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Dear Oliver, 

Your Technical Report, "Integration of variant annotations using deep set networks boosts rare variant 

association genetics" has now been seen by 3 referees. You will see from their comments copied below 

that while they find your work of considerable potential interest, they have raised quite substantial 

concerns that must be addressed. In light of these comments, we cannot accept the manuscript for 

publication, but would be very interested in considering a revised version that addresses these serious 

concerns. 

In brief, there is support voiced for the application of DL to RVAT that DeepRVAT presents, but it is 

also clear that the broad utility of your tool does not yet reach the standard required for publication at 

the journal. 

Reviewer #1 thinks this is a well-presented study but highlights several critical technical concerns, 

e.g. inability to control for sample relatedness, and thinks the overall biological novelty is also lacking.

They do, however, sound open to seeing a revision.

Referees #2 and #3, conversely, are more positive, but make a number of thoughtful comments most

strikingly, the shared comment regarding the use of seed genes for model training.

In our reading of these reviews, we think there is a path to publication, but there are important and 

fundamental technical issues that require complete clarification. Most notable of these is the concern 

about the seed genes and how this affects DeepRVAT and interpreting results; we also think Reviewer 

#1's comments on how DeepRVAT will actually be used in biobank-scale data (i.e. accounting for 

sample relatedness), and a better demonstration of the ability of DeepRVAT to enable novel biological 

discovery, will need to be fully addressed for them to support publication. 

We hope you will find the referees' comments useful as you decide how to proceed. If you wish to 

submit a substantially revised manuscript, please bear in mind that we will be reluctant to approach 
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the referees again in the absence of major revisions. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 

including with the chief editor, with a view to identifying key priorities that should be addressed in 

revision and sometimes overruling referee requests that are deemed beyond the scope of the current 

study. We hope that you will find the prioritised set of referee points to be useful when revising your 

study. Please do not hesitate to get in touch if you would like to discuss these issues further. 

 

If you choose to revise your manuscript taking into account all reviewer and editor comments, please 

highlight all changes in the manuscript text file. At this stage we will need you to upload a copy of the 

manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

If revising your manuscript: 

 

*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Technical Report format instructions, available here. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our guidelines on digital image standards. 

 

You may use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

Note: This URL links to your confidential home page and associated information about manuscripts 

you may have submitted, or that you are reviewing for us. If you wish to forward this email to co-

authors, please delete the link to your homepage. 

 

If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If 

you cannot send it within this time, please let us know. We will be happy to consider your revision so 

long as nothing similar has been accepted for publication at Nature Genetics or published elsewhere. 

Should your manuscript be substantially delayed without notifying us in advance and your article is 

eventually published, the received date would be that of the revised, not the original, version. 

 

http://www.nature.com/ng/authors/article_types/index.html
https://www.nature.com/nature-research/editorial-policies/image-integrity
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Please do not hesitate to contact me if you have any questions or would like to discuss the required 

revisions further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit www.springernature.com/orcid. 

 

Thank you for the opportunity to review your work. 

 

Sincerely, 

 

Michael Fletcher, PhD 

Senior Editor, Nature Genetics 

 

ORCiD: 0000-0003-1589-7087 

 

Referee expertise: statistical and human genetics, including rare variant association testing. 

Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In this paper, the authors describe DeepRVAT, a method for rare variant association test (RVAT) by 

integrating functional annotations. DeepRVAT builds upon deep neural networks to estimate a gene 

impairment score, which could then be used in RVAT and phenotype prediction. The authors used UK 

Biobank WES data to illustrate the proposed method in rare variant association detection and 

phenotype prediction. The manuscript is concise, and most parts of the paper are well-written. 

However, it lacks clarity on several points, and some of the main analysis results do not sufficiently 

support the conclusions drawn by the authors. 

 

I do have some major concerns that I would like the authors to address. 

(1) The proposed DeepRVAT method could not control sample relatedness, which limited the ability to 

analyze whole-genome/exome sequencing data of UK Biobank and others, such as TOPMed1 and All of 

Us2. The existing RVATs either use the mixed effect model (for example, STAAR3) or a covariate of 

polygenic effect (for example, REGENIE4) to control for population stratifications and relatedness. In 

addition, the authors use the European-ancestry only UK Biobank data to illustrate the proposed 

method. This reviewer recommends the authors to extend the proposed method to account for 

population stratifications and sample relatedness as part of the current work. 

(2) The authors only use the total number of significant associations to demonstrate the advantage of 

the proposed method. These claims would not be necessarily helpful. One would want to see how 

many putatively new genes or masks of rare variants can be detected using each method. To identify 

putatively new rare variant associations, one possible way is to perform conditional analysis of each 

significant association by adjusting for known variants nearby5. 

(3) This reviewer did not observe any inflation or deflation of STAAR for quantitative from the Q-Q plot 

in Fig.3d and Supp. Fig. 3.3a. It is not meaningful to use the genomic inflation factor lambda to 

evaluate the calibration of STAAR. STAAR uses the ACAT method to integrate the p-values in the 

http://www.springernature.com/orcid
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weighting scheme to incorporate multiple functional annotations, and the ACAT method gives accurate 

p-values for the tail probability6. 

(4) Following (3), as Fig. 3a showed that STAAR detected slightly more significant associations than 

DeepRVAT for 21 training traits. This reviewer recommends that the author perform more analysis to 

provide additional evidence or only claim that the proposed method has comparable performance as 

STAAR for quantitative traits. 

(5) The results of significant gene-trait associations (Supp. Table 6) are misleading. Many of the “new 

DeepRVAT discovery” findings are known and previously reported. Specifically, nearly all claimed “new 

DeepRVAT discovery” findings of lipid traits are known lipid associated genes. For example, the p-

value of the association between RVs in NPC1L1 and DeepRVAT is 5.59E-07. However, the STAAR p-

value of disruptive missense RVs or missense RVs or plof and disruptive missense RVs in NPC1L1 are 

all significantly associated with LDL using UK Biobank 200k WES data, with p-values 1.78E-07, 5.20E-

09, and 3.97E-09 (see Supplementary data 14 in Selvaraj et al7). I am a bit confused why the authors 

claimed that other methods could not detect these genes. 

 

Other comments 

(6) Following (5), The results of significant gene-trait associations (Supp. Table 6) are not clear. These 

results could not be claimed as new discoveries, as many of the results are not well calibrated for the 

necessary covariates. For example, in addition to age, sex and ancestry PCs, lipid traits need to 

account for the statin usage7,8. This comment is also related to the main concern 2a. The total 

number of significant findings in the manuscript is not biologically meaningful. 

 

Reference 

1. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 

590, 290-299 (2021). 

2. Investigators, A.o.U.R.P. The “All of Us” research program. New England Journal of Medicine 381, 

668-676 (2019). 

3. Li, X. et al. Dynamic incorporation of multiple in silico functional annotations empowers rare variant 

association analysis of large whole-genome sequencing studies at scale. Nature genetics 52, 969-983 

(2020). 

4. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary 

traits. Nature Genetics 53, 1097-1103 (2021). 

5. Backman, J.D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 

599, 628-634 (2021). 

6. Liu, Y. et al. ACAT: a fast and powerful p value combination method for rare-variant analysis in 

sequencing studies. The American Journal of Human Genetics 104, 410-421 (2019). 

7. Selvaraj, M.S. et al. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. 

Nature Communications 13, 5995 (2022). 

8. Hindy, G. et al. Rare coding variants in 35 genes associate with circulating lipid levels—A multi-

ancestry analysis of 170,000 exomes. The American Journal of Human Genetics 109, 81-96 (2022). 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Clarke, Holtkamp, et al. propose DeepRVAT, a data-driven deep learning neural network for rare 

variant analyses built from a variety of variant annotations. DeepRVAT essentially computes a gene 

impairment score by integrating a phenotype module and a dynamic set of variant annotations, which 
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accounts for the nonlinear effects of rare variants, imbalanced case-control ratio of binary traits and 

applies to multiple phenotypes. With the gene impairment score, DeepRVAT not only improves gene 

discoveries through their adaptive rare variant association tests but also aids in phenotype prediction 

that incorporates rare variant effects. DeepRVAT appears to be more computationally efficient enough 

to be applied to biobank level data, which would facilitate the downstream analysis of rare variants 

from a broader perspective and at a larger scale. 

 

The manuscript is well-organized and clearly written. The data and results provided in the text 

adequately demonstrate the accuracy and efficiency of DeepRVAT compared to the previous RVAS 

methods. This new method would serve as a valuable complement to the traditional burden tests and 

approaches for PRS-based phenotype prediction, in that it effectively incorporates more information 

from variant annotations and can be highly generalizable in terms of both variant and phenotype 

information, which will help advance the understanding of rare variants and complex disease. Here are 

some comments that I hope would improve the manuscript: 

 

Major comments: 

I applaud the authors for building a simulation framework that attempts to balance many parameters 

in simulating true signals among noise. However, when digging into Supp. Fig. 2.1, it seems that LoF-

like variants (e.g. frameshifts) seem quite a bit underspecified and have fewer proportion causal than 

missense. Are the effect sizes modeled more strongly among pLOF variants as one would expect? Put 

another way, when running the burden tests on these simulated variants, are results comparable to 

those in UK Biobank which show increased signal among pLOF variants above missense? This is 

somewhat observed in Fig. 2a where the significance of pLOF is lower than missense and in 2b where 

the missense burden is higher powered than the pLOF, which is inconsistent with the Backman and 

Genebass analyses where most signals stem from pLOF. That they get relatively higher importance 

values in the real data (Supp. Fig. 3.5) is encouraging, but the simulation framework seems a bit 

misspecified in this regard. 

Similarly, it may be advantageous to use synonymous variants as a sort of negative class. Of course, 

some synonymous variants may be associated due to LD, but this might give some level of baseline 

expectation. 

The authors mentioned in the Discussion section that it is challenging to choose the most appropriate 

set of annotations. Would it be possible for the authors to provide some general recommendations for 

phenotype and variant annotation selection, as well as parameter configurations (number of repeats, 

number of seed genes, etc.) to users who would want to customize their own model? 

How are the association results for the seed genes and target phenotypes used in training the gene 

impairment scores obtained using DeepRVAT, if they cannot be included in the association testing 

module? 

Given that the seed genes are selected from those with associations with phenotypes of interest, are 

the seed genes supposed to be associated with all selected phenotypes or any phenotype from the 

target set? Also, will there be a default set of seed genes provided for users? 

The description of the model is a bit confusing at times. Figure 1 suggests that only annotations are 

used in the gene impairment model, but later “We used 21 quantitative traits [...] to train DeepRVAT”. 

Can you clarify this, and if indeed phenotypes are used, elaborate more on how this model can be 

generalized to any other phenotypes with no restrictions, more specifically, what makes the gene 

impairment score both gene- and trait-agnostic? 

How will DeepRVAT generalize to cohorts with multiple ancestry groups? 

The authors note that “the overall contribution of rare variants was modest” which is very much in line 

with expectations. Have they considered this separately for each phenotype? Specifically, there are 
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new methods that estimate heritability contribution from rare variants (Weiner, Nadig, et al, 2023) - 

are the contributions from the rare variants in this model correlated with burden heritability results? 

Supp. Fig. 3.1: I’m a bit surprised that MAF is not correlated with other features. Is this an artifact of 

Pearson correlation being not ideal for a linearly compressed metric like MAF? Would Spearman 

correlation (or log10(AF)) be better here? 

Similarly, there seems to be a group of highly correlated features included in model training. Can the 

authors comment on how such inclusion will impact the performance of the model? 

In Supp. Fig. 3.7 and Methods 3.2, when repeating for more than one time, what are the parameters 

passing into the next repeat? If there are not any elements inherited, how are the uncorrected pvalues 

from each repeat being processed and aggregated? 

Why is DeepRVAT specific to rare variants? Are there any assumptions that prevent applying it to 

common variants? 

 

Minor comments: 

The authors claimed that DeepRVAT presents well-calibrated results for imbalanced binary traits. It 

would be helpful to report the number of cases and controls for the binary traits analyzed in this study 

and compare the performance of different models across different case/control ratios to validate the 

statement. 

The authors should clarify the default proportion of causal variants for simulation in Figure 2 in the 

main text. Similarly, in Figure 2a, it is hard to see the causal variants among the non-causal ones. 

Comparing the mean chi-squared (or similar) for causal vs non-causal may make this point more 

strongly. 

It took me a while to understand what the rows in Figure 2b represented - perhaps a simplified label 

(high, medium, no influence of ultra-rare variants, or something like that) would help orient. 

The authors should add or cite results related to this statement “... including in settings for which 

additional non-causal variants were incorporated in the MAF cutoff… ” in the “Model validation using 

simulated data” section. 

Were the traits used for training chosen in some non-random way? They seem to have on average 

more associations (Fig. 3a) than those for evaluation (3e). I would understand if there’s some light 

overfitting happening, but the Burden/SKAT combined also shows lower numbers, which doesn’t have 

nearly as much influence of the traits used. Additionally, can the authors report replication results for 

the evaluation traits used in Fig 3d-3f (with a similar display as in Fig 3b)? 

The authors should label the panels of Figure 4b and 4c. 

What are the dotted lines in Figure 4c? 

Supp. Table S2, instead of Supp. Table S4 should be cited in the caption of Supp. Fig. 2.1. 

Supp. Fig. 2.1 is missing captions for panels a and b, specifically for panel b, a short description of the 

metric in each panel might be helpful in explaining the different trends between causal and non-causal 

variants. 

Supp. Fig. 2.1e is missing a color legend for the dark blue boxes. 

In Supp. Fig 3.6, the authors should label the panels and avoid using “rows” and “columns” in the 

caption if they do not refer to the rows and columns of the figure. Is each panel specific to a VEP 

annotation? These should be spelled out if so, and the caption clarified. 

Can the authors provide an explicit list of the required input files/information for each module in the 

Github repo of DeepRVAT? 

 

Reviewer #3: 

Remarks to the Author: 

Clarke, Holtkamp, et al. propose DeepRVAT, a data-driven deep learning neural network for rare 
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variant analyses built from a variety of variant annotations. DeepRVAT essentially computes a gene 

impairment score by integrating a phenotype module and a dynamic set of variant annotations, which 

accounts for the nonlinear effects of rare variants, imbalanced case-control ratio of binary traits and 

applies to multiple phenotypes. With the gene impairment score, DeepRVAT not only improves gene 

discoveries through their adaptive rare variant association tests but also aids in phenotype prediction 

that incorporates rare variant effects. DeepRVAT appears to be more computationally efficient enough 

to be applied to biobank level data, which would facilitate the downstream analysis of rare variants 

from a broader perspective and at a larger scale. 

 

The manuscript is well-organized and clearly written. The data and results provided in the text 

adequately demonstrate the accuracy and efficiency of DeepRVAT compared to the previous RVAS 

methods. This new method would serve as a valuable complement to the traditional burden tests and 

approaches for PRS-based phenotype prediction, in that it effectively incorporates more information 

from variant annotations and can be highly generalizable in terms of both variant and phenotype 

information, which will help advance the understanding of rare variants and complex disease. Here are 

some comments that I hope would improve the manuscript: 

 

Major comments: 

1. I applaud the authors for building a simulation framework that attempts to balance many 

parameters in simulating true signals among noise. However, when digging into Supp. Fig. 2.1, it 

seems that LoF-like variants (e.g. frameshifts) seem quite a bit underspecified and have fewer 

proportion causal than missense. Are the effect sizes modeled more strongly among pLOF variants as 

one would expect? Put another way, when running the burden tests on these simulated variants, are 

results comparable to those in UK Biobank which show increased signal among pLOF variants above 

missense? This is somewhat observed in Fig. 2a where the significance of pLOF is lower than missense 

and in 2b where the missense burden is higher powered than the pLOF, which is inconsistent with the 

Backman and Genebass analyses where most signals stem from pLOF. That they get relatively higher 

importance values in the real data (Supp. Fig. 3.5) is encouraging, but the simulation framework 

seems a bit misspecified in this regard. 

2. Similarly, it may be advantageous to use synonymous variants as a sort of negative class. Of 

course, some synonymous variants may be associated due to LD, but this might give some level of 

baseline expectation. 

3. The authors mentioned in the Discussion section that it is challenging to choose the most 

appropriate set of annotations. Would it be possible for the authors to provide some general 

recommendations for phenotype and variant annotation selection, as well as parameter configurations 

(number of repeats, number of seed genes, etc.) to users who would want to customize their own 

model? 

4. How are the association results for the seed genes and target phenotypes used in training the gene 

impairment scores obtained using DeepRVAT, if they cannot be included in the association testing 

module? 

5. Given that the seed genes are selected from those with associations with phenotypes of interest, 

are the seed genes supposed to be associated with all selected phenotypes or any phenotype from the 

target set? Also, will there be a default set of seed genes provided for users? 

6. The description of the model is a bit confusing at times. Figure 1 suggests that only annotations are 

used in the gene impairment model, but later “We used 21 quantitative traits [...] to train DeepRVAT”. 

Can you clarify this, and if indeed phenotypes are used, elaborate more on how this model can be 

generalized to any other phenotypes with no restrictions, more specifically, what makes the gene 

impairment score both gene- and trait-agnostic? 
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7. How will DeepRVAT generalize to cohorts with multiple ancestry groups? 

8. The authors note that “the overall contribution of rare variants was modest” which is very much in 

line with expectations. Have they considered this separately for each phenotype? Specifically, there 

are new methods that estimate heritability contribution from rare variants (Weiner, Nadig, et al, 2023) 

- are the contributions from the rare variants in this model correlated with burden heritability results? 

9. Supp. Fig. 3.1: I’m a bit surprised that MAF is not correlated with other features. Is this an artifact 

of Pearson correlation being not ideal for a linearly compressed metric like MAF? Would Spearman 

correlation (or log10(AF)) be better here? 

10. Similarly, there seems to be a group of highly correlated features included in model training. Can 

the authors comment on how such inclusion will impact the performance of the model? 

11. In Supp. Fig. 3.7 and Methods 3.2, when repeating for more than one time, what are the 

parameters passing into the next repeat? If there are not any elements inherited, how are the 

uncorrected pvalues from each repeat being processed and aggregated? 

12. Why is DeepRVAT specific to rare variants? Are there any assumptions that prevent applying it to 

common variants? 

 

Minor comments: 

1. The authors claimed that DeepRVAT presents well-calibrated results for imbalanced binary traits. It 

would be helpful to report the number of cases and controls for the binary traits analyzed in this study 

and compare the performance of different models across different case/control ratios to validate the 

statement. 

2. The authors should clarify the default proportion of causal variants for simulation in Figure 2 in the 

main text. Similarly, in Figure 2a, it is hard to see the causal variants among the non-causal ones. 

Comparing the mean chi-squared (or similar) for causal vs non-causal may make this point more 

strongly. 

3. It took me a while to understand what the rows in Figure 2b represented - perhaps a simplified 

label (high, medium, no influence of ultra-rare variants, or something like that) would help orient. 

4. The authors should add or cite results related to this statement “... including in settings for which 

additional non-causal variants were incorporated in the MAF cutoff… ” in the “Model validation using 

simulated data” section. 

5. Were the traits used for training chosen in some non-random way? They seem to have on average 

more associations (Fig. 3a) than those for evaluation (3e). I would understand if there’s some light 

overfitting happening, but the Burden/SKAT combined also shows lower numbers, which doesn’t have 

nearly as much influence of the traits used. Additionally, can the authors report replication results for 

the evaluation traits used in Fig 3d-3f (with a similar display as in Fig 3b)? 

6. The authors should label the panels of Figure 4b and 4c. 

7. What are the dotted lines in Figure 4c? 

8. Supp. Table S2, instead of Supp. Table S4 should be cited in the caption of Supp. Fig. 2.1. 

9. Supp. Fig. 2.1 is missing captions for panels a and b, specifically for panel b, a short description of 

the metric in each panel might be helpful in explaining the different trends between causal and non-

causal variants. 

10. Supp. Fig. 2.1e is missing a color legend for the dark blue boxes. 

11. In Supp. Fig 3.6, the authors should label the panels and avoid using “rows” and “columns” in the 

caption if they do not refer to the rows and columns of the figure. Is each panel specific to a VEP 

annotation? These should be spelled out if so, and the caption clarified. 

12. Can the authors provide an explicit list of the required input files/information for each module in 

the Github repo of DeepRVAT? 
Author Rebuttal to Initial comments   



Response to referees
We thank the reviewers for their constructive and insightful comments. In addressing them, we
have made major revisions to the DeepRVAT method, our analyses, and the manuscripts, in
ways that have substantially improved the demonstration of the methodological added value
and immediate impact of DeepRVAT.

The major changes are:

● A refined scheme for training DeepRVAT’s gene impairment module. We now
employ a rigorous cross validation scheme to avoid leakage of statistical evidence. This
approach is robust with respect to the exact selection of the seed genes, and gives
calibrated test statistics, regardless whether a gene has been included as a seed gene
or not. A brief description of this scheme is provided in the first section of Results, with
full details provided in Sections 3.1 and 4.5 of Methods.

● Extended analysis and assessment of DeepRVAT on (imbalanced) binary traits.We
demonstrate how DeepRVAT can be applied to conduct well-powered and calibrated
RVAT analyses even for imbalanced binary traits (new Figure 4b,c). This is achieved
thanks to DeepRVAT's modular architecture, which separates trait-agnostic gene
impairment scoring on the one hand from gene-trait association testing on the other
hand. We show how gene-trait association testing can be performed with dedicated
algorithms using DeepRVAT impairment scores– we employ REGENIE to this end. Full
technical details on the integration of REGENIE are provided in Section 3.3 of Methods.

● Expanded application of DeepRAT for biological discovery. We have applied the
model to the full 470K UKBB WES release. Collaborating with Dr. Zhifen Chen, PI at the
German Heart Centre, we report and discuss compelling novel gene discoveries for
cardiovascular conditions and cataracts. The full results are described in the new final
section of Results and in the new Table 1.

Major changes in the main text of the paper are marked by blue text.

Other notable changes include:

● Conditional analyses correcting for common variant effects (Results, section 2,
paragraph 5).

● Rather than model "repeats," we now average DeepRVAT gene scores from multiple
training runs (as in standard model ensembling) before association testing, leading to a
single p-value per gene. We employ conservative Bonferroni adjustment to control for
multiple testing across genes.

● Incorporation of AlphaMissense annotations into DeepRVAT and STAAR.



● Inclusion of additional covariates (age^2 and age*sex), and correction of lipid traits for
statin usage (Methods, sections 4.2 and 4.4).

● The DeepRVAT gene impairment module is now trained only on unrelated individuals
(Results, section 2, paragraph 1), and we provide additional analyses to assess the
robustness of the model to cohorts with related individuals as well as population
structure (Results, section 4, paragraphs 1 & 2).

For more details, please see the point-by-point response below. We thank you again for your
contribution to improving our manuscript.

Reviewer #1:
Remarks to the Author:
In this paper, the authors describe DeepRVAT, a method for rare variant association test
(RVAT) by integrating functional annotations. DeepRVAT builds upon deep neural
networks to estimate a gene impairment score, which could then be used in RVAT and
phenotype prediction. The authors used UK Biobank WES data to illustrate the proposed
method in rare variant association detection and phenotype prediction. The manuscript is
concise, and most parts of the paper are well-written. However, it lacks clarity on several
points, and some of the main analysis results do not sufficiently support the conclusions
drawn by the authors.

I do have some major concerns that I would like the authors to address.

R1.1 The proposed DeepRVAT method could not control sample relatedness, which
limited the ability to analyze whole-genome/exome sequencing data of UK Biobank and
others, such as TOPMed1 and All of Us2. The existing RVATs either use the mixed effect
model (for example, STAAR3) or a covariate of polygenic effect (for example, REGENIE4)
to control for population stratifications and relatedness. In addition, the authors use the
European-ancestry only UK Biobank data to illustrate the proposed method. This reviewer
recommends the authors to extend the proposed method to account for population
stratifications and sample relatedness as part of the current work.

We thank the reviewer for bringing up this very important point. We agree that
accounting for population stratification and relatedness, as well as performing
multi-ancestry analysis, should be addressed in DeepRVAT. We note in DeepRVAT
there are two separate aspects, (i) model training and (ii) downstream
applications, in particular association testing.

First, regarding the gene impairment module training, we have now restricted the
training dataset to unrelated individuals up to the 3rd degree, removing about
5,000 from the 200,000 individuals, thus ensuring that relatedness does not affect
the gene impairment module. For consistency, and to ensure that our benchmark
is not confounded to varying extent to which different methods control for

https://docs.google.com/presentation/d/17uFxpfKM3Zyq_C5YsgY0uTyDl8F-iGaQsRhG3WLuTmw/edit#slide=id.g2b76881f9bd_0_61
https://docs.google.com/presentation/d/17uFxpfKM3Zyq_C5YsgY0uTyDl8F-iGaQsRhG3WLuTmw/edit#slide=id.g2b76881f9bd_0_61


relatedness, we use this filtered dataset for all benchmarks we consider (updated
main text Fig. 2&3 and associated supplementary figures).

Second, regarding the robustness of association testing to related samples, we
have created a workflow that integrates DeepRVAT gene impairment scores into
REGENIE for gene-trait association testing (Results Section 4). Technically, this is
achieved by creating a single pseudovariant per gene, with DeepRVAT scores as
the dosage. We have included corresponding comparisons, demonstrating:

● Robust control for related individuals and multi-ancestry, resulting in
improved replication in held-out data (Fig. 4a; Results, Section 4,
paragraph 2) and statistical calibration (Supp. Fig. 4.1a).

● The combination of DeepRVAT with REGENIE entails a further substantial
benefit for binary traits, where REGENIE is known to add value1. We find
that the combination of a data-driven gene impairment score provided by
DeepRVAT with REGENIE allows to effectively address the pathological
behavior of alternative association tests in the regime of low prevalence
(Fig. 4b,c; Results, Section 4, paragraph 2, Supp. Fig. 4.1b).

Furthermore, we have applied this workflow to conduct a large-scale RVAS on the
UKBB 470k WES dataset, where we identify novel biological discoveries using our
approach (Results, Section 4, paragraphs 3-4).

These analyses demonstrate the advantage of DeepRVAT's modular design,
which provides a deep-learning based impairment score model compatible with
established robust association testing frameworks such as REGENIE.

R1.2 The authors only use the total number of significant associations to demonstrate the
advantage of the proposed method. These claims would not be necessarily helpful. One
would want to see how many putatively new genes or masks of rare variants can be
detected using each method. To identify putatively new rare variant associations, one
possible way is to perform conditional analysis of each significant association by adjusting
for known variants nearby.

We have addressed this comment in two ways.

First, we have now used results from existing GWAS to control for common
variants in the vicinity of the gene under consideration. We have taken a
conservative approach, including independent common variants (MAF > 1%, LD
clumping; Methods) within 500 kb around the gene boundaries with suggestive
evidence for significance (P<10-7) as covariates in the association testing step.
Consistent with previous reports of such conditioning2,3, DeepRVAT association
results with and without conditioning are markedly consistent (Results, Section 2,
paragraph 5; Supp. Fig. 2.7; with conditioning resulting in a 2.6% reduction in the
total number of discoveries). Notably, DeepRVAT with conditioning still yields a

https://www.zotero.org/google-docs/?o0o88q
https://www.zotero.org/google-docs/?9ZvFCF


larger number of discoveries than alternative methods run without such a control
(Supp. Fig. 2.7b).

Second, we present results from applying DeepRVAT to the full 470k WES release
of the UKBB (c.f. response to comment R1.1), both with and without conditioning
on common variants (Table 1). We report previously unknown associations, for
several of which we do identify complementary evidence suggesting that these are
genuine novel discoveries enabled by our approach. These findings are discussed
in Results (Section 4, paragraphs 3 & 4).

R1.3 This reviewer did not observe any inflation or deflation of STAAR for quantitative
from the Q-Q plot in Fig.3d and Supp. Fig. 3.3a. It is not meaningful to use the genomic
inflation factor lambda to evaluate the calibration of STAAR. STAAR uses the ACAT
method to integrate the p-values in the weighting scheme to incorporate multiple
functional annotations, and the ACAT method gives accurate p-values for the tail
probability6.

Thank you for this comment. We agree that the inflation factor lambda does not
reflect the relevant aspect of calibration (tail probabilities) well. We now show QQ
plots throughout (Fig. 2b), which indeed indicates that all methods are calibrated
on quantitative traits.

The point does hold, however, for binary traits. The challenges to obtain calibrated
association results on (imbalanced) binary traits are now examined in more detail
in Fig. 4b-c and Supp. Fig. 4.1, where we observed considerable benefits of
combining DeepRVAT with REGENIE (c.f. response to comment R1.1).

R1.4 Following (3), as Fig. 3a showed that STAAR detected slightly more significant
associations than DeepRVAT for 21 training traits. This reviewer recommends that the
author perform more analysis to provide additional evidence or only claim that the
proposed method has comparable performance as STAAR for quantitative traits.

We agree that the number of discoveries was comparable between DeepRVAT
and STAAR in Fig. 3a of the original manuscript. In response to reviewer
comments concerning the training procedure and its dependency on the selection
of seed genes, relatedness, and multiple testing correction, we have now made
several refinements to DeepRVAT and the benchmarking procedures. As a side
effect of these changes, the performance differences with respect to other
methods are now somewhat clearer. For details on the changes, please refer to
the response preamble.

Having said this, we agree that minor differences in the number of gene
discoveries for quantitative traits is not the major added value of our method. The
revised manuscript now places more weight on the benefits of combining



DeepRVAT with REGENIE and on the biological interpretation of the new gene
discoveries for binary traits obtained on the full UKBB WES release (new main text
Table 1; Results, section 4, paragraph 4).

R1.5 The results of significant gene-trait associations (Supp. Table 6) are misleading.
Many of the “new DeepRVAT discovery” findings are known and previously reported.
Specifically, nearly all claimed “new DeepRVAT discovery” findings of lipid traits are
known lipid associated genes. For example, the p-value of the association between RVs
in NPC1L1 and DeepRVAT is 5.59E-07. However, the STAAR p-value of disruptive
missense RVs or missense RVs or plof and disruptive missense RVs in NPC1L1 are all
significantly associated with LDL using UK Biobank 200k WES data, with p-values
1.78E-07, 5.20E-09, and 3.97E-09 (see Supplementary data 14 in Selvaraj et al7). I am a
bit confused why the authors claimed that other methods could not detect these genes.

We apologize for the lack of clarity in the presentation of these results. For
reference, we had used the terminology “new DeepRVAT discovery” to
differentiate between associations that were not included in the set of seed genes
to train the model. The need to differentiate between seed genes and non-seed
genes during testing no longer applies thanks to the substantially revised training
and testing procedure of the DeepRVAT model (cf. preamble). These changes
allow a more direct like-with-like comparison between the results from DeepRVAT
and alternative methods.

In addition to revising this specific table and the presentation of results in the
benchmarking part of the paper, we have now applied DeepRVAT to the full WES
release of UKBB. On this larger dataset, we have analyzed individual discoveries
at a greater level of detail (cf. Table 1), which points to discoveries that, to the best
of our knowledge, have not previously been reported. We discuss several novel
gene trait associations in the main text (Section 4, paragraph 4).

Other comments
R1.6 Following (5), The results of significant gene-trait associations (Supp. Table 6) are
not clear. These results could not be claimed as new discoveries, as many of the results
are not well calibrated for the necessary covariates. For example, in addition to age, sex
and ancestry PCs, lipid traits need to account for the statin usage7,8. This comment is
also related to the main concern 2a. The total number of significant findings in the
manuscript is not biologically meaningful.

We have revised the association tests for lipid traits to correct for statin usage as
described in [7]. We agree that the total number of discoveries per se is not
biologically meaningful as this number can be inflated for non-calibrated models.
As mentioned above, we now provide a more stringent cross-validation training
scheme, and combine DeepRVAT with REGENIE for the analysis of binary traits.



We show that our method has good calibration. Furthermore, and as mentioned in
response to the preceding point, we now provide more in-depth discussion of
biologically novel findings, focusing on binary traits in the full UKBB WES release.
This shows biologically plausible and interesting associations.
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Reviewer #2:
Remarks to the Author:
Clarke, Holtkamp, et al. propose DeepRVAT, a data-driven deep learning neural network
for rare variant analyses built from a variety of variant annotations. DeepRVAT essentially
computes a gene impairment score by integrating a phenotype module and a dynamic set
of variant annotations, which accounts for the nonlinear effects of rare variants,
imbalanced case-control ratio of binary traits and applies to multiple phenotypes. With the
gene impairment score, DeepRVAT not only improves gene discoveries through their
adaptive rare variant association tests but also aids in phenotype prediction that
incorporates rare variant effects. DeepRVAT appears to be more computationally efficient
enough to be applied to biobank level data, which would facilitate the downstream
analysis of rare variants from a broader perspective and at a larger scale.

The manuscript is well-organized and clearly written. The data and results provided in the
text adequately demonstrate the accuracy and efficiency of DeepRVAT compared to the
previous RVAS methods. This new method would serve as a valuable complement to the



traditional burden tests and approaches for PRS-based phenotype prediction, in that it
effectively incorporates more information from variant annotations and can be highly
generalizable in terms of both variant and phenotype information, which will help advance
the understanding of rare variants and complex disease. Here are some comments that I
hope would improve the manuscript:

Major comments:

R2.1. I applaud the authors for building a simulation framework that attempts to balance
many parameters in simulating true signals among noise. However, when digging into
Supp. Fig. 2.1, it seems that LoF-like variants (e.g. frameshifts) seem quite a bit
underspecified and have fewer proportion causal than missense. Are the effect sizes
modeled more strongly among pLOF variants as one would expect? Put another way,
when running the burden tests on these simulated variants, are results comparable to
those in UK Biobank which show increased signal among pLOF variants above
missense? This is somewhat observed in Fig. 2a where the significance of pLOF is lower
than missense and in 2b where the missense burden is higher powered than the pLOF,
which is inconsistent with the Backman and Genebass analyses where most signals stem
from pLOF. That they get relatively higher importance values in the real data (Supp. Fig.
3.5) is encouraging, but the simulation framework seems a bit misspecified in this regard.

It is correct that the simulations were not designed for having realistic effect sizes
per variant category. Instead, the primary aim of the simulation was to validate the
model and specific properties, most importantly the ability of the model to learn
ground truth effects and meaningful annotation filters from data, rather than
requiring predefined (and matching) cutoffs. This feature is illustrated by varying
the simulation and analysis parameters of minor allele frequency, and holds
irrespective of the extent of biological realism of the simulation parameters. We
have included a note in the description of the simulation (Methods, section 7.2) to
clarify its purpose.

As pointed out by this reviewer, the key benchmark has to be in the context of
applications to real data. Given the increased emphasis of the revised manuscript
on biological discovery and the application to the 470k UK Biobank WES dataset
(new Results section 4 and Table 1), we have moved the results from the
simulation study to a supplementary note, as well as reduced the emphasis on
their analysis in favor of more detailed analysis on real data. These results are
now displayed in Supp. Figs. 1.3-1.6.

R2.2. Similarly, it may be advantageous to use synonymous variants as a sort of negative
class. Of course, some synonymous variants may be associated due to LD, but this might
give some level of baseline expectation.



We agree that this is an interesting control to consider. We have included an
analysis of the RVAT association step when applying the pre-trained gene
impairment module to compute impairment scores on synonymous variants only
(Supp. Fig. 2.3), which resulted in only 4 discoveries (FWER < 5%) vs. 272 when
applying DeepRVAT to all variants (21 traits, 407,148 tests, total).

R2.3. The authors mentioned in the Discussion section that it is challenging to choose the
most appropriate set of annotations. Would it be possible for the authors to provide some
general recommendations for phenotype and variant annotation selection, as well as
parameter configurations (number of repeats, number of seed genes, etc.) to users who
would want to customize their own model?

We agree that this is necessary practical information for users and have provided
the recommendations as part of Section 8 in the Methods and as part of the
improved DeepRVAT package documentation. In addition, we have provided
analyses, in Supp. Figs. 2.4, 2.5 and 2.8 on the effects of training data selection
and model architecture on DeepRVAT results.

R2.4. How are the association results for the seed genes and target phenotypes used in
training the gene impairment scores obtained using DeepRVAT, if they cannot be included
in the association testing module?

We have revised the training and association testing to use a cross-validation
scheme (cf. preamble). Using this scheme, it is now possible to use association
testing results from DeepRVAT also for the seed genes and target phenotypes,
since model training and gene impairment score computation are now carried out
on distinct sets of samples. In this scheme, we take steps to also prevent potential
information leakage due to related samples.

We have empirically confirmed that the scheme works as expected, by training
DeepRVAT on seed genes with no expected association to the target phenotypes
and analyzing association testing results on these genes (Supp. Fig. 2.5).

R2.5. Given that the seed genes are selected from those with associations with
phenotypes of interest, are the seed genes supposed to be associated with all selected
phenotypes or any phenotype from the target set? Also, will there be a default set of seed
genes provided for users?

Thank you for bringing this unclear exposition to our attention. We have clarified
(Results, section 1, paragraph 2; Methods, section 1.4) that seed genes should be
associated with a single phenotype. That is, a prediction for a given phenotype is
made based on variants in seed genes for that phenotype.

https://docs.google.com/presentation/d/17uFxpfKM3Zyq_C5YsgY0uTyDl8F-iGaQsRhG3WLuTmw/edit#slide=id.g2b76881f9bd_0_76


Regarding a default set of seed genes, it is possible to leverage independent data
to select seed genes. In practice, however, we recommend choosing seed genes
from those associated to a phenotype based on conventional methods applied to
the training dataset. The reason is that the profile of rare variants differs across
datasets, and to be a useful seed gene, the association must be present based on
the rare variant profile available in the specific training dataset itself. A discussion
of this point has been added to Methods (section 8) and in the DeepRVAT
package documentation.

We note here that the model is empirically robust to the specific choice of seed
genes (Supp. Figs. 2.4, 2.5).

R2.6. The description of the model is a bit confusing at times. Figure 1 suggests that only
annotations are used in the gene impairment model, but later “We used 21 quantitative
traits [...] to train DeepRVAT”. Can you clarify this, and if indeed phenotypes are used,
elaborate more on how this model can be generalized to any other phenotypes with no
restrictions, more specifically, what makes the gene impairment score both gene- and
trait-agnostic?

We have expanded the caption of Fig. 1 to better describe the input data and
training procedure, as well as revised Section 1.4 of the methods. The core
assumption to achieve transferability is that the parameters of the gene
impairment module are shared across all genes and traits.

Additionally, we have identified the results which we believe support the statement
that the gene impairment score is gene- and trait-agnostic, namely the application,
in association testing, to genes and traits on which the model has not been trained
(Results, section 2, paragraph 5).

R2.7. How will DeepRVAT generalize to cohorts with multiple ancestry groups?

We have integrated DeepRVAT into REGENIE, and use its approach of including
covariates for polygenic effects to control for relatedness and population structure.
These results are presented in Fig. 4. Please see the preamble and the response
to comment R1.1 for more details.

R2.8. The authors note that “the overall contribution of rare variants was modest” which is
very much in line with expectations. Have they considered this separately for each
phenotype? Specifically, there are new methods that estimate heritability contribution from
rare variants (Weiner, Nadig, et al, 2023) - are the contributions from the rare variants in
this model correlated with burden heritability results?

We have analyzed the correlation between the added R2 for DeepRVAT (Supp.
Table 8) and burden heritability and find a substantial (r = 0.7) correlation between



the two (Supp. Fig. 3.1; Results, section 3, paragraph 2). This shows, reassuringly,
that the performance of DeepRVAT scales with the global measure of burden
heritability.

R2.9. Supp. Fig. 3.1: I’m a bit surprised that MAF is not correlated with other features. Is
this an artifact of Pearson correlation being not ideal for a linearly compressed metric like
MAF? Would Spearman correlation (or log10(AF)) be better here?

We have modified the correlation heatmap (now Supp. Fig. 2.2) to use Spearman
correlation, and have included log10(MAF) as an additional annotation in the
heatmap. We still don't see a very strong correlation with other features, which we
also find surprising, but it is what the data shows.

R2.10. Similarly, there seems to be a group of highly correlated features included in model
training. Can the authors comment on how such inclusion will impact the performance of
the model?

We have run an analysis where we drop certain highly correlated features during
model training (Supp. Fig. 2.4; Results, section 2, paragraph 4). The model is fairly
robust to these dropouts, but notably performs best when all features are included.
Therefore, we recommend to include a broad collection of available annotations
(c.f. Methods 8 and in the DeepRVAT package documentation).

R2.11. In Supp. Fig. 3.7 and Methods 3.2, when repeating for more than one time, what
are the parameters passing into the next repeat? If there are not any elements inherited,
how are the uncorrected pvalues from each repeat being processed and aggregated?

We have addressed this point in the context of the new training procedure.

Rather than aggregating at the level of p-values, we now average gene
impairment scores across repeats before association testing, so that a single
p-value is computed for each gene. Downstream, this is simpler than in the
previous procedure. To aggregate p-values across genes, we apply Bonferroni
correction.

There is no information passed from one repeat of model training to the next -
each run is independently stochastically initialized.

R2.12. Why is DeepRVAT specific to rare variants? Are there any assumptions that
prevent applying it to common variants?

Since submitting the paper, we have begun working on extending DeepRVAT to
both common and rare variants. There are, to the best of our knowledge, no a
priori reasons not to apply DeepRVAT to common variants as well. However,



based on our initial results, we believe that the best results can be achieved by
treating common variants differently from rare variants since, as in GWAS vs.
RVAS, their effects may be best captured not by their annotations but by their
simple statistical association with phenotype, which requires notably fewer
assumptions.

We have added a brief note on future directions towards joint modeling of common
and rare variants to the Discussion (paragraph 3).

Minor comments:
1. The authors claimed that DeepRVAT presents well-calibrated results for imbalanced
binary traits. It would be helpful to report the number of cases and controls for the binary
traits analyzed in this study and compare the performance of different models across
different case/control ratios to validate the statement.

Case/control counts have now been added to Supp. Table 3, and the prevalence is
shown on the x-axis of the new Fig. 4c.

2. The authors should clarify the default proportion of causal variants for simulation in
Figure 2 in the main text. Similarly, in Figure 2a, it is hard to see the causal variants
among the non-causal ones. Comparing the mean chi-squared (or similar) for causal vs
non-causal may make this point more strongly.

We have clarified the default proportion of causal variants in the figure legend
(now Supp. Fig. 1.5). In the QQ plots, we show P-values for all genes, colored by
causal and non-causal ones. In addition to computing lambda GC for all genes,
we've also included lambda GC values specifically for causal and non-causal
genes in the figure.

3. It took me a while to understand what the rows in Figure 2b represented - perhaps a
simplified label (high, medium, no influence of ultra-rare variants, or something like that)
would help orient.

From bottom to top, increasing relevance gets attributed to variants with larger
MAF. For instance, in the bottom row, no variant from the largest MAF bin
(0.1%-1%) is causal, while in the top row, they explain ~20% of the cumulative
variant effect. To enhance clarity, we've included an arrow indicating the increasing
relevance of variants with larger MAF from bottom to top.

4. The authors should add or cite results related to this statement “... including in settings
for which additional non-causal variants were incorporated in the MAF cutoff… ” in the
“Model validation using simulated data” section.



We have clarified the results to which this statement refers. In the bottom-right
panel of Supp. Figure 1.5, all methods analyze variants with up to a 1% MAF for
association testing. However, in this panel, none of the variants within the largest
MAF bin (0.1%-1%) are causal, suggesting they contribute as 'noise' to the
models. Conventional methods show notably low power in this scenario (Supp.
Figure 1.5, bottom-right). As the MAF filter aligns better with simulated causal
variants, the performance of all methods improves (bottom row, right to left).
However, the disparity in performance between a well-aligned MAF filter
(bottom-left, association testing MAF < 0.01%) and a poorly aligned one
(bottom-right) is much more pronounced for conventional methods than for
DeepRVAT.

5. Were the traits used for training chosen in some non-random way? They seem to have
on average more associations (Fig. 3a) than those for evaluation (3e). I would understand
if there’s some light overfitting happening, but the Burden/SKAT combined also shows
lower numbers, which doesn’t have nearly as much influence of the traits used.
Additionally, can the authors report replication results for the evaluation traits used in Fig
3d-3f (with a similar display as in Fig 3b)?

Regarding the choice of training traits, we have clarified this in Section 4.5 of the
Methods. Training traits were chosen based on having sufficient seed genes for
effective model training, which is why they have more associations on average.

We now show the replication results for evaluation traits in Fig. 2g, which follow a
similar pattern as for the training traits.

We have not shown replication results related to binary traits, since the phenotype
definitions we use from Jurgens et al. differ substantially from those used in
Backman et al. and Genebass2,4,5.

6. The authors should label the panels of Figure 4b and 4c.

Thank you for pointing out this omission. We have now included labels (now Fig.
3b, c).

7. What are the dotted lines in Figure 4c?

The meaning of the dotted lines has been clarified in the figure caption (now Fig
3c).

8. Supp. Table S2, instead of Supp. Table S4 should be cited in the caption of Supp. Fig.
2.1.

Thank you. This has been corrected.

https://www.zotero.org/google-docs/?8A8lPG


9. Supp. Fig. 2.1 is missing captions for panels a and b, specifically for panel b, a short
description of the metric in each panel might be helpful in explaining the different trends
between causal and non-causal variants.

We have added the missing captions and addressed the specific point about the
metric.

10. Supp. Fig. 2.1e is missing a color legend for the dark blue boxes.

We have corrected the legend.

11. In Supp. Fig 3.6, the authors should label the panels and avoid using “rows” and
“columns” in the caption if they do not refer to the rows and columns of the figure. Is each
panel specific to a VEP annotation? These should be spelled out if so, and the caption
clarified.

This supplemental figure has been removed as, given the modified training
procedure, it is no longer relevant.

12. Can the authors provide an explicit list of the required input files/information for each
module in the Github repo of DeepRVAT?

We have improved the documentation of the package and provided the requested
lists.

Reviewer #3 (Remarks to the Author)

The authors presented a novel method for rare variant association test, DeepRVAT, that is
leveraging set neural networks to integrate genotype with variant annotations for optimal
power for association testing. DeepRVAT also comes with a rare variant-based prediction
functionality as an added feature. In the simulation study, DeepRVAT showed faster
computation, good calibration of test statistics, and better power. Overall, this manuscript
presented a novel application of deep neural networks to genetic association testing and
showed good performance of the method for association testing and phenotype
prediction. I have only a few comments on the manuscript.

My biggest concern about the method is that the model is trained based on selected sets
of seed genes for the phenotypes included in the model training. This approach raises
several questions:



R3.1. There is no evaluation of how the selection of seed genes affects the performance
of the trained model, especially with real data analysis. It is hard to imagine that different
sets of seed genes will yield models with the same performance in association testing and
genetic prediction. Yet there’s no mention of such concern or evaluation on this particular
point (or did I overlook?) The authors also did not present any information on the seed
genes in the application on UKB data. Therefore, there’s no way to evaluate whether the
choice of the seed genes makes sense in those analyses based on prior knowledge of the
phenotypes analyzed with the UKB data. A simple test may be down-sampling the seed
genes used in current UKB analysis into equal sized random sets of seed genes and see
if such permutation affects the model performance.

Please see the response to the next comment.

R3.2. Extending from the previous comment, the choice of phenotypes included in model
training may also affect the trained model performance. However, there’s also no mention
of this potential issue either.

We have carried out the suggested downsampling analyses from this and the
previous comment (Supp. Fig. 2.4; Results, section 2, paragraph 4). Overall, we
find that DeepRVAT's results are relatively robust to changes in the training data,
with a somewhat larger effect seen when removing traits vs. removing seed
genes.

As an additional test of robustness to choices in training data, we have assessed
the robustness of DeepRVAT to adding seed genes without an expected
association to any of the training phenotypes (Supp. Fig. 2.5). This analysis shows
that the CV training procedure (see preamble) protects against spurious
associations due to overfitting.

R3.3. As the authors did in the study, the selected seed genes can be based on results of
alternative rare variant association testing methods if prior knowledge is lacking or maybe
not desired. However, this strategy raises several questions on the overall benefit of using
DeepRVAT:

a. What if there’s no significant results from the other RVAT methods? The users are
essentially left to make an (arbitrary) choice on seed genes based on prior knowledge.

Thank you for bringing up this point. We have added detail on the intended usage
patterns of DeepRVAT in the main text, but particularly also in Section 8 of
Methods and in improved package documentation.

For most scenarios, we recommend that users apply (1) precomputed DeepRVAT
scores for UK Biobank, which we will make available via UKBB, or (2) for other



datasets, pretrained models, which are provided as part of the DeepRVAT
package.

In the scenario you mentioned, we recommend usage (2) with pretrained models
(see also the response to comment R2.5). The generalizability of the pretrained
models to traits and individuals not seen during training has been demonstrated
via the application to quantitative (Fig. 2f-g; Results, section 2, paragraph 5) and
binary traits (Fig. 4b-d and Table 1; Results, section 4) not seen during training, as
well as the applications to individuals held out during training (Fig. 4a and Table 1.
Results, section 4).

b. DeepRVAT does not take into account for leveraging the knowledge of known
associated genes in model training. The multiple testing burden for DeepRVAT should be,
in my opinion, considering all association tests performed with the other RVAT methods
used to identify the seed genes plus the association tests performed with DeepRVAT.
Implicitly, that is how many tests DeepRVAT performed to reach its conclusion on
association findings. Even if the seed genes are selected based on prior knowledge
(without additional RVAT analysis), it still implicitly leverages prior analysis results (just in
a way that is hard to ascertain the multiple testing burden).

Thank you for bringing up this subtle but important point.
In response to this and other reviewer comments, we have revised the training
procedure of DeepRvat and taken an even stricter and arguably statistically
cleaner approach to the seed gene selection step. The new CV training procedure
(cf. preamble) effectively addresses the risk of leakage of information between
seed gene selection and the final association tests. In particular, this procedure
prevents double-dipping, as gene impairment scores for any given individual in the
cohort are computed using a model that was not trained on that individual (or any
related individuals).

Most importantly, we have carried out extensive empirical analyses that give us
confidence that DeepRVAT is robustly calibrated (Fig. 2b, c, g, Fig. 4b-c, Supp.
Figs. 2.3 and 4.1), and in particular, we can rule out that including a gene as a
seed gene during model training leads to inflated test statistics (Supp. Figs. 2.4
and 2.5, see also responses to Comments R3.1 and R3.2 above).

c. Also, the computation burden should actually consider all tests performed, including the
other RVAT methods, if that is a necessary step for DeepRVAT to work.

This had already been accounted for in the figure, however, thank you for pointing
out that this had not been mentioned anywhere. We have revised the caption to
make this explicit.



d. A minor point is that, as the users are left with results from alternative RVAT method(s)
and DeepRVAT, it could be confusing that these results from different methods by default
cannot replicate each other. First, DeepRVAT cannot validate the observed significant
associations of the seed genes, which showed significant association from other methods,
since the DeepRVAT model is trained on them. On this point, the users are also left with
an incomplete picture of the phenotype-gene associations from DeepRVAT, i.e. the users
would not be able to compare the associations between the seed genes and other gene
findings from DeepRVAT. On the other hand, all the new findings in DeepRVAT are by
default not significant from the other methods. Technical replication across methods is just
not possible in this case. (However, replication using different samples is possible like
what the authors did in the paper.)

With the new CV training and association testing scheme, all genes are tested
using DeepRVAT, with conventional methods only used to determine training
(seed) genes for DeepRVAT where required. Thus, technical replication between
DeepRVAT and methods used during seed gene discovery is now possible. Of
course, one might worry that DeepRVAT associations on seed genes might be
inflated due to overfitting, thus leading to false positive technical replication.
However, as noted, we have empirically shown in Supp. Fig. 2.5 that this tends not
to occur.

Additionally, when using precomputed burdens or pretrained models on traits
and/or samples not seen during DeepRVAT training, as we recommend in most
cases, this concern does not apply. We now place substantially more emphasis on
these use cases. See revised main text figures Fig. 2f, g & Fig. 4. Notably, the
replication rates are very similar for application of the model to training traits (Fig.
2c) versus novel traits not used during training (Fig. 2g).

It may be the case that the methodological advances of DeepRVAT in general overcomes
the potential impact of training data quality on the trained model’s performance, i.e. no
matter how the training data perturb, the DeepRVAT will perform similarly well compared
to other methods. If that is the case, it is actually a great advantage of DeepRVAT.
However, I would suggest the authors show it in real data analysis examples.

Thank you for bringing up these important points. We hope that the analyses laid
out above (particularly Supp. Figs. 2.4 and 2.5) have addressed this. Robustness
of the gene impairment module to perturbations of the training data is exactly what
we see.

Minor comments:

1. The effect size estimates from DeepRVAT is on the scale of gene impairment score,
which is of unknown interpretation. The users may eventually need to run burden tests for
an interpretable effect size if interested. May include this in discussion.



We have ensured that DeepRVAT scores are on an interpretable scale between 0
and 1. However, we do agree that even though pLOF variants do tend to be
scored near the high end of the distribution (Fig. 2d), the effect size is not as
interpretable as the "number of missense variants" or "number of pLOF variants"
that might be used as a conventional burden score.

While we agree that this point requires mentioning, we thought it was a little
technical to try to fit into the limited space of the Discussion. However, we have
added it to Section 8 of the Methods and in the updated package documentation.

2. In Supplementary Methods 3.3 “Controlling for overfitting”, section “Gene-gene
correlations”, the authors said that “Biologically, we have no reason to expect that the
existence of, say, a pLOF variant in one gene should correlate with the existence of such
a variant in another gene in the same individual.” However, for genes nearby or with
overlapping exons, coding variants could still be correlated across genes (theoretically at
least). I would guess the low correlation shown in Supp. Fig. 3.6 is due to low LD between
rare variants. May include this in the section.

Thank you for pointing out this important subtlety. However, with the introduction of
the CV scheme for training and association testing, this section of the Methods
has become obsolete and was removed.
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Decision Letter, first revision: 

 
 

13th Jun 2024 

 

Dear Oliver, 

 

Thank you for submitting your revised manuscript "Integration of variant annotations using deep set 

networks boosts rare variant association genetics" (NG-TR62980R2). It has now been seen by the 

original referees and their comments are below. The reviewers find that the paper has improved in 

revision, and therefore we'll be happy in principle to publish it in Nature Genetics, pending minor 

revisions to satisfy the referees' final requests and to comply with our editorial and formatting 

guidelines. 

 

As the current version of your manuscript is in a PDF format, please email us a copy of the file in an 

editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements soon. Please do not upload the final materials and make any 

revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 

any questions. 

 

Sincerely, 

 

Michael Fletcher, PhD 

Senior Editor, Nature Genetics 

ORCiD: 0000-0003-1589-7087 

 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have fully addressed the reviewer's comments. This reviewer particularly appreciates the 

efforts made to expand the application of DeepRVAT for biological discovery and the extended analysis 

and assessment of DeepRVAT on (imbalanced) binary traits. My remaining concerns are minor: 

 

(1) The statement “either by conducting a meta-analysis over different test types and annotations” in 

the introduction section is not accurate. The STAAR method integrates various test types and multiple 

functional annotations through an omnibus test, not a meta-analysis. The approach that incorporates 

a meta-analysis within the STAAR framework is called MetaSTAAR1. To avoid confusion, it is 

recommended to use the following: “Recently proposed RVAT methods based on variance component 

tests convincingly demonstrated the added value of incorporating a broad spectrum of annotations, 

either by conducting an omnibus test over different test types and annotations1,2, or using specialized 

kernels tailored to different annotation types3 (Methods; Supp. Table 1).” 
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Reviewer #2 (Remarks to the Author): 

 

The authors have satisfied all of my concerns. 

 

 

Reviewer #3 (Remarks to the Author): 

 

I really appreciate the authors’ revision to the DeepRVAT method. In particular, the authors proposed 

a cross validation scheme for training the gene impairment module with a revised seed genes 

selection approach. The additional real data analysis and biological discovery comes with the 

application of DeepRVAT also added value to the manuscript, makes it goes beyond method 

development and showed the potential of the DeppRVAT. I do not have further comments on the 

manuscript. 
 

 

  

 

Final Decision Letter: 

 



20th Aug 2024 

Dear Oliver, 

I am delighted to say that your manuscript "Integration of variant annotations using deep set 
networks boosts rare variant association testing" has been accepted for publication in an upcoming 
issue of Nature Genetics. 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature 
Genetics style. Once your paper is typeset, you will receive an email with a link to choose the 
appropriate publishing options for your paper and our Author Services team will be in touch 
regarding any additional information that may be required. 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 
this deadline, please inform us at rjsproduction@springernature.com immediately. 

You will not receive your proofs until the publishing agreement has been received through our 
system. 

Due to the importance of these deadlines, we ask that you please let us know now whether you will 
be difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 
and who will be available to address any last-minute problems. 

Your paper will be published online after we receive your corrections and will appear in print in the 
next available issue. You can find out your date of online publication by contacting the Nature Press 
Office (press@nature.com) after sending your e-proof corrections. 

You may wish to make your media relations office aware of your accepted publication, in case they 
consider it appropriate to organize some internal or external publicity. Once your paper has been 
scheduled you will receive an email confirming the publication details. This is normally 3-4 working 
days in advance of publication. If you need additional notice of the date and time of publication, 
please let the production team know when you receive the proof of your article to ensure there is 
sufficient time to coordinate. Further information on our embargo policies can be found here: 
https://www.nature.com/authors/policies/embargo.html 

Before your paper is published online, we shall be distributing a press release to news organizations 
worldwide, which may very well include details of your work. We are happy for your institution or 
funding agency to prepare its own press release, but it must mention the embargo date and Nature 
Genetics. Our Press Office may contact you closer to the time of publication, but if you or your 
Press Office have any enquiries in the meantime, please contact press@nature.com. 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or 



announced in the print or electronic media, until the embargo/publication date. These restrictions 
are not intended to deter you from presenting your data at academic meetings and conferences, 
but any enquiries from the media about papers not yet scheduled for publication should be referred 
to us. 
 
Please note that Nature Genetics is a Transformative Journal (TJ). Authors may publish their 
research with us through the traditional subscription access route or make their paper immediately 
open access through payment of an article-processing charge (APC). Authors will not be required to 
make a final decision about access to their article until it has been accepted. Find out more about 
Transformative Journals 
 
Authors may need to take specific actions to achieve compliance with funder and institutional 
open access mandates. If your research is supported by a funder that requires immediate open 
access (e.g. according to Plan S principles) then you should select the gold OA route, and we will 
direct you to the compliant route where possible. For authors selecting the subscription publication 
route, the journal’s standard licensing terms will need to be accepted, including <a 
href="https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-
publish. Those licensing terms will supersede any other terms that the author or any third party may 
assert apply to any version of the manuscript. 
 
If you have any questions about our publishing options, costs, Open Access requirements, or our 
legal forms, please contact ASJournals@springernature.com 
 
If you have posted a preprint on any preprint server, please ensure that the preprint details are 
updated with a publication reference, including the DOI and a URL to the published version of the 
article on the journal website. 
 
To assist our authors in disseminating their research to the broader community, our SharedIt 
initiative provides you with a unique shareable link that will allow anyone (with or without a 
subscription) to read the published article. Recipients of the link with a subscription will also be 
able to download and print the PDF. 
 
As soon as your article is published, you will receive an automated email with your shareable link. 
 
You can now use a single sign-on for all your accounts, view the status of all your manuscript 
submissions and reviews, access usage statistics for your published articles and download a 
record of your refereeing activity for the Nature journals. 
 
An online order form for reprints of your paper is available 
at https://www.nature.com/reprints/author-reprints.html. Please let your coauthors and your 
institutions' public affairs office know that they are also welcome to order reprints by this method. 
 
If you have not already done so, we strongly recommend that you upload the step-by-step protocols 
used in this manuscript to protocols.io. protocols.io is an open online resource that allows 

https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs
https://www.springernature.com/gp/open-research/plan-s-compliance
https://www.nature.com/reprints/author-reprints.html


researchers to share their detailed experimental know-how. All uploaded protocols are made freely 
available and are assigned DOIs for ease of citation. Protocols can be linked to any publications in 
which they are used and will be linked to from your article. You can also establish a dedicated 
workspace to collect all your lab Protocols. By uploading your Protocols to protocols.io, you are 
enabling researchers to more readily reproduce or adapt the methodology you use, as well as 
increasing the visibility of your protocols and papers. Upload your Protocols at https://protocols.io. 
Further information can be found at https://www.protocols.io/help/publish-articles. 
 
 
Sincerely, 
 
Michael Fletcher, PhD 
Senior Editor, Nature Genetics 
ORCiD: 0000-0003-1589-7087 


