.
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SpliceAI SpliceAI provides four ”delta scores” indicating a variant’s predicted effect on cryptic splicing (acceptor
gain, acceptor loss, donor gain, and donor loss) [29]. We computed the maximum of these four scores and used it as a
single annotation.

AbSplice AbSplice-DNA predicts variant effects on aberrant splicing across 49 human tissues [30]. We computed
the maximum predicted effect across tissues and used this as a single annotation.

DeepRiPe DeepRiPe characterizes in vivo RNA binding protein (RBP) binding preferences [31]. As in [11], we
predicted effects of genetic variants on the binding of six RBPs over three cell lines using the pre-trained models from
[32].

Annotation vectors Given the full set of annotations and the transformations described above, vectors representing
variants had 34 dimensions in total.

MAF thresholds For DeepRVAT training (see 1.5.5), we used variants with MAF < 1%. For association testing
with all methods, we designated rare variants as having MAF < 0.1%. Additionally, for both training and association
testing, we restricted to variants with PHRED-scaled CADD value > 5.

1.5.4 Phenotype data
All phenotype data was obtained directly from UK Biobank, with the exception of waist-to-hip ratio (WHR), which
was computed as the ratio of UKBB data field 48 to data field 49 and corrected for body-mass index (BMI) by
regressing out the corresponding data field 21001.

Quantitative traits In case multiple instances of the phenotype were available, we chose the instance with the largest
number of individuals having a measurement. Phenotype values were quantile transformed to match their empirical
distributions to a standard normal distribution. For individuals with reported Statin usage, we adjusted Cholesterol
(30690) by dividing by 0.8 and LDL-direct (30780) by dividing by 0.7, following [33, 34]. Statins considered were
obtained from [35, Supplementary Table 1] and matched to UKBB treatment codes (20003). Supplementary Table 4
provides an overview of the full set of quantitative phenotypes and their corresponding data fields in UK Biobank.

Binary traits Binary traits were extracted using the definitions from [36, Supplementary Table 1]. Phenotype values
were set to 1 for an individual if any ”Matching Code” was found for the corresponding ”Field” in that table. Otherwise
they were set to 0. The exception is if the corresponding ”Exclude” value was 1: In this case, the phenotype was set to
NA.

1.5.5 DeepRVAT training and association testing
Subselected cohorts Since the various methods used for benchmarking control for sample relatedness and popu-
lation structure differently, or not at all, we retained only unrelated individuals of European genetic ancestry from
the UKBB 200k WES dataset for DeepRVAT model training and benchmarking against alternative RVAT methods.
We used the ukb gen samples to remove function of the ukbtools R-package (v0.11.3, [37]) together with pre-
computed relatedness scores (see UK Biobank Resource 668) to remove closely related individuals, keeping only one
representative of groups that are related to the 3rd degree or less. Individuals of European ancestry were identified
using UK Biobank data field 22006 (termed ’Caucasian’). This filtering resulted in a dataset (called UKBB 200k un-
related European ancestry below) of 161,822 individuals. For testing the integration of DeepRVAT with REGENIE
(Fig. 3a), we additionally used all 167,214 individuals of European genetic ancestry.

Training and association testing Seed gene discovery and DeepRVAT training were carried out on the UKBB 200k
unrelated European ancestry dataset. The training phenotypes were chosen among those for which at least 3 seed genes
were available, yielding 21 phenotypes for training and 13 held out for association testing with pretrained models.
Training was done according to the CV scheme described in Section 1.4.1, which also yielded gene impairment scores
for all genes in this subset of the cohort. An ensemble consisting of all 30 models from the CV step (6 ensemble
models from 5 training folds) was used to compute gene impairment scores for the remaining 307,560 individuals
from the UKBB 470k WES cohort.

EAF filter Since DeepRVAT considers both high- and moderate-impact variants, the EAF filter as described in 1.3
did not have any effect on the set of genes included in association testing.

Association testing with SEAK For the method denoted DeepRVAT, association testing was carried out using the
score test from SEAK v0.4.3, similarly to Section 1.3.1.

Association testing with REGENIE Association testing for the method DeepRVAT+REGENIE was carried out
with REGENIE v3.4.1. REGENIE is run in two steps: In step 1, a set of phenotype-specific predictors is built from
genetic markers using a two-level ridge regression approach, and in step 2, association testing with the markers of
interest is carried out.

9



Following the REGENIE documentation, for step 1, we selected approximately 500k (precisely, 483,446) imputed
SNPs from UKBB data field 22828, which were imputed using a combined panel from the Haplotype Reference Con-
sortium [38] and the UK10K haplotype resource [39]. To do so, we used the following filtering in PLINK v2.00a2LM
[40]: MAF < 0.06, MAC > 100, genotyping rate > 0.99, Hardy-Weinberg p-value ≥ 10−15, and sample missingness
< 0.1. Additionally, we pruned SNPs with a pairwise linkage disequilibrium r2 threshold of 0.9, using a window size
of 1,000 and a step size of 100. Step 1 of REGENIE was then run with a block size of 1,000.

Step 2 of REGENIE was run on DeepRVAT gene impairment scores for each gene, derived as described in 1.4.3.
For quantitative traits, the default options of REGENIE were used. For binary traits, we used the approximate Firth
likelihood ratio test with a p-value threshold of 0.01.

Multiple testing correction To account for multiple testing across all 19,388 tested genes, we applied Bonferroni
correction, setting the genome-wide significance threshold at α = 0.05/19388 = 2.510−7.

1.5.6 Comparison with other UKBB RVAT studies
We compared to gene-trait associations from two studies [4, 5] on larger WES cohorts from UK Biobank (454,787
and 394,841 individuals, respectively). We counted as a discovery any association that was considered significant
according to the methodology of the study. For [4], we included tests using missense or pLOF burdens and genes that
met the EAF filter as described in 1.3.6.

Assessment of replication To compute replication for quantitative traits in Fig. 2a,g and Fig. 4a, we first computed
the set of discoveries from the studies mentioned above as

D(C) = {(g, p) | gene g significantly associated to phenotype p}

Next, for each methodm, we collected gene-trait associations (g, p) for all genes g and phenotypes p, and ranked them
by p-value, resulting in a list (g1, p1), . . . , (gN , pN ). The discoveries of rank m or less were then Dm = {(gq, pq) |
1 ≤ q ≤ m}, and the replication rate at rank m was defined as |Dm ∩D(C)|.

Novel DeepRVAT discoveries on binary traits All significant discoveries made by DeepRVAT on binary traits in
the analysis of the UKBB 470K dataset were compared to [36], where trait definitions matched precisely. Any gene-
trait combination found in that study was considered known from previous UKBB RVAT studies. Additionally, the
comparison to [4, 5], where trait definitions from this study and the comparison study could not be automatically
mapped, was carried out by manual curation. If the gene from a gene-trait discovery by DeepRVAT was significantly
associated with any related phenotype in the comparison studies, this discovery was considered known from previous
UKBB RVAT studies. Those that were unknown from any of the three studies were included in Table 1.

1.5.7 Conditional association tests
For associations that were significant after multiple testing correction, we conducted conditional association tests using
GWAS summary statistics from the Pan-UK Biobank [41]. Independently associated variants were identified from
GWAS summary statistics through LD-based clumping using PLINK v1.9 [40] with default parameters, restricting to
associations with a p-value< 10−7 and MAF> 1%. If a binary trait definition used in this study did not exactly match
a single GWAS from Pan-UK Biobank, we combined p-values from all relevant GWAS that covered parts of the trait
definition before performing clumping. For association testing with SEAK (i.e., DeepRVAT), independently associated
variants within 500kb around the gene boundaries were incorporated as covariates in the conditional analysis. For
association testing with REGENIE (i.e., DeepRVAT+REGENIE), all variants independently associated with a specific
trait were considered for all genes.

1.6 Phenotype prediction using DeepRVAT and alternative rare variant scores
1.6.1 Problem statement
Tasks Here, we combine conventional common variant polygenic risk scores (PRS) with rare variant gene burdens,
comparing the performance of DeepRVAT gene burden scores with alternative scores. Two separate problems were
addressed: the prediction of raw phenotype values, and prediction of high-risk individuals. For the latter, we separately
assessed two binary high-risk individual stratification tasks: (1) lowest 0.01-th quantile (ranked by phenotype value)
vs. rest, and (2) highest 0.01-th quantile vs. rest.

Dataset Training and evaluation of the regression models was done on two disjoint data sets, restricting to unrelated
individuals of European ancestry. A total of 154,966 (from UKBB 200k WES) and 224,817 individuals (from UKBB
470k WES, not found in UKBB 200k WES) were used for training and evaluation, respectively.

PRS computation Common PRS variants and effect sizes were all obtained from the Polygenic Score (PGS) Catalog
[42] using the study from [43]. The catalog numbers of each common variant PRS are listed in Supplementary Table 4.
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1.6.2 Alternative burdens
Gene discovery The training individuals were used for gene discovery using the method ”Burden/SKAT combined”
described in Section 1.3.1. Retaining associations at FWER < 0.05 resulted in a set of genes G(p)

b for phenotype p to
use in the baseline prediction models.

Burden scores Subsequently, for each sample i (training and evaluation), each gene j ∈ G
(p)
b , and each annotation

k considered, burdens skij were computed by taking the maximum of annotation l, i.e.,

slij = max
k∈Wij

akl, (2)

where Wij denotes the set of all variants k in sample i and gene j, and akl is the l-th annotation of variant k. For the
SIFT score, the minimum value was used since a score of 0 indicates the strongest effect.

1.6.3 DeepRVAT gene impairment scores
Gene impairment scores Computation of gene impairment scores was carried out analogously to Section 1.5.5. The
same pretrained gene impairment modules as in that section were used, with scores computed according to the CV
scheme on the training set. For the evaluation set, we averaged the scores of the 30 gene impairment module versions
obtained during CV training.

Gene discovery Gene discovery was conducted across all 33 traits of interest4 exclusively on training samples,
following the method outlined in Section 1.4.1, using the gene impairment scores obtained as described in the previous
paragraph. This yielded a set of trait-associated genes G(p)

d with an FWER < 0.05.

1.6.4 Phenotype predictor training and evaluation
For simplicity, we describe models for predicting raw phenotype values; prediction of extreme values is analogous,
with logistic regression on the binary target replacing linear regression.

Baseline As a baseline phenotype predictor, we consider a regression model where the explanatory variables com-
prise covariates (age, sex, the first 20 genetic PCs) and the common variant PRS score:

ŷ
(p)
i = αTXi + β(p)

c c
(p)
i ,

where c(p)i is the common variant PRS score of sample i for phenotype p and, as above, Xi is the vector of covariates
for sample i. The weights learned during regression were α (covariate weights) and β

(p)
c (common variant PRS

weight).

Extension with rare variants To incorporate the effects of rare variants into the phenotype predictors, we extended
the common variant PRS models by the rare burden scores of significant genes, with models incorporating DeepRVAT
or alternative burdens given respectively by

ŷ
(p)
i = αTXi + β(p)

c c
(p)
i +

∑
j∈G

(p)
d

β
(p)
j ψ∗

r (Vij),

ŷ
(p)
i = αTXi + β(p)

c c
(p)
i +

∑
j∈G

(p)
b

β
(p)
j spij .

The difference lies in whether DeepRVAT or alternative burdens are used, and additionally the burdens and learned
gene weights β(p)

j range over either the ”Burden/SKAT combined” gene set G(p)
b or the DeepRVAT gene set G(p)

d . The
effect of gene set choice is further assessed in Supplementary Fig. 11.

Model fitting The linear and logistic regression models were fit in R v4.2.0 using the functions lm and glm (resp.)
from the stats package using the family binomial() for logistic regression models, and otherwise retaining the
default parameters.

Evaluation All models were fit on the training samples. The trained models were used to generate predictions on
the evaluation samples. All evaluations were carried out on this set of predictions.

4Waist-to-Hip Ratio was excluded, since no PRS scores were available for this phenotype
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1.6.5 Phenotype predictor assessment
Prediction accuracy To start, we assessed the performance of the phenotype predictors using two metrics: coeffi-
cient of determination (R2) for the linear models and area under the precision-recall curve (AUPRC) for the logistic
models. We compared the performance of two phenotype predictors using only the common variant PRS or using both
the common PRS and rare variant burdens. Next, we calculated the relative improvement of the model that leverages
rare variant burdens compared to the common PRS-only model as

Relative∆M =
Mrare −MPRSonly

MPRSonly

,

where M denotes AUPRC or R2, respectively. We compared the relative improvement of the rare variant model
using DeepRVAT gene impairment scores to predictors using alternative rare variant burdens by a one-sided, paired
Wilcoxon test.

Additional evaluations The next evaluation focused on individuals with strong deviations between the rare variant
and common variant PRS predictor. For each phenotype and individual, we calculated the absolute difference be-
tween the predicted phenotype values obtained from a linear model using either the common variant PRS alone or
the the common variant PRS together with the rare variant burdens. Subsequently, we ranked individuals based on
the magnitude of this difference. At each rank, we determined the count of individuals exhibiting outlier phenotypes,
specifically those falling within the top or bottom 1% of the phenotypic distribution. Finally, we tested the enrichment
of phenotype predictor outliers in individuals with extreme phenotypes. Across a range of z-score phenotype out-
lier cutoffs, we identified individuals above the phenotypic cutoff and determined the proportion of these individuals
with a predicted phenotype value exceeding the 99% quantile. Enrichment scores were scaled relative to the baseline
population (z-score = 0) and compared to the common PRS-only model.

Correlation with burden heritability For 15 phenotypes common to our study and [44], we correlated the co-
efficient of determination (R2) obtained from our linear regression models with the aggregated burden heritability
reported by [44].

1.7 Evaluation of feature importance
Despite their enormous success in improving predictive performance for various tasks, deep learning models remain
challenging to interpret, and thus are commonly referred to as black-box models. In genomics, in-silico mutagenesis
is one way of explaining the impact of the input perturbations on the model outcome through forward propagation.
However such experiments are computationally expensive, thus encouraging the use of alternative approaches such as
DeepLIFT [45] and GradCAM [46]. For a given input, these back-propagation based solutions compute the contribu-
tion of each feature by backpropagating through the network from the corresponding prediction. In order to explain the
importance of the variant annotations used in DeepRVAT, we conducted separate analyses for quantitative and binary
annotations to provide comparisons within each of these types.

1.7.1 Quantitative annotations
SHAP We employed SHAP (SHapley Additive exPlanations), a game-theory based method that assigns an im-
portance score for each feature (in our case, annotation) based on the change in the expected model prediction for
each corresponding model output [47]. In particular, we used SHAP DeepExplainer (v0.41.0), which integrates the
DeepLIFT algorithm to approximate SHAP values, to compute importance scores for all variant annotations that were
used to train DeepRVAT for phenotype prediction.

Subsampling For each repeat used in Section 1.5 and associated trained gene impairment module, the SHAP Deep-
Explainer was trained on 3,000 individuals from the training set. The importance of the variant annotations was
explained on 1,000 individuals from the validation set. (The training and validation sets were the same as those used
in Section 1.5.) Subsampling was necessary due to computational constraints.

Importance scores SHAP values produced by the explainer have the same shape as the input data, which is
individuals x genes x annotations x variants. We aggregated the absolute SHAP values on individual,
gene and variant levels to obtain an importance vector with the size of annotations by computing the average.
Finally, the SHAP value vectors from each repeat were averaged to obtain aggregated importance scores.

Robustness of subsampling In order to illustrate the robustness of subsampling for feature importance explanations,
we repeated the above procedure 15 times, each time randomly selecting different subsets of individuals from the
training and validation sets. The annotations highlighted as important by the SHAP DeepExplainer were robust to the
changes in the training and validation individuals. The final feature importance analyses were based on the aggregated
SHAP values of the 15 different subsamplings.
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1.7.2 Binary annotations
The impact of binary variant effect annotations was measured through in-silico mutagenesis experiments where only
training (seed) genes were considered. For each binary annotation l̂, we first created a filtered subset of individuals
(Sl̂) where each individual and gene pair has at least one annotated variant vk = (akl) where akl̂ = 1 (wild type) in
a given phenotype. A complementary mutant subset (Ml̂) was created from Sl̂ in which the corresponding annotation
of the variants (akl̂) were in-silico mutated to akl̂ := 0. The wild type (Sl̂) and mutant (Ml̂) individual subsets
were separately scored using the DeepRVAT gene impairment module. The absolute difference between the gene
impairment scores (aggregated over individuals and genes) was considered as the impact of the annotation of interest.
Finally, a relative importance score for each annotation was calculated where the annotation with the highest absolute
difference value was set to the relative importance value of 1. The relative importance of other annotations was scaled
accordingly by dividing their difference scores by the maximum difference score value A, i.e., (al̂/A).

1.7.3 Variant annotation groups
Groups Among the variant annotations that are utilized to train DeepRVAT, some have similar functionalities and
are highly correlated (Supplementary Fig. 7). Therefore, in order to increase the interpretability of the feature impor-
tance analysis, we grouped certain annotations. Since UKBB MAF, CADD raw and DeepSEA principal components
(PC1-PC6) were highlighted as relatively important compared to the rest of the continuous annotations by the SHAP
explainer, we treated each of these annotations as a group in itself. The remaining annotations were assigned to a
group (see (Supplementary Table 3).

DeepSEA We also assigned human-readable labels to first 6 DeepSEA principal components (PC1-PC6) that were
used as annotations, based on the absolute values of the loadings (Supplementary Fig. 6) belonging to 919 epigenetic
and regulatory genomic tracks. The principal components were named after the feature(s) within the top-ten highest
loading values (Supplementary Fig. 6). For instance, we referred to DeepSEA PC2 as CTCF, since the five out of ten
highest ranking loadings belonged to CTCF-related tracks.

1.8 Simulations
1.8.1 Genotype data
To compare power and type I error rates of DeepRVAT to conventional RVAT methods in simulation studies, we
used semi-synthetic datasets generated based on real genotypes and annotations from the UK Biobank WES interim
200k release (more details in Sec. 1.5 below). To minimize confounding due to population structure, we restricted to
167,245 individuals of European genetic ancestry as determined by an analysis of genetic principal components [48].

1.8.2 Overview of phenotype simulation
Here, we give an overview of the phenotype simulation scheme. For the exact parameters see Supplementary Table 2.

Simulated causal genes We first sampled 100 genes and designated these as simulated causal genes. Gene sampling
was restricted such that all sampled genes passed an expected allele frequency (EAF) filter of at least 50 for missense
variants, and that 50% passed this filter for pLOF variants.

Variant impact score Next, variants in the simulated causal genes with MAF below the specified threshold were
assigned an impact score based on selected variant annotations, namely variant MAF, 11 binary annotations (VEP
consequences) and 5 continuous scores (SIFT, PolyPhen2, Condel, PrimateAI, CADD, AbSplice). (For more details on
variant annotations, see Sec. 1.5.) Binary annotations were assigned a weight inversely proportional to their frequency,
thereby reflecting the assumption that infrequent annotations, for example loss-of-function, have a larger impact.
Continuous annotations were equally weighted. The variance explained by each variant score component (continuous
annotations, binary annotations, MAF and variant score noise) is flexibly tunable.5

The primary aim of the simulation was to validate the model and specific properties, most importantly the ability of
the model to learn ground truth effects and meaningful annotation filters from data, rather than requiring predefined
cutoffs. To this end, it was not necessary to simulate realistic effect sizes per variant category.

Simulated causal variants, and gene burdens Based on the impact score (with noise added to introduce stochas-
ticity), simulated causal variants were selected, such that a specified proportion of all variants was designated to be
causal. Using these, gene burden scores were computed for each sample and each simulated causal gene by first ag-
gregating variants individually for each annotation, followed by computing the weighted sum across the aggregated

5We note that since the annotations are not independent of one another, what we describe as the “variance explained” by each
component cannot precisely be understood as such—for example, the sum of the “variance explained” by each component will be
greater than the total variance explained by the annotations. Nevertheless, for simplicity, we will slightly abuse nomenclature by
continuing to refer to this as “variance explained.”
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variant annotation scores. The genetic component of the simulated phenotype was then obtained as the sum of the
gene burdens.

Simulated phenotypes Finally, to obtain the simulated phenotype values, we randomly sampled covariates and
noise and rescaled each phenotype component (covariates, genetics, and noise) such that it explained the specified
variance.

Allele frequency spectrum In Supplementary Fig. 4, we varied the effect size explained by variants with larger
allele frequencies. To achieve this, we modified the weight assigned to binary annotations by employing weights
defined as q−1/x for variant weighting, where q denotes the allele frequency (AF) and x takes on the values of 1,
3, and 10. As x increases, a greater number of variants with higher allele frequencies were selected as causal. The
cumulative effect size explained by variants in each AF bin was determined as follows. Initially, we assigned a per-
variant effect size to all simulated causal variants, which was computed by multiplying the simulated variant weight
by the AF. Next, we calculated the cumulative effect size explained by each AF bin by summing the per-variant effect
sizes within that particular bin and dividing this sum by the total summed effect sizes of variants from all AF bins.
The cumulative effects explained by each AF bin were averaged across multiple simulation repeats.

1.8.3 Assessment of simulation results
Calibration To assess statistical calibration, phenotypic data was simulated from the null by sampling from a stan-
dard normal distribution, i.e., with no simulated causal genes or variants.

Power and type I error rates For all other simulation experiments, statistical power and type I error rates were
assessed by comparison of discoveries (FWER < 0.05 as determined by the Benjamini-Hochberg procedure) to the
simulated causal genes. For the rank-based evaluation (Supplementary Fig. 5b), we ranked gene-trait associations by
their p-value as computed by DeepRVAT and the alternative methods. At each rank, we determined the cardinality of
the intersection between the gene-trait associations at or below that rank and the set of simulated causal genes, and
finally averaged the cardinality across simulation repeats.

1.9 Practical recommendations for users
1.9.1 Modes of usage
DeepRVAT can be applied in various modes, presented here in increasing levels of complexity. For each of these
scenarios, we provide a corresponding Snakemake [49] pipeline.

Precomputed burden scores For users running association testing on UKBB WES data, we provide precomputed
burden scores for all protein-coding genes with a qualifying variant within 300 bp of an exon, cf. Section 1.5.3. In
this scenario, users are freed from processing of large WES data and may carry out highly computationally efficient
association tests with the default DeepRVAT pipeline or the DeepRVAT+REGENIE integration.

Note that DeepRVAT scores are on a scale between 0 and 1, with a score closer to 0 indicating that the aggregate effect
of variants in the gene is protective, and a score closer to 1 when the aggregate effect is deleterious.

Pretrained models Some users may wish to select variants or make variant-to-gene assigments differently from our
methods, or to work on datasets other than UKBB. For this, we provide an ensemble of pretrained DeepRVAT gene
impairment modules, which can be used for scoring individual-gene pairs for subsequent association testing. We also
provide a pipeline for functional annotation of variants for compatibility with the pretrained modules.

Model training Other users may wish to exert full control over DeepRVAT scores, for example, to modify the model
architecture, the set of annotations, or the set of training traits. For this, we provide pipelines for gene impairment
module training, both in our CV and in a standard training/validation setup, with subsequent gene impairment score
computation and association testing.

1.9.2 Gene impairment module training
For users wishing to train a custom DeepRVAT model, we provide here some practical suggestions based on our
experiences (detailed in part in Extended Data Fig. 3).

Model architecture We found no benefit to using architectures larger than that used in this work, though we conjec-
ture that larger architectures may provide some benefit with larger training data and more annotations. We performed
limited experimentation with the aggregation function used (cf. 1.1.3) and found the maximum to give better results
than the sum. However, exploring other choices or a learned aggregation remains open.
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Training traits and seed genes We found that multiphenotype training improved performance, however, on our
dataset, adding traits with fewer than three seed genes provided modest to no benefit. We also saw poor performance
when including seed genes based on prior knowledge, e.g., known GWAS or RVAS associations, rather than the seed
gene discovery methods (Section 1.1.4). We hypothesize that this is because an informative seed gene must have driver
rare variants in the training dataset itself, which may not be the case for associations known from other cohorts.

Variant selection While association testing was carried out on variants with MAF< 0.1%, we saw improved results
when including a greater number of variants (we used MAF < 1%) for training.

Variant annotations As seen in Extended Data Fig. 3, the best performance was achieved when including the full set
of annotations, including correlated annotations. We thus recommend including annotations fairly liberally. However,
we did find limits, for example, increasing the number of DeepSEA PCs from the 6 we used provided no benefit and
eventually degraded model performance.

Model ensembling We found little to no benefit, but also no harm, from using more than 6 DeepRVAT gene im-
pairment modules in our ensemble. Therefore, we chose this number as the most computationally efficient to achieve
optimal results.

2 Supplementary Results

2.1 Model validation using simulated data

To validate DeepRVAT for gene discovery, we considered a semi-synthetic dataset derived from whole exome sequenc-
ing (WES) from 167,245 UK Biobank individuals of European ancestry (November 2020, 200k WES release [25];
Methods). We annotated all 12,704,497 WES variants using minor allele frequency (MAF), VEP [20] consequences,
missense variant impact scores (SIFT [22] and PolyPhen2 [23], and omnibus statistical deleteriousness scores (CADD
[50] and ConDel [51], as well as predicted annotations for effects on protein structure (PrimateAI[52], and aberrant
splicing (AbSplice [30]. To create synthetic phenotypic data, we first simulated impairment scores for genes desig-
nated to be causally associated to the trait. To this end, we stochastically assigned each variant an effect based on its
annotations (Supplementary Fig. 2), followed by aggregation for each gene. Finally, the individual phenotype values
were simulated as a linear function of the gene impairment scores and additive effects from covariates mimicking age
and sex, and independent Gaussian noise.

After confirming statistical calibration (Supplementary Fig. 3), we compared the power of DeepRVAT to conventional
burden testing as well as variance component testing with SKAT [53], following Karczewski et al. [4], i.e., consider-
ing either predicted loss of function (pLOF) or missense variants and with weighting based on minor allele frequency
(MAF). Notably, existing methods rely on a predefined MAF cutoff. To investigate the impact of a possible misspec-
ification of the MAF cutoff, we varied the frequencies of the simulated causal variants (Supplementary Fig. 4, top
to bottom). For each simulation setting, we applied the considered methods for alternative cutoff values of the MAF
frequency (<0.01%, <0.1%, <1%; Supplementary Fig. 4, left to right). Whereas the power of conventional tests was
greatly affected by the alignment of the simulated MAF distribution of causal variants and the MAF filter, DeepRVAT
was consistently well powered, including in settings for which additional non-causal variants were incorporated in the
MAF cutoff (Supplementary Fig. 4, bottom-right panel). Collectively, these results support that DeepRVAT is able to
estimate an appropriate weighting for variants from the data, including implicit prioritization of variants by MAF.

Similarly, we considered altering the proportion of rare variants that are selected to contribute to gene impairment ef-
fects (Supplementary Fig. 1.3, Supplementary Fig. 5a) and a rank-based evaluation criterion (Supplementary Fig. 5b).
Across these settings, DeepRVAT was consistently better powered than alternative methods. In sum, the benchmark
using simulated data demonstrates that DeepRVAT yields results that are robust to a range of key parameters, including
the MAF spectrum and the proportion of causal variants.
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3 Supplementary Figures

Supplementary Figure 1: Training and association testing times for DeepRVAT and comparison methods.
(a) The UK Biobank WES was downsampled in intervals of 5,000 individuals and DeepRVAT was trained five times
for each sample size. The plot indicates the mean training time in seconds, which scales roughly linearly with the
sample size. Linear model fit with the 95% confidence interval shown in blue.
(b) Comparison of association testing times between DeepRVAT and alternative methods. Average compute time
was determined by evaluating 1,000 tested genes for a single phenotype, resulting in the average time required to
test one gene-phenotype pair. For STAAR and Monti et al.'s method, the total test time per gene was calculated by
summing the compute times for individual variant filter masks or kernel designs and test types, respectively. The
y-intercept of DeepRVAT (with training) represents the time needed for seed gene discovery and model training. The
x-axis is truncated at 200,000 seconds. All timing experiments were conducted on a workstation with an AMD Ryzen
Threadripper PRO 5975WX CPU and an NVIDIA RTX 4090 24GB GPU.
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Supplementary Figure 2: Properties of simulated causal variants. Initially, a set of genes was selected as causal
for the traits. To sample the causal variants, candidate variants were identified based on a selected variant AF threshold
(Supplementary Table 2). These variants were then assigned an impact score calculated from the variant annotation
profile, including variant AF, binary and continuous annotations and stochastic noise. Based on the impact score, sim-
ulated causal variants were selected such that a certain fraction of all candidate variants was designated to be causal.
Box plots: Center line, median; box limits, first and third quartiles; whiskers span all data within 1.5 interquartile
ranges of the lower and upper quartiles.
(a - b) Properties of simulated causal variants using default simulation parameters, as considered for Supplemen-
tary Fig. 3, Supplementary Fig. 4, and Supplementary Fig. 5b, while slightly varied parameters were employed for the
remaining figures (Supplementary Table 2).
(a) The number of simulated causal variants relative to the total number of variants in a given binary annotation class
(Average values across 10 simulation replicates). Numbers in parentheses indicate the total number of variants in a
given category across all simulated causal genes.
(b) Distribution of annotation scores for continuous annotations, comparing simulated causal (n=10922) versus non-
causal variants (n=61926). For all annotations but SIFT, higher scores indicate increased deleteriousness. The SIFT
score decreases with deleteriousness.
(c - e) Variant statistics across different proportions of simulated causal variants, including the default value of 20%.
Values are averaged across 10 simulation replicates.
(c) Number of causal variants for each gene designated to be causal. The observed variation reflects the simulation
procedure as high-impact variants are selected irrespective of the gene they belong to.
(d) Number of causal variants per gene and individual, averaged across individuals for each gene.
(e) Proportion of simulated causal variants that are retained by the missense/pLOF variant filter as used in baseline
methods. Across different proportions of causal variants, a high proportion of causal variants passes filtering for the
baseline methods when combining missense/pLOF filter masks, which confirms that the baseline methods are, in the-
ory, able to capture these simulated associations.
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Supplementary Figure 3: Statistical calibration of DeepRVAT on simulated data. Considered were DeepRVAT
using complete annotations, conventional burden tests and SKAT, each based on either pLOF or missense variants,
and the combination of these four methods (Burden/SKAT combined).
(a) Assessment of calibration for DeepRVAT and alternative methods for an exemplary simulation replicate. Shown
are Q-Q plots of the observed versus the expected association testing p-value distribution. The genomic inflation factor
(λ) across all genes, either considering simulated causal (red), or non-causal genes (black) is reported.
(b) Genomic inflation factor λGC(genomic control) across 10 simulation replicates. Center line, median; box limits,
first and third quartiles; whiskers span all data within 1.5 interquartile ranges of the lower and upper quartiles.
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Supplementary Figure 4: Sensitivity of alternative methods to knowledge about the true relevance of different
annotations. Power comparison for various MAF distributions of simulated causal variants (rows) versus MAF filters
applied to determine input variants for alternative RVAT tests (columns). Shown is average power (bar height) and
standard deviation (error bars) across 10 simulation runs (FWER < 5%). Results on the diagonal correspond to the
setting for which the MAF filter of the RVAT tests are aligned to the simulation setting; others correspond to varying
degrees of MAF filter misspecification. Stacked bar plots on the right for each row denote the relative contribution
of variants in different frequency bins for the respective simulation settings (averaged across all simulation runs).
Simulation parameters for each row are detailed in Supplementary Table 2, with a consistent proportion of 20%
simulated causal variants.
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Supplementary Figure 5: Model assessment using simulated data. Comparison of DeepRVAT versus conventional
burden or SKAT tests, using either pLOF or missense annotations, considering different simulation settings.
(a) Power of alternative methods for varying proportions of variants simulated to affect the trait. From left to right,
10%, 20%, and 30% of rare variants with MAF < 0.1% in the simulated causal genes were selected as causal variants.
Bar height denotes average power across 10 simulated replicates (FWER<5%); error bars correspond to plus or minus
one standard deviation.
(b) Rank-based evaluation. Genes were ranked by p-value and the proportion of simulated causal genes (true positives)
at each rank was determined (average over 10 simulation replicates).
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Supplementary Figure 6: Loadings for top six DeepSEA principal components. The top six DeepSEA principal
components were used as annotations within DeepRVAT. Labels indicate feature name, cell type, treatment type, and
position index among 919 original DeepSEA features.
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Supplementary Figure 7: Pairwise correlation of functional variant annotations. Heatmap showing Pearson
correlation between 34 individual functional annotations using variants from the UKBB cohort. Unlike other scores,
the SIFT score decreases with increasing deleteriousness, hence it is generally negatively correlated with other scores.
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Supplementary Figure 8: Feature importance analysis. The relative importance scores displayed in plots range be-
tween 0-1 and are calculated such that the relative importance of the binary/quantitative annotation with the strongest
impact is 1. The annotations are depicted with the same color if they belong to the same annotation group.
(a) In-silico mutagenesis analysis for binary annotations considered by DeepRVAT. The impact of a given binary an-
notation was assessed by comparing DeepRVAT predictions using the real annotation vector with a mutated annotation
vector, where the effect of the considered binary annotation was masked (set to zero). The absolute difference between
the two gene impairment scores, aggregated across all samples and genes, was considered as the impact of the variant
of interest.
(b) SHAP importance values for quantitative annotations considered by DeepRVAT. In order to assess the contribu-
tion of quantitative annotations to the DeepRVAT predictions, we utilized SHAP DeepExplainer. The explainer was
trained on 3,000 samples from the training set and 1,000 samples from the validation set were used to obtain SHAP
importance values from the trained explainer. The output of the explainer had the same shape as the input. Therefore,
the absolute SHAP values were aggregated to obtain annotation-level importance scores. This procedure was repeated
15 times with different training and validation samples. The final scores were computed by the aggregation over 15
different samplings.
(c) The relative SHAP importance scores for quantitative annotations are robust across 15 different samplings. The
relative SHAP importance scores of quantitative annotations are plotted across 15 samplings, where different training
and validation samples were fed to the explainer model. Center line, median; box limits, first and third quartiles;
whiskers span all data within 1.5 interquartile ranges of the lower and upper quartiles.
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Supplementary Figure 9: DeepRVAT gene impairment score versus trait measurement. Scatterplot of DeepRVAT
gene impairment scores vs. trait measurements for selected, associated genes for all 34 quantitative traits. Each point
represents one individual from the cohort. Red points indicate that the corresponding individual has at least one pLOF
variant in the gene. Blue line denotes the GAM fit with shaded areas corresponding to 95% confidence intervals.
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Supplementary Figure 10: Correlation of Delta R2 of rare variant phenotype predictors with burden heritabil-
ity. For 15 phenotypes common to both, our study and Weiner, Nadig et al.’s work[44], we correlated the difference
in the coefficient of determination (R2) for models that account for rare variants versus a common-variant PRS model
with the aggregated burden heritability. Burden heritability quantifies the proportion of phenotypic variance explained
by the gene-wise burden of rare variants[44]. The Spearman correlation coefficient is reported.
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Supplementary Figure 11: Impact of gene list choice on the performance of rare variant phenotype predic-
tors. For each rare variant gene burden, we compared the performance of rare variant phenotype predictors including
gene burdens from genes identified through conventional RVAT methods (Burden/SKAT combined) or DeepRVAT
(FWER < 5%) across 33 UK Biobank traits. Center line, median; box limits, first and third quartiles; whiskers span
all data within 1.5 interquartile ranges of the lower and upper quartiles.
(a) Relative improvement of the prediction performance of a linear regression model that includes rare variant gene
burdens versus a model based on common variant PRS only. DeepRVAT gene impairment scores consistently out-
perform alternative rare variant phenotype predictors, regardless of the gene list choice. Additionally, incorporating
genes discovered by DeepRVAT further enhances the performance compared to using genes identified by conventional
RVAT methods.
(b) Analogous comparison as in a, however considering a logistic regression model to stratify individuals in the bottom
or top 1% of the phenotypic distribution. Shown are relative differences in the area under the precision-recall curve
(AUPRC) between a model that includes rare variant gene burdens versus a PRS-only model.

4 Supplementary Table Captions
Supplementary Table 1. Conceptual comparison of DeepRVAT to related methods.

Supplementary Table 2. Simulation parameters. For each figure related to the simulation studies, simulation param-
eters used with the phenotype simulation algorithm as described in Methods are listed.

Supplementary Table 3. Variant annotations used within DeepRVAT. The table presents a comprehensive description
of each variant annotation utilized, including the source of the annotation score, the assigned group in the feature
importance analysis (Supplementary Fig. 9), and whether the annotation was employed by the method proposed by
Monti et al.

Supplementary Table 4. Quantitative and clinical phenotypes from UK Biobank used in this study. Columns: Trait:
Name of analyzed trait; Trait description: More detailed trait name; UKBB Data Field: UK Biobank data field ID
corresponding to trait; samples *: Sample sizes or case/control counts for both the cohort used in Figure 2 (161k, Table
6) and for the complete all ancestry UK Biobank dataset (470k aa, Supplementary Table 9); PRS ID: PGS catalog id
(https://www.pgscatalog.org/) from which variants and effect sizes for the common variant PRS calculation
were retrieved; Used for DeepRVAT training: Indicates if the phenotype was used for training the DeepRVAT gene
impairment module; Trait Group: Trait group the trait was assigned to for plots in Figure 2 and Figure 4.

Supplementary Table 5. Covariates used as controls association testing as well as DeepRVAT training. Columns:
Covariate: Name of covariate; UKB field ID: UK Biobank field ID for covariate.
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Supplementary Table 6. Significant gene-trait associations discovered by DeepRVAT in 161,822 unrelated individu-
als of European ancestry from the UK Biobank. The unadjusted association testing p-value as returned by the SEAK
score test function from the unconditional and conditional analysis is reported for each significant gene-trait combi-
nation. Discoveries previously reported in UKBB WES studies on the full UKBB cohort( Backman et al., 2021 [5];
Karczewski et al., 2022 [4]; Supplementary Table 7) are indicated in the ’Known from previous UKBB WES studies’
column.

Supplementary Table 7. Gene-trait associations discovered in other UK Biobank association studies on larger co-
horts. The significant associations, as defined by Backman et al. 2021 [5] or Karczewski et al. 2022 (Genebass) [4],
are listed for all traits examined in this paper.

Supplementary Table 8. Phenotype prediction results. Columns: Trait: Name of analyzed trait; Gene list: Genes
included in the phenotype predictor. Either discoveries from Burden/SKAT combined or DeepRVAT; Rare burden
type: Rare variant burden type; Metric: Phenotype predictor performance metric; Metric PRS: performance with
covariates and common variant PRS; Metric rare burden: performance with rare variant gene burdens in addition to
common variant PRS and covariates ; Delta Metric: improvement in performance from including rare gene burdens
(Metric rare burden - Metric PRS); Relative Delta Metric: Delta Metric/ Metric PRS.

Supplementary Table 9. Significant gene trait associations discovered by DeepRVAT + REGENIE across 34 quanti-
tative and 63 disease traits in the entire UKBB cohort of 469,382 individuals with available WES. For each significant
gene-trait pair, unadjusted p-values and betas as returned by REGENIE from both unconditional and conditional analy-
ses are provided. Results are also reported for the subset of individuals of European ancestry (N=409,519). Discoveries
previously reported in other UKBB WES studies (Backman et al., 2021 [5]; Karczewski et al., 2022 [4], Jurgens et al.,
2022 [36]) are indicated in the ’Known from previous UKBB WES studies’ column.
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