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Referee #1 (Remarks to the Author): 

The manuscript titled "Machine-guided design of synthetic cell type-specific cis-regulatory elements" 

by Gosai et al. presents a framework, called CODA, which uses a deep learning model in conjunction 

with sequence space exploration algorithms to synthetically design sequences to drive cell type-

specific expression in human cells. Specifically, the authors first trained a convolutional neural 

network (CNN), called Malinois, using data from a large-scale MPRA experiment and demonstrate 

that its performance is good. Then, they use Malinois as an "oracle" to guide local search algorithms 

in sequence space, either as a scoring function or through input optimization via backprop using 

established methods. The authors validate designed sequences in a follow up MPRA and find that 

synthetic sequences outperform natural sequences at driving cell type-specific expression. They also 

perform validation experiments across species in zebrafish and mouse. 

Overall, CODA seems to work well and so this could serve as a useful tool that could advance the 

agenda of designing cell-type specific regulatory sequences in medicine and basic research. The 

power of this approach really seems to come from the training data being quite large, beyond the 

standard approach of just using a reference genome. Notwithstanding, CODA seems to work despite 

many unknowns that were not explored in this study. Performing a more thorough, expanded 

analysis is important to help bridge this gap. Moreover, the motif analysis makes strong claims but 

provides weak support. In addition, it would be beneficial to clean up the overall presentation with 

more precise claims that are sufficiently supported with the evidence provided, otherwise the 

strength of the claims should be toned down. Below, we detail our concerns. 

Major concerns: 

Malinois: In summary, it is not clear whether Malinois is a worthwhile model as there was no 

comparison with other models. 

• The description of the model and training procedure is not sufficiently detailed to allow someone 

to reproduce the work. This makes it difficult to fully evaluate Malinois. One part of Malinois that 

was clear is that it has at least one very odd design choice -- 200nt padding on each side of the 

central 200nt MPRA sequence, making the total input sequence 600nt. This seems excessive and 

unnecessary, unless if they performed transfer learning with pretrained Basset model weights, which 

was not discussed. In any case, the authors need to do more standard benchmarking of their model 

choices and compare against other models and perform proper control experiments if the field is to 

appreciate one of the main contributions of this paper, Malinois. 



• The authors state that Bayesian inference was used to find the best hyperparameters for their CNN 

(out of 1000 other contenders). It is not clear whether Malinois provides significantly improved 

performance compared to the other 1000 contenders. It is likely that there are hundreds of settings 

that would likely provide comparable results. Showing a distribution of performance of each model 

in the hyperparameter search could help understand this better. It is also not clear whether the 

other models would score the proposed synthetic sequences in the same way. If so, this would 

actually be beneficial as it shows that the pipeline is robust to CNN, instead of trying to claim that a 

single model was the reason why the pipeline was possible. 

• An ablation study should be performed on Malinois to identify key components that led to high 

predictive performance and good sequence design. Further model exploration should be done to 

improve efficiency of the model and remove any unnecessary components that don't specifically 

improve model performance. 

• In a comparison with new models, the focus should not only be on performance but also the 

design aspect. Rather than running new experiments, it could be sufficient to perform a retroactive 

study that shows how the other models would score the synthetic sequences. If other models 

perform just as well as Malinois, the takeaway should de-emphasize a specific model and the 

takeaway should be more about any CNN trained on large amounts of MPRA data can be quite 

powerful for sequence design. If Malinois is the only model that does well, then it is critical to 

perform the aforementioned ablations to understand what components enabled it to do better. 

Sequence space searching algorithms: Overall, readers will want to not just know if the pipeline 

works but also why the pipeline works. A more careful evaluation of the sensitivities to various 

aspects of the CODA pipeline should be presented. 

• The sequence design algorithms have significant limitations – they are all local search algorithms. 

The descriptions of the guarantees should be written more precisely so as not to be misleading. 

• The evaluation of the sequence design methods is lacking; they are grouped together under the 

label, synthetic (Fig. 2c). Does one method work better than another? How similar are the sequences 

generated from each generation method? Do they fall into similar functional programs for instance? 

• Evaluating the diversity of sequences is tricky. The authors propose a k-nearest neighbor approach. 

Other approaches should be performed to improve robustness of the study, including a comparison 

of sequence context, such as k-mer frequencies of a set of sequences generated by each design 

method. 

• The description of motif penalization is confusing. The description should be made clearer. 

• How sensitive are the search algorithms to their hyperparameter choices? 

Motif analysis: Overall, the analysis is observational without any validation or sensitivity analysis. 



• Many claims are based on observational motif analysis. It is not clear that motifs and motif 

combinations identified from basic motif enrichment analysis is directly tied to functional use. To 

validate the motif claims, ideally, motifs and motif combination should be embedded in random 

backgrounds and measured experimentally in follow up MPRAs. In silico validation with Malinois 

could suffice if the in silico experiments are performed systematically and are comprehensively. Such 

interventional experiments are becoming the norm in model interpretability in genomics. Any 

hypotheses of what motifs/motif combinations are important can be directly tested in a controlled 

environment to uncover the quantitative effect sizes. [PMID: 33603233; PMID: 33983921; PMID: 

35551305] 

• A robust modified version of Integrated gradients was used to "identify magnitude and direction of 

effect of each motif in each of our three cell lines. The description needs to be clearer in the 

methods and evidence should be provided why it is more robust. Generally, it's not clear what value 

this robust modified version of IG is? Does it provide insights that couldn't be achieved with standard 

attribution analysis? 

• The motif statistics presented in the results reads as an overly confident analysis. It is not clear 

how motifs were defined as repressive for instance. How sensitive are these numbers given the 

heuristic choices to make these definitions? It could be more conservative to state what heuristic 

was used and give the motif statistics with that disclaimer. 

• With regards to the functional programs analysis that are based on standard motif analysis (using 

MEME suite), the main concern is that these motifs may or may not be functional. An opportunity to 

use Malinois to annotate functional motifs using their learned sequence-function relationship seems 

squandered. As their oracle, this should be more informative for "functional motifs". A similar 

protocol using tf-Modisco followed by contribution-weight matrix scans could identify functional 

motifs and annotate each sequence. 

• Further comments for the NMF analysis on motif enrichment. The strength of motif binding sites is 

not considered -- weak motifs and stronger motifs are binarized as a functional motif according to 

FIMO, which is known to lead to many false positives. One could in principle use motif scores instead 

of counts for this analysis – attribution scores or the PWM scan. Also, the sensitivity of the NMF 

analysis should be explored based on different hyperparameters of FIMO. 

• The validation of the regulatory programs is lacking. It is just an observational analysis which may 

or may not be right. One way to prove regulatory programs are known is to perform in silico 

experiments - controlled motif embeddings in random background sequences to quantify that 

predictions behave as one expects. 

• "to improve interpretability of the topic modeling, we generated an additional 4000 sequences for 

each cell type which prioritized off-target expression." It is not clear whether the presence/absence 

of these sequences improves interpretability. 

• With regards to: "The regulatory activity contribution scores identify the overall magnitude and 

direction of the effect of each motif in each of our three cell lines" Attribution methods quantify 

nucleotide importance, not motif importance. 



General concerns 

• Reproducibility is a major concern. The code repository is not organized well, there is no roadmap 

for how to execute code, and the code is not commented well. Code should be provided to: 1. take 

supp table 2 and processes it into training, validation and test sets; 2. build and train Malinois on this 

dataset; 3. execute each sequence design method; and 4. run inference on a trained model to 

replicate the figures in the main text. Also, the processed dataset and synthetically generated 

sequences should be saved as npz or h5 or even pickle. 

• It is not always clear what is novel by the authors versus what was already known or previously 

established. Being clearer on this in the text could be beneficial. 

• A more thoughtful description of limitations should be included. For instance, modeling based on 

MPRA, sequence design algos, pathological behaviors outside the data distribution (i.e. out-of-

distribution). These of course were not fully explored but could at least be mentioned as a warning 

to others that blindly think that DNNs that make good predictions on test data can generalize 

everywhere in sequence space. 

• There is no exploration for which components of CODA/Malinois and so it is not clear what 

enabled these results. For instance, is MPRA design better than training a model on chromain 

accessibility sites from ATAC-seq for these 3 cell types? This is a very different question than what 

was probed in the study, which compares natural accessible sites. 

• The authors claim that CODA is generalizable and extendable. I can see how CODA is generalizable 

and extendable in principle. But the framework is not novel. It is standard practice to use oracles and 

have either search algos or ML models to help navigate the oracle's functional landscape. This is 

done quite commonly in ML-guided protein function landscapes. The code itself is far from a usable 

toolkit or an extensible framework that others would be able to build upon. 

Minor concerns: 

• On line 64, meaning is ambiguous: "computational models are still only capable of characterizing a 

fraction of all possible sequence combinations". The CNN has learned a function that defines a value 

to each input sequence in the domain. So, does this refer to the poor out-of-distribution 

generalization or the intractability of training and querying a model on a limited subspace. 

• "optimization guarantees" (line 154) should be clarified. The simple sequence design methods are 

all greedy search algorithms infamous for their lack of ability to navigate complex surfaces. 

• Colors in Fig 1e could benefit from something that contrasts better, perhaps red. Also, the authors 

could play with the transparency. 

• Equations should be formatted so that they are clearer (see Methods; e.g., lines 676, 652, 835, 

836, etc.) 

• Grammar: Line 349; Line 652 (equation typo); Line 688. 



Referee #2 (Remarks to the Author):  

In this manuscript, the authors use MPRAs, epigenomic marks, and machine learning to design 
tissue-specific enhancers. This impressive body of work tests many enhancers in different cell types 
to create tissue-specific enhancers. They develop computational tools to predict functional tissue-
specific enhancers using MPRA and epigenomic data. They compare synthetic and natural 
sequences' ability to drive tissue-specific expression as defined by activity in 3 cell lines - erythroid, 
hepatocytes, and neuroblastoma. They claim synthetic enhancers show greater cell type specificity 
than the predicted functional natural sequences. The authors test 6 synthetic enhancers via reporter 
assay in zebrafish and two in mouse, although the nature of the specificity of these enhancers within 
the embryos is poorly described. The number of enhancers tested in this manuscript is impressive, 
and the computational tools will be helpful to the research community. The design of tissue-specific 
enhancers is a novel and exciting area. 

The premise of the approach and comparison between natural and synthetic enhancers and their 
ability to drive cell type-specific expression is flawed. The cell types the authors are studying are 
derived from cancer cell lines; thus, these are not the environment in which the genome evolved. 
Therefore, it makes sense that their synthetic enhancers would drive better cell type specificity than 
natural sequences, but this does not mean that, in general, synthetic enhancers are better at driving 
cell type specificity. The authors make claims about synthetic enhancers vs. natural ones, but they 
cannot translate their results in transformed stable cell lines to normal cell types in an organism. 

The summary statement states that their synthetic sequences can outperform natural sequences in 
driving tissue-specific gene expression. It is also not clear what out-perform natural sequences means. 
To demonstrate that synthetic sequences outperform natural sequences, they would need to remove 
all enhancers contributing to the expression of a gene and replace them with synthetic enhancers, and 
show the organism survives. Or if there is a therapeutic goal, show that the synthetic sequence drives 
expression of the target gene more effectively than the natural sequence. It is likely within the genome 
using endogenous promoters, the natural sequences would outperform the synthetic sequences in 
non-transformed cells. I feel that the comparison of natural and synthetic sequences detracts from 
their ability to design tissue-specific enhancers. 

In terms of the synthetic and natural enhancers that function, they test these in 3 cell lines they 
trained their data on. This is impressive, and there is a clear preference for the predicted tissue-
specific enhancers to be active in the respective cell types. I would like to know how these libraries 
containing their predicted functional tissue-specific enhancers work on other cell lines? Such as 
fibroblasts or other epithelial cells and neural cell types for example. Do we know that these 
enhancers are only active specifically within one cell type? 

They claim that synthetic CREs are fit for purpose in vivo, and yet we do not know this for several 
reasons. Firstly the information provided about the specificity is very limited, are the three enhancers 
seen in the liver specifically expressed in hepatocytes only? There are four major cell types in the liver, 
which cell types are their two enhancers active within? I would like to see staining with co-markers to 
see this. They also need more controls that test a similar number of sequences they anticipate would 
not be liver-specific or would be inert and yet contain similar motifs and show these do not drive liver 
expression. I would like to see testing of three natural sequences that they predict are hepatocyte-
specific as well. 

Regarding the neural enhancers, the ability to design tissue-specific neural enhancers is also unclear to 
me and not validated in the current manuscript. The enhancers are active in neural cell types, but how 
do the neural cell types in the zebrafish relate to neuroblastoma cells or mouse cortex? Would their 
neuroblastoma active enhancers be active in all neural cell types? If so, is this really cell specificity? 



More enhancers need to be tested and more details provided on the precise location of expression. 
They would also need to show that synthetic enhancers that are not predicted to work and yet show 
the same motifs are non-functional. If the authors want to show natural sequences are less specific 
than synthetic they would also need to test natural sequences and see the location of expression. 

The authors state, “There is no guarantee that an optimal CRE for an intended purpose has arisen 
naturally through evolution.” I agree, but I would caution against trying to make statements about 
evolution when the analysis is within transformed cell types. There are several statements about 
evolution, and I would be careful with these types of statements as they can be misleading. Evolution 
has not been working on transformed cell lines, and thus one would not expect the natural sequences 
to be optimized to drive expression in these cell lines. 

Regarding the discovery of syntax, the authors state “Synthetic sequences leverage unique sequence 
syntax to promote activity in the on-target cell type and simultaneously reduce activity in off-target 
cells.” 

The syntax is not clearly defined, and I don’t think this manuscript contributes to our understanding 
of syntax within enhancers. I understand that TF motifs are found, but are unique syntaxes that drive 
on-target and reduce off-target demonstrated within their data? Can they make a library where they 
delete these syntax elements and show that they lose on-target and gain off-target expression? This 
experiment would be required to validate their claims. 

The authors state that “Malinois contribution scores enable nucleotide resolution interpretation of 
sequence activity.” In Figure 3a, the authors show a synthetic enhancer that drives expression in 
HepG2 Cells, they highlight motifs found by Malinois that are important for the activity. To 
demonstrate that Manolis finds the functional features within the enhancer with base pair resolution, 
the authors need to mutate these features and show that this renders the enhancer inactive or no 
longer tissue-specific. Can the authors do this validation on a library of enhancers? 



Referee #3 (Remarks to the Author): 

Summary 

Massively parallel reporter assays (MPRAs) are increasingly common technique to interpret human 

genetic variation, screen for enhancer activity, and understand the principle of gene regulation. One 

application of MPRA data is the prioritization and design of sequences that can label specific cell 

types. Gosai et. al. develop computational methods to learn a “regulatory grammar” for a specific 

cell types based on MPRA data. Then, they apply those models to generate synthetic sequences that 

have greater specificity for the cell type of interest. The research presented here is cutting edge and 

of broad interest to multiple scientific communities. The strength of the manuscript is the careful 

benchmarking of different evolutionary algorithms, the interpretations of transcription factor 

binding site motifs, and the in vitro validation their results. In spite of these positives, there are 

major issues to address. First, the manuscript depends on unpublished MPRA data for which there is 

no described quality control or experimental design included. Second, the Malinois model is not 

adequately benchmarked for its cell type specificity or compared to alternative computational 

models. This is crucial, given that Malinois is used as a benchmark for CODA. Third, the application of 

the approach to label cell types in vivo requires a strong similarity between the regulatory grammar 

of that cell type and the in vitro model of that cell type. This relationship isn’t adequately explored. 

Fourth, Malinois and CODA as a method for finding sequences to label specific populations aren’t 

benchmarked against published methods. In summary, there is strong potential for this manuscript 

to have an impact, but additional rigor in some components of the analysis are required to 

demonstrate the author’s claims. 

Major Points 

The increasing amount of available MPRA data makes this manuscript especially timely. There is a 

need of innovative computational methods to better leverage and understand this type of data. This 

work fills an important gap and represents a departure from the use of natural sequences towards 

potential engineering with synthetic sequences. 

The CODA portion of the manuscript is well motivated and well written. The choice of evolutionary 

algorithms makes sense in the context of the study. The in vitro validation provides a good 

demonstration of CODA’s utilitity. 

The research depends on large amounts of unpublished MPRA data, which seems to have been 

collected in the laboratory of the senior author. The details of how the MPRA experiments were 

designed (especially which sequences were included) and the quality control metrics of that dataset 

have a bearing on what conclusions can be drawn from the study. 

For Figure 1, it’s not clear why the GATA1 locus is the focus. It would be more helpful to stratify the 

accuracy across the different input datasets. Hyper parameters seemed to be tuned on chromosome 

X, where GATA1 is locus, which could introduce circularity and inflate the model performance. 



The cell type-specificity of Malinois is key to the study, but there are several issues with how that 

component of the project is validated. First, Malinois is presented as a new computational method, 

but it is not benchmarked relative to others that could be trained on similar data, including an 

ENFORMER-like model. Second, the cell type-specificity of Malinois isn’t compared to the cell type-

specificity of open chromatin or other measurements, just the raw values. Differences in signal and 

depth could play a role in accuracy. Third, based on Supplemental figure 3a, I get the impression 

there is a low proportion of cell type specific CREs. To account for this, there should be a greater 

exploration and visualization of the number of CREs enriched for each cell type. A statistical test that 

better handle class imbalance would be helpful to quantify the cell type-specificity. The spearman 

correlation is currently applied. These concerns are especially important given that CODA is 

compared to Malinois alone. If Malinois isn’t efficient at determining cell type specificity due to 

these concerns, then CODA’s improvement over Malinois could be overestimated. 

The ultimate goal of the research is to label specific types of cells. There are other methods for 

predicting the how sequence specific certain cell type are. Currently, there is no comparison of this 

method to those previous methods. These include: 

https://doi.org/10.7554/eLife.48089 

https://doi.org/10.7554/eLife.69571 

https://doi.org/10.1038/s41434-021-00227-z 

https://doi.org/10.1093/nar/gkad375 

https://doi.org/10.1101/2022.07.26.501466 

The final claim of the abstract is that the method is able to “write regulatory code that is fit-for-

purpose in vivo across vertebrates.” The experiments in brain and liver are promising, but are not 

sufficient to support that claim. It isn’t clear if it is possible to collect a in vivo dataset large enough 

to apply CODA to. Alternatively, the method requires that the regulatory grammar of the in vivo cell 

type is similar enough to the in vitro system for CODA to be useful. That demonstration is also not 

shown at a large scale. 

Minor Points 

- In figure 1, a continuous representation should be used to describe the relationship between 

Malinois predictions and the open chromatin and other genomic measurements. P values are 

difficult to interpret given the large number of data points. 

- Supplemental figure 3 does not have scatter plot comparisons for the SK-N-SH cells. 

- Starr-seq is a continuous signal and an assay similar to MPRA. It would be helpful to see both 

treated as a continuous signal to look for correspondence. 

- In figure 2c, the performance of the DHS natural and Malinois natural are surprisingly poor. Why is 

open chromatin and H3K27ac a poor indicator of specificity? Does the relatively poor Malinois 

performance suggest reproducibility issues? 



- For each cell type (and across cell types) how well do the new MPRA results correlate with the 

previous MPRA results for the same sequences? Are there experimental differences, either 

procedure or source of the cell line, that could be driving performance? 

- The proportion of oligos with error that are too high to serve a reliable indicator should be more 

thoroughly described and addressed. A computational model that produces sequences with high 

variability should be considered inferior. 

- The propeller plots are a useful visualization and do confirm that the sequences with the largest 

fold difference are also the ones high specificity. However, it would also be useful to have 

visualization for each pair of cell types that compare the specificity in 2D space. 



 Reviewer #1 

 The manuscript titled "Machine-guided design of synthetic cell type-specific cis-regulatory elements" by 
 Gosai et al. presents a framework, called CODA, which uses a deep learning model in conjunction with 
 sequence space exploration algorithms to synthetically design sequences to drive cell type-specific 
 expression in human cells. Specifically, the authors first trained a convolutional neural network (CNN), called 
 Malinois, using data from a large-scale MPRA experiment and demonstrate that its performance is good. 
 Then, they use Malinois as an "oracle" to guide local search algorithms in sequence space, either as a 
 scoring function or through input optimization via backprop using established methods. The authors validate 
 designed sequences in a follow up MPRA and find that synthetic sequences outperform natural sequences 
 at driving cell type-specific expression. They also perform validation experiments across species in zebrafish 
 and mouse. 

 Overall, CODA seems to work well and so this could serve as a useful tool that could advance the agenda of 
 designing cell-type specific regulatory sequences in medicine and basic research. The power of this 
 approach really seems to come from the training data being quite large, beyond the standard approach of 
 just using a reference genome. Notwithstanding, CODA seems to work despite many unknowns that were 
 not explored in this study. Performing a more thorough, expanded analysis is important to help bridge this 
 gap. Moreover, the motif analysis makes strong claims but provides weak support. In addition, it would be 
 beneficial to clean up the overall presentation with more precise claims that are sufficiently supported with 
 the evidence provided, otherwise the strength of the claims should be toned down. Below, we detail our 
 concerns. 

 We thank the reviewer for their careful review and thoughtful summary of the work. We appreciate their 
 recognition of the work’s utility for advancing design of cell type-specific regulatory sequences. We also 
 understand their request for expanded analysis to better support the claims. We have aimed to do so in 
 responding to the specific comments below, and more broadly through additional work and manuscript 
 revision. 

 Malinois: In summary, it is not clear whether Malinois is a worthwhile model as there was no comparison with 
 other models. 

 Author note: Our responses to reviewer 1’s summary point and comments 1 and 4 are related, so we are 
 combining them here. 

 R1C1.  The description of the model and training procedure  is not sufficiently detailed to allow someone to 
 reproduce the work. This makes it difficult to fully evaluate Malinois. One part of Malinois that was clear is 
 that it has at least one very odd design choice -- 200nt padding on each side of the central 200nt MPRA 
 sequence, making the total input sequence 600nt. This seems excessive and unnecessary, unless if they 
 performed transfer learning with pretrained Basset model weights, which was not discussed. In any case, the 
 authors need to do more standard benchmarking of their model choices and compare against other models 
 and perform proper control experiments if the field is to appreciate one of the main contributions of this 
 paper, Malinois. 
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Author Rebuttals to Initial Comments:



 R1C4.  In a comparison with new models, the focus should  not only be on performance but also the design 
 aspect. Rather than running new experiments, it could be sufficient to perform a retroactive study that shows 
 how the other models would score the synthetic sequences. If other models perform just as well as Malinois, 
 the takeaway should de-emphasize a specific model and the takeaway should be more about any CNN 
 trained on large amounts of MPRA data can be quite powerful for sequence design. If Malinois is the only 
 model that does well, then it is critical to perform the aforementioned ablations to understand what 
 components enabled it to do better. 

 Model description and Basset architecture 
 We appreciate that our methods and design motivations were not clear, as noted in this and other related 
 points raised by reviewers. We agree with the reviewer that a more detailed description of our design decisions 
 will provide important context to the reader for why Malinois works well. We’ve added text to the  Main  and 
 Methods  sections to make the model and training of  Malinois much clearer. Specifically: 

 ●  We clarify in the  Main  section that Malinois is adapted  from the Basset architecture. We provide 
 additional details in the Methods section explicitly describing our adaptation. 

 ●  We explain in the  Main  section our decision to use  transfer learning to better train an MPRA model from 
 a data set that, by modern deep-learning standards, is considered small. 

 ●  We have edited  Supplementary Figure 2  and part of  the  Results  text to highlight portions of the 
 architecture with weights inherited from Basset at the start of training. 

 ●  We now explain in the  Methods  that padding input sequences  to 600 nucleotides is required to 
 maintain compatibility with the architecture components of Malinois that are inherited from Basset, 
 which we did not clearly do before. 

 We provide the key modified sections below with key new text in blue: 

 Updated Results  Line 109  : 
 “  We created Malinois, a deep convolutional neural network (CNN) for  prediction of  cell 
 type-informed CRE activity of any arbitrary sequence  as measured by MPRA  .  We adapted 
 architectural components from Basset  47  , a model of chromatin accessibility  (  Figure 1c, 
 Supplementary Figure 2, Methods  ), and leveraged Bayesian optimization  57,58  to iterate over 
 hyperparameter settings  to identify  a high performing  model  (  Supplementary Figure 3a  )  .  We 
 observed several design choices that impacted the model including the use of transfer learning 
 from Basset (  Supplementary Figure 3b-d  ,  Supplementary Table 3, Methods  ).  ” 

 Updated Methods  Line 658  : 
 “Malinois accepts batches of 4 x 600 arrays corresponding to one-hot encoded DNA sequences, 
 so predictions  for 200-nt MPRA oligos  are made by  padding inputs on both sides with constant 
 sequences from the reporter vector backbone.  This  strict input sizing requirement ensures 
 hidden states are appropriately shaped when transitioning between segments (1) and (2) of the 
 model. At training initiation weights were initialized using pre-trained weights from a PyTorch 
 implementation of Basset when (1) and (2) were appropriately configured.” 

 Exchangeability of predictive models for sequence design 
 As the reviewer suggests, we do not expect the architecture of Malinois to be the sole unique factor behind its 
 effectiveness in this study, but rather the large amount of high-quality MPRA data it is trained on, generated in 
 the same labs as those building the models. We only aimed to ensure that Malinois was as good, if not better, 
 than currently used methods such as  Enformer and MPRA-DragoNN, comparisons to which we have now 
 included in response to revisions. We, however, agree that newer architectures such as ResNets, 
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https://paperpile.com/c/afrhLa/AzHta
https://paperpile.com/c/afrhLa/Pn5Yp+m72jV


 Transformers, or Structured State Space Sequence models could likely outperform Malinois after careful 
 development. By extension, these other sequence-to-function models are also likely able to be used for the 
 development of synthetic elements, so we have clarified this in the  Discussion  . 

 Line 597: 
 “Applying MPRA in additional cell types with greater clinical relevance  and training new models 
 on these data  could enable CODA to better design CREs  with specificity tailored for therapeutic 
 applications.  As the technology underlying sequence-to-function  models continues to evolve, 
 are mechanistically interrogated through ablation studies, and are trained on high-quality MPRA 
 data sets, we expect synthetic element designs to become even more reliable and reduce the 
 experimental burden for in vitro and in vivo validation.  ” 

 Comparison to alternative contemporary models to Malinois for sequence design 
 We appreciate the reviewer's concern that we did not sufficiently show the value of the Malinois model in 
 comparison to other models. It had not been our intention to focus the paper on the advances of our Malinois 
 model, but rather as a means to an end of designing best-in-class synthetic sequences. We are however very 
 pleased to provide comparisons on the method. 

 When this study was initiated, there were no models perfectly suited to predict the impact of arbitrary 200nt 
 DNA sequences in MPRAs in K562, HepG2, and SK-N-SH, and still none published to date. While there were 
 two well-established models for analyzing MPRA data, they had limitations that motivated us to train a new 
 MPRA-based model on data being generated from our lab. 

 ●  MPRA-DragoNN  (Movva et al. 2019)  (https://kipoi.org/models/MPRA-DragoNN/ConvModel/)  had been 
 developed to predict MPRA activity in K562 and HepG2, but not SK-N-SH. Furthermore, 
 MPRA-DragoNN was trained on very early MPRA experiments which have undergone dramatic 
 technical improvement in recent years. 

 ●  DNA sequence models of chromatin architecture, such as Enformer  (Avsec et al. 2021) 
 (  https://github.com/google-deepmind/deepmind-research/tree/master/enformer  ),  could serve as another 
 imperfect substitute, however there is ample evidence of discordance between the impact of DNA 
 sequences on chromatin architecture and in reporter assays. We quote two examples from the 
 literature: 

 ○  “We found that 43.3% of the active sequences were marked as DHS”  (Tewhey et al. 2016) 
 ○  “We observed low correlation between MPRA expression and observed ATAC-seq signal 

 (Pearson ρ = 0.097), predicted ATAC-seq signal (Pearson ρ = 0.088) and observed H3K27ac 
 signal (Pearson ρ = 0.061)”  (Kim et al. 2021) 

 We have now compared Malinois to Enformer and MPRA-DragoNN. As expected, we show that Malinois better 
 predicts the function of CREs designed for cell type-specific transcriptional activation than either method as 
 shown in Reviewer Figure R1C1 below: 
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https://paperpile.com/c/9GT50E/HgIK
https://paperpile.com/c/9GT50E/mz0I
https://github.com/google-deepmind/deepmind-research/tree/master/enformer
https://paperpile.com/c/9GT50E/9vPu
https://paperpile.com/c/9GT50E/j3Sk


 Reviewer Figure R1C1. Benchmarking MPRA-DragoNN and Enformer predictions on CREs 
 designed for cell type-specific reporter activation.  MPRA-DragoNN predicts 6 features corresponding 
 to reporter assay activity in each K562 and HepG2. Colored horizontal bars above each boxplot indicate 
 Pearson’s correlation of Malinois with MPRA. (a) Pearson’s correlation coefficients for different 
 MPRA-DragoNN features with measured MPRA activity of natural and synthetic CREs. (b) Correlations 
 re-calculated using synthetic CREs only. (c) Pearson’s correlation coefficients calculated using Enformer 
 features for the same reference sequences in (a). (d) Enformer correlations re-calculated using synthetic 
 CREs only. 

 While these results validate our decision to train a new model on newly generated data, including this analysis 
 to the manuscript could lead a reader to incorrectly conclude that we are implying MPRA-DragoNN or 
 Enformer are poor models rather than imperfect surrogates that were designed for other contexts. Our 
 approach to benchmarking is to exclude direct comparisons when there are considerable limitations to the 
 analysis  and  results that could unfavorably critique  someone else’s work. In this situation, we believe it is 
 unjust to compare our model against all pre-existing models due to the reasons described above. However, if 
 the reviewers strongly believe we should include this analysis in the manuscript we will consider inclusion. 

 Comparison of Malinois to state-of-the-art alternatives in development 
 While its architecture is relatively simple by today’s standards, Malinois archives high predictive performance 
 and scaled effectively for the rest of the applications in this study. Through correspondence with other experts 
 in the field, we have also tested two upcoming alternate models on our data (  Reviewer Figure R1C4  ). 

 ●  MPRA-LegNet was trained on reporter assay data generated in parallel to the training set used in 
 Malinois by another lab as part of ENCODE Phase 4. An ensemble of weights from 90-fold 
 cross-validation was used to make predictions in K562 and HepG2 (correspondence with  Ivan 
 Kulakovskiy, Dmitry Penzar, and Vikram Agarwal  ). 

 ●  ReporterNet was trained on the  identical  data set  as Malinois and benchmarked using an ensemble of 
 weights from 5-fold cross validation (correspondence with Ziwei Chen and Anshul Kundaje). It is worth 
 noting that, during the development of RerporterNet, collaborative discussions on Malinois’ training 
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 methodology and architecture influenced ReporterNet to converge to some of our strategies, and 
 contributed to enhancing its performance. For instance, the group reported that ReporterNet improved 
 performance by  

 Reviewer Figure R1C4. Malinois compares favorably to (unpublished) state-of-the-art alternatives. 
 Scatterplots capture correlation between MPRA measurements on the x-axis and model predictions on 
 the y-axis. On each plot, outer and inner black lines demarcate the 90th and 50th percentile kernel 
 density estimates, respectively. (a) Malinois predictions. (b) MPRA-legNet predictions (through 
 correspondence with: Ivan Kulakovskiy, Dmitry Penzar, and Vikram Agarwal). (c) ReporterNet predictions 
 (through correspondence with: Ziwei Chen and Anshul Kundaje). 

 Our benchmarking on cell type-specific sequence proposals shows Malinois (Pearson’s  r  = 0.77-0.90; 
 Spearman’s  ρ  = 0.83-0.89) performs comparably to MPRA-LegNet  (Pearson’s  r  = ; Spearman’s  ρ  = 

) and ReporterNet (Pearson’s  r  = ;  Spearman’s  ρ  = ). Interestingly, this is  despite 
 the extensive ensembling used by other techniques and separate weights trained to model each cell type using 
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 LegNet and ReporterNet. In contrast, Malinois is deployed with a single set of weights for multi-task prediction 
 across cell types. 

 Both MPRA-LegNet and ReporterNet papers are still unpublished, and both are focused largely on the 
 development and extensive comparison of CRE modeling. We respect their request to allow these 
 comparisons to be carried out in their manuscripts. As suggested by this reviewer, we instead de-emphasize 
 Malinois, while expanding our description of its implementation for future development, and instead clarify the 
 focus this manuscript is on analyzing synthetic sequences. 

 R1C2.  The authors state that Bayesian inference was  used to find the best hyperparameters for their CNN 
 (out of 1000 other contenders). It is not clear whether Malinois provides significantly improved performance 
 compared to the other 1000 contenders. It is likely that there are hundreds of settings that would likely 
 provide comparable results. Showing a distribution of performance of each model in the hyperparameter 
 search could help understand this better. It is also not clear whether the other models would score the 
 proposed synthetic sequences in the same way. If so, this would actually be beneficial as it shows that the 
 pipeline is robust to CNN, instead of trying to claim that a single model was the reason why the pipeline was 
 possible. 

 Clarification of hyperparameter tuning 
 We now include a new Bayesian Optimization experiment that jointly optimized over all relevant 
 hyperparameters we varied during the development of Malinois. This experiment is more comprehensive than 
 previous hyperparameter optimization experiments. These prior experiments were done very early in the study 
 and piecewise over subsets of hyperparameter combinations during the initial development of Malinois. 
 Importantly, this new experiment assessed the importance of branching cell-specific heads, transfer learning 
 weights from Basset, and various data set augmentations. 

 The results of the Bayesian Optimization experiment are included in a new supplementary figure 
 (  Supplementary Figure 3  ) to better enable others to  use and expand on our models. The key takeaways from 
 this experiment are: 

 ●  Bayesian optimization finds reasonable hyperparameter settings within 100 proposals and additional 
 adjustments produce models with only incremental improvements in performance (  Supplementary 
 Figure 3a  ). 

 ●  Initializing weights using Basset, a model of chromatin accessibility, is more effective than random 
 initialization (  Supplementary Figure 3b  ). 

 ●  Duplicating and augmenting the training data by taking the reverse complements of the input 
 sequences improves predictions (  Supplementary Figure  3c  ). 

 ●  Using branched linear layers in place of fully connected layers in the final layers of the model can 
 produce some of the highest performing individual models, but does not result in a dramatic overall 
 improvement and introduces substantial variance likely due to the lack of transfer learning at these new 
 layers (  Supplementary Figure 3d  ). 

 ●  Malinois, the model and weights of which we finalized in 2021 and used to generate synthetic elements, 
 is only slightly outperformed by the top configurations from this latest experiment (Malinois: Pearson’s r 
 = 0.877-0.886; Top BayesOpt model: Pearson’s r = 0.880-0.890). We agree with the reviewer that these 
 slight additional improvements are unlikely to have a meaningful impact on other aspects of this study. 
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 We highlight results in the  Main  text and a  Supplementary Figure  and add details regarding experimental 
 setup to the  Methods  . For ease of review, we include the text and figures below, with relevant new text in blue 
 italics: 

 Line 109: 
 “  We created Malinois, a deep convolutional neural  network (CNN) for  prediction of  cell 
 type-informed CRE activity of any arbitrary sequence  as measured by MPRA  .  We adapted 
 architectural components from Basset  48  , a model of  chromatin accessibility  (  Figure 1c, 
 Supplementary Figure 2, Methods  ), and leveraged Bayesian  optimization  58,59  to iterate over 
 hyperparameter settings  to identify  a high performing  model  (  Supplementary Figure 3a  )  .  We 
 observed several design choices that impacted the model including the use of transfer learning 
 from Basset (  Supplementary Figure 3b-d  ,  Supplementary  Table 3, Methods  ).  ” 

 “  Supplementary Figure 3. Bayesian optimization effectively  finds reasonable hyperparameter 
 settings.  (  a  ) Validation and test set performance  of models from hyperparameter proposals picked by 
 Bayesian Optimization, in order. Dotted lines indicate test set performance of Malinois. (  b  ) Transfer 
 learning by initializing weights from Basset results in less variation and overall improvement in training 
 outcomes. (  c  ) Duplicating and augmenting the training  data by taking the reverse compliments of the 
 input sequences improves modeling accuracy. (  d  ) Replacing  fully-connected layers in the decoder 
 segment of CNNs increases variance in fitted model performance, although the top performing branched 
 decoder models show improvement comparatively.  ” 

 We are also including a notebook to allow others to deploy this experiment on the Google Cloud Platform 
 (boda2/tutorials/vertex_sdk_launch.ipynb) and the complete results as a supplementary table (  Supplementary 
 Table 3  ) that readers can use to interrogate any detailed  questions about hyper parameter combinations. We 
 note this in the  Methods  : 
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 Line 675: 
 “  We include a notebook for deploying a Hyperparameter  Tuning Job using the Vertex AI SDK 
 (boda2/tutorials/vertex_sdk_launch.ipynb). We finalized model selection for Malinois by 
 benchmarking candidates on the validation set using predictions calculated as described in the 
 next section. All test set benchmarking was retrospective and did not impact decision making in 
 the study.  ” 

 R1C3.  An ablation study should be performed on Malinois  to identify key components that led to high 
 predictive performance and good sequence design. Further model exploration should be done to improve 
 efficiency of the model and remove any unnecessary components that don't specifically improve model 
 performance. 

 While isolating the impact of individual modeling decisions on performance is of interest to the field, our 
 primary goal in designing Malinois was to develop a model specific to our MPRA data that was sufficient for 
 sequence design, not necessarily a comprehensive search for the optimal predictor. Our subsequent reliance 
 on high-throughput assays to test our predictions also underlied our decision to rapidly develop our models. 
 Currently, we have generated a sizable amount of experimental validation on top of this current model. Making 
 post-hoc adjustments to Malinois would thus unlink the model from all of the downstream data generation and 
 analysis. Similarly, it would not change the major finding from this study, that synthetic CREs can drive more 
 cell type-specific activity than natural CREs. 

 In the prior response above, we clarified in the results and discussion that Malinois is not uniquely behind our 
 ability to design synthetic sequences. However, the algorithmic selection of modeling parameters by Bayesian 
 Optimization does provide key insights into which modeling choices are most effective (  Supplementary  Figure 
 3  ).  We also included a point in the discussion that  focused improvement on both modeling and data, and 
 ablation studies to interrogate the mechanism underlying model performance, are useful future goals. 

 Line 597: 
 “  Applying MPRA in additional cell types with greater  clinical relevance  and training new models 
 on these data  could enable CODA to better design CREs  with specificity tailored for therapeutic 
 applications.  As the technology underlying sequence-to-function  models continues to evolve, 
 are mechanistically interrogated through ablation studies, and are trained on high-quality MPRA 
 data sets, we expect synthetic element designs to become even more reliable and reduce the 
 experimental burden for in vitro and in vivo validation.  ” 

 Sequence space searching algorithms: Overall, readers will want to not just know if the pipeline works but 
 also why the pipeline works. A more careful evaluation of the sensitivities to various aspects of the CODA 
 pipeline should be presented. 

 R1C5.  The sequence design algorithms have significant  limitations – they are all local search algorithms. 
 The descriptions of the guarantees should be written more precisely so as not to be misleading. 

 Improved descriptions of sequence design algorithm guarantees 
 We agree with this review that each sequence design algorithm has specific benefits and drawbacks. We have 
 included a detailed description for the reviewer of our rationale in picking these methods: 

 ●  We selected AdaLead primarily for its ease of implementation. 
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 ●  We selected Simulated Annealing because it can approximate the global optimum of any function given 
 enough iterations (though it is intractable to conduct enough iterations to confidently identify the global 
 optimum), and has a decades-long history of successful use for non-convex optimization in a wide 
 range of domains. We now specifically highlight this limitation. 

 ●  We selected Fast SeqProp for its ability to exploit the structure of deep-learning models while retaining 
 the ability to pass true one-hots to the model via the straight-through estimator. 

 We summarize these details in the  Methods  section: 

 Line 705-745: 
 “Fast SeqProp  36  was selected as a representative gradient-based  local optimization method 
 that exploits the structure of deep learning models to conduct greedy search while retaining the 
 ability to pass true one-hot encoded inputs to the model.  ” 

 “AdaLead  37  ,  another greedy search algorithm, was selected  as a representative evolutionary 
 optimization algorithm for its ease of implementation and previously reported success in DNA 
 sequence optimization.  ” 

 “Simulated Annealing  65  was selected as a representative  probabilistic optimization algorithm 
 based on a decades-long history of successful application to a wide range of domains for 
 non-convex optimization. Simulated Annealing starts by jumping between regions with different 
 local optima by occasionally accepting proposals that deteriorate the objective when the 
 sampling temperature is high early in the algorithm. In later stages, the algorithm shifts toward 
 greedy hill climbing as low sampling temperatures only allow proposals that improve the 
 objective to be accepted.  ” 

 We have also updated  Main  and  Method  text to better  communicate our design choices: 

 Line 160: 
 “  We implemented three algorithms representative of three broad classes of optimization 
 techniques (evolutionary: AdaLead  37  , probabilistic: Simulated Annealing  65  , and gradient-based: 
 Fast SeqProp  36  ) for sequence generation. We selected these methodologies based on their 
 ease of implementation, prior documented successes, or their ability to exploit the structure of 
 deep-learning models  .” 

 We also realized in response to the reviewer's other comment (R1C24) we were unclear with our assertion that 
 effectively being restricted to local search is a major limitation of sequence design. To our knowledge, no 
 search algorithms within the scope of this project are capable of searching the 4^200 possibilities. We have 
 stated this more plainly now: 

 Line 65: 
 “  Lastly, although computational models are millions  of times faster than experimentation, they 
 are incapable of global searches over all possible sequence combinations within the size of a 
 typical human CRE.” 
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 Finally, we have explicitly included text in the discussion to make it clear there are no guarantees we will 
 identify the optimal sequence and that conclusions we make are based solely on the specific sequences 
 tested: 

 Line 553: 
 “Due to the intractability of fully searching sequence space, CODA cannot assuredly identify 
 global specificity maxima, but our exhaustive evaluation of natural sequences demonstrates the 
 design methods we used can identify synthetic sequences that regularly outperform natural 
 ones with 1000-fold greater efficiency compared to previous methods using a zero-order Markov 
 approach (  Supplementary Figure 38  )  41,42  .” 

 R1C6. The evaluation of the sequence design methods is lacking; they are grouped together under the label, 
 synthetic (Fig. 2c). Does one method work better than another? How similar are the sequences generated 
 from each generation method? Do they fall into similar functional programs for instance? 

 Our initial manuscript collapsed all the synthetic sequences together due to their overall similar performance, 
 especially compared to natural sequences. While we did include some comparisons in the supplement, we 
 agree that a deeper comparison is warranted. A comprehensive analysis of these and other design methods 
 would be beyond the scope or goals of this manuscript, but we have replotted our data and performed 
 additional analyses to address this question using the tools in the original paper.  We summarize our 
 comparison of sequence design methods in three major areas: (1) Sequence design method specificity 
 performance comparison; (2) Sequence design method impact on functional programs; (3) Differences 
 between design methods in off-target activity 

 Sequence design method specificity performance comparison 
 We added  Supplementary Figure  17  which displays the  same results as the combined synthetic sequences 
 in figure 2c but with synthetic sequences displayed separately. We also note  Supplementary Figures 18  and 
 19  summarized cell type specificity of sequences separated  by design method. We now highlight these 
 observed differences across design methods in the  Main  text describing slight improvements in MinGap  from 
 sequences designed by Fast SeqProp. 

 Line 303: 
 “  Between design methodologies, Fast SeqProp demonstrated  greater consistency and slightly 
 higher MinGap across all cell types (Mean MinGap difference Fast SeqProp: 0.41 over 
 Simulated Annealing, 0.62 over AdaLead; p-adj<10  -300  , Tukey's HSD test).” 

 Sequence design method impact on sequence diversity 
 We now provide a detailed analysis of how design methods impact sequence diversity, which has been 
 substantially updated in response to the next reviewer comment, R1C7. We describe the findings in depth 
 there as well as the updates to the text. Overall, we find sequence content of synthetic elements is primarily 
 determined by the target cell line, not design method, and generally distinct from natural CREs 
 (  Supplementary Figure 13  ). 

 Sequence design method impact on functional programs 
 While it is possible to show significant differences in program usage between the synthetic design 
 methodologies, the more striking observation is that synthetic sequences share similar trends of program 
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 usage compared to natural sequences (  Supplementary Figure 28b  ). We make the following update to the 
 Main  text to reflect this view: 

 Line 437: 
 “While there are quantitative differences in program preference between the different synthetic 
 sequence design methods, there are no programs unique to one method.” 

 Differences between design methods in off-target activity 
 As part of our response to R2C2, we studied the robustness of sequences to remain cell type-specific when 
 introducing 2 additional cell types into the analysis that were not originally modeled by Malinois or otherwise 
 used during sequence design. Intriguingly, Fast SeqProp generated sequences with notably higher retention of 
 overall cell specific function when considering two new cell types. It is unclear if this pattern is coincidental or 
 due to the specific qualities of the design algorithms, but would be a useful feature if shown by future studies to 
 generalize. We note this finding in the  Results  section  and discuss comprehensive design method comparison 
 as important future work: 

 Line 450: 
 “  Selected  synthetic CREs drive desired tissue-specific  activity in vivo 
 We next sought to assess if the specificity of synthetic CREs would generalize beyond the initial 
 three cell lines used for design. To determine if low off-target activity is maintained in additional 
 cell lines we trained two new CNN models for A549 (lung epithelial cancer; prediction Pearson’s 
 r = 0.78) and HCT116 (colon epithelial cancer; prediction Pearson’s r = 0.84) cells, which were 
 not included in the original model used for CODA (  Supplementary  Figure 30a-d, Methods  ). 
 Synthetic CREs maintained maximum activity for their target cell type after inclusion of A549 
 and HCT116, especially those generated using Fast SeqProp (  Supplementary Figure 30e-h  ).  ” 
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 “  Supplementary Figure 30. MPRA models for A549 and  HCT116 predict synthetic CREs.  Additional MPRA 
 measurements were made in A549 and HCT116 for 318,247 and 442,482 elements and used to model CRE activity 
 in these cell lines, respectively.  (a-b  ) Pairplot  showing distribution of activity for sequences measured in (a) A549 and 
 (b) HCT116 and other cell types. (  c-d  ) A model trained  on sequences with (c) A549 and (d) HCT116 measurements 
 with the same settings as Malinois accurately predicts MPRA measurements of CRE function. Scatterplots show 
 model performance on held out test data. (  e  ) Predicted  activity of K562-targeting CREs across 5 cell lines. CREs are 
 separated into frames based on design methodology. Text inset indicates percentage of CREs where the intended 
 target had the highest prediction before and after A549 and HCT116 predictions were considered. (  f  )  Same as (e) 
 except for HepG2-targeting CREs. (  g  ) same as (e) and  (f) except for SK-N-SH-targeting CREs. (  h  ) On-target 
 predicted activity of CREs summarized by minGap before and after A549 and HCT116 predictions were included in 
 the calculation. Each frame collects CREs from the five frames to the left. Each box represents CREs from a different 
 design method.  ” 
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 R1C7. Evaluating the diversity of sequences is tricky. The authors propose a k-nearest neighbor approach. 
 Other approaches should be performed to improve robustness of the study, including a comparison of 
 sequence context, such as k-mer frequencies of a set of sequences generated by each design method. 

 Expanding sequence diversity analysis 
 We agree that assessing sequence diversity is challenging and appreciate the reviewer’s helpful 
 recommendation for expanding this analysis. In the previous version of the manuscript, we used k-nearest 
 nearest neighbor distances between sequences to avoid intractably large pairwise distance comparisons when 
 summarizing diversity of groups of sequences. We used two metrics to measure sequence-to-sequence 
 distance for this analysis shown in the original  Supplementary  Figure 12  : A) Levenshtein distance, which 
 counts the number of single nucleotide edits between elements, and B) L1 distance between 7-mer content of 
 sequences. 

 Per the reviewer’s suggestion, we have also included two new analyses comparing k-mer content between 
 natural and synthetic (non-penalized) CREs: 

 ●  First, we summarize the frequency distribution of all possible 4-mers  in each group of sequences and 
 measure the pairwise L1 distances between these group-level distributions (  Supplementary Figure 
 13a  ). We find groups of synthetic sequences are closest  to one another if they target the same cell type 
 while groups of natural sequences are closest regardless of targeted cell type. 

 ●  Second, we visualize the complex structure of the 4-mer content of sequences using a 2-D embedding 
 by UMAP (4-mers chosen over 7-mers due to tractability of computation on 256 versus 16384 
 dimensions). We confirm  synthetic elements display divergent and specialized 4-mer usage compared 
 to random 200-mers (  Supplementary Figure 13b-c  ). Natural  (  Supplementary Figure 13d-e  ) and 
 synthetic sequences (  Supplementary Figure 13f-i  ) show  distinct embeddings compared to random 
 oligos. Notably, all synthetic element design methods generate sequences with similar 4-mer content 
 with AdaLead generating sequences with the qualitatively tightest 4-mer content distribution 
 (  Supplementary Figure 13i  ). These embeddings show  4-mer content of synthetic elements is largely 
 determined by target cell type. 

 We have included these updated and new results in the manuscript with the following  Results  text and  in 
 Supplementary Figure 13: 

 Line 261: 
 “  Finally, embedding the 4-mer content of the sequences  into two-dimensions using UMAP we 
 observed synthetic elements separated by target cell type and from natural elements 
 (  Supplementary Figure 13a-i  ) supporting the observation  that the synthetic sequences are 
 distinct to sequences found in the human genome  68  .  ” 
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 “  Supplementary Figure 13. Variation in 4-mer content  between natural and synthetic cell type specific 
 elements  . (  a  ) L1 distance between groups of designed  CREs based on marginalized 4-mer frequencies in each 
 group. (  b  ) UMAP embedding of all non-penalized CREs  in the designed cell type specific sequence element library 
 colored by synthetic (pink) or natural (blue) provenance. (  c  ) 12,000 random 200-mers embedded in the same UMAP 
 as (a). (  d  ) The subset of points in (a) that are natural  CREs selected to be cell type specific based on DHS or 
 Malinois predictions, colored by target cell type. (  e  ) A kernel density estimate from the natural CREs  in (d) but 
 recolored by if the element was selected using DHS (orange) or Malinois (green). (  f  ) The subset of points  in (a) that 
 are synthetic CREs, colored by target cell type. (  g  )  A kernel density estimate from synthetic CREs designed by Fast 
 SeqProp, colored by target cell type. (  h  ) Same as  (g) except from CREs designed by Simulated annealing. (  i  ) Same 
 as (g) except CREs designed by AdaLead. The UMAP region containing 90% of random sequences is indicated by a 
 gray line in (d)-(i).  ” 

 R1C8. The description of motif penalization is confusing. The description should be made clearer. 

 Additional methodological details regarding motif penalization 
 We extensively modified the explanation of the motif penalization in the  Methods  section with a focus  on 
 clarity. We have also included an explicit form of the penalization term that is added to the objective function, 
 and explained the process more concisely. 

 14 



 Line 747: 
 “  Motif Penalization 
 In order to design a batch of sequences penalizing the enrichment of given motifs in the batch, 
 we introduced to the loss function an additional term explained below. To penalize a single motif 
 of length  , we construct the motif PWM (position-weight  matrix, a.k.a. Position-Specific Scoring  𝑙 
 Matrix, or log probabilities) and use it to score all possible subsequences  of length  in  the  𝑥 

 𝑗 
 𝑙 

 batch. Let  be the motif score of  the subsequence  ,  the number of sequences  𝑠 
 𝑗 

=  𝑃𝑊𝑀 ( 𝑥 
 𝑗 
)  𝑥 

 𝑗 
 𝑛 

 in the batch, and  a score threshold. Then, we  define the motif penalty as  𝑡 

 where  iterates over all the possible subsequences  including their reverse complements. In  𝑗 
 other words, we sum all the motif scores above the score threshold and divide by the size of the 
 batch. When penalizing  motifs, the term we introduce  is very close to simply averaging the  𝑚  𝑚 
 motif penalties, except that we introduce a weighting factor for each motif penalty to emphasize 
 the penalization of motifs with lower indices (or in our case below, to prioritize motifs based on 

 their order of inclusion to the motif pool). If we let  be the motif score  of motif  𝑠 
 𝑗 
( 𝑖 ) =  𝑃𝑊  𝑀 ( 𝑖 )( 𝑥 

 𝑗 
)  𝑖 

 of the subsequence  , and  the score  threshold of motif  , then the total motif penalty  given a  𝑥 
 𝑗 

 𝑡 ( 𝑖 )  𝑖 

 motif pool  is defined  as { 𝑃𝑊  𝑀 ( 1 ),    ...    ,     𝑃𝑊  𝑀 ( 𝑚 )}

 where the term  is the weighting factor  increasing the value of the motif penalties ( 𝑚 −  𝑖 +  1 ) 1/3 

 with lower index  .  𝑖 

 We used this motif penalty expression to iteratively design sequences subject to an increasing 
 pool of motifs. We call these iterations penalization tracks. A single penalization track starts with 
 the generation of a batch of 500 (non-penalized) sequences, which is then analyzed for motif 
 enrichment (top 10 motifs of length 8 to 15) using STREME via a python wrapper function. We 

 collect the top motif  from the analysis  and design a second batch of 250 sequences  𝑃𝑊  𝑀 ( 1 )

 (which we call round-1 penalized sequences) penalizing the motif pool  . Then we { 𝑃𝑊  𝑀 ( 1 )}

 extract the top motif  enriched in the  round-1 penalized sequences and design a third  𝑃𝑊  𝑀 ( 2 )

 batch of 250 sequences (round-2 penalized sequences) penalizing the motif pool 

 . We continue this process  till we generate 250 round-5 penalized sequences { 𝑃𝑊  𝑀 ( 1 ),     𝑃𝑊  𝑀 ( 2 )}

 penalizing the motif pool  . { 𝑃𝑊  𝑀 ( 1 ),     𝑃𝑊  𝑀 ( 2 ),    ...    ,     𝑃𝑊  𝑀 ( 5 )}

 We generated 4 penalization tracks for each target cell type, for all three cell types. We defined 
 the score threshold for each motif as a percentage of the motif score of its consensus 
 sequence. The percentages used were 0 for K562-target sequences, and 0.25 for HepG2- and 
 SK-N-SH-target sequences. The reason behind the different choice for K562 is that we found 
 that the optimization process could more easily escape the penalization of GATA by still using 
 suboptimal instances of the motif, so a more stringent penalty was of interest for us. The 
 motivation for using a weighting factor was that we hypothesize that sequence design 
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 optimization gravitates more strongly to motifs captured in enrichment analyses of early 
 penalization rounds, so we seeked to keep emphasizing the penalization of motifs extracted 
 from earlier rounds.” 

 R1C9. How sensitive are the search algorithms to their hyperparameter choices? 

 Sequence design hyperparameter testing 
 As an extension of our new  in silico  analysis of hyperparameter  choices in  Supplementary Figure 3  assessing 
 Malinois performance, we now also include analysis of how parameter choices impact the generation of 
 K562-specific CREs using two search algorithms: Fast SeqProp and Simulated Annealing. Overall, our 
 hyperparameter selections for the design of  in vitro  tested sequences reflect our desire to balance high 
 predicted cell-specific activity with diversity in the generated sequence proposals. Our implementation of 
 AdaLead utilized all the algorithm’s default parameters except for the parameter governing sequence batch 
 size. As an evolutionary algorithm, AdaLead generates a sequence generation consisting primarily of offspring 
 sequences derived through mutation or crossover from a pool of parent sequences. Upon completion of a run, 
 the resulting batch typically contains sequences that can be organized into families of closely related 
 sequences. Therefore, in the interest of maximizing sequence diversity, we decided to retrieve only one 
 sequence per run, so setting the sequence batch size to a low value (20) was appropriate for our design goals. 
 Due to the extended time it would take to deploy to generate comparable sequence diversity as the other two 
 methods, we did not explore hyperparameter settings with AdaLead. 

 We visualize the impact of these choices on estimated activity in each cell type, predicted minGap specificity, 
 4-mer variety, and GC content in a new  Supplementary  Figure 7  . In summary, we find: 

 ●  Sequence generation by Simulated Annealing to be very robust to all hyperparameters tested. 
 ●  Fast SeqProp is robust to most of its hyperparameters, but there can be a tradeoff between high 

 predicted MinGap and high k-mer diversity. 
 ●  Using learnable affine parameters in the Instance Normalization layer during Fast SeqProp is 

 detrimental to producing sequences with high predicted activity and high diversity. 

 We have added the following to the  Main  text: 

 Line 166: 
 “  We find the overall ability of these algorithms to  design cell-specific elements are generally 
 robust to hyperparameter choices. However, adjustments can be made to balance the tradeoff 
 between maximizing the objective and maintaining k-mer diversity in the set of designed 
 elements (  Supplementary Figure 7  ).  ” 
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 “Supplementary Figure 7. Screening sequence design hyperparameters for generating synthetic CREs. 
 Different hyperparameter combinations for Fast SeqProp (a)-(f) and Simulated Annealing (g)-(k) were tested to 
 generate predicted K562-specific synthetic CREs. Predicted log  2  -fold-change, predicted minGap activity, 4-mer 
 heterogeneity, and GC content was measured for each sequence and plotted as a function of hyperparameter 
 choices.” 
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 Author note: Our responses to reviewer 1’s comments 13 and 10 are related, so we are combining them 
 here. 

 R1C13. With regards to the functional programs analysis that are based on standard motif analysis (using 
 MEME suite), the main concern is that these motifs may or may not be functional. An opportunity to use 
 Malinois to annotate functional motifs using their learned sequence-function relationship seems squandered. 
 As their oracle, this should be more informative for "functional motifs". A similar protocol using tf-Modisco 
 followed by contribution-weight matrix scans could identify functional motifs and annotate each sequence. 

 R1C10. Many claims are based on observational motif analysis. It is not clear that motifs and motif 
 combinations identified from basic motif enrichment analysis is directly tied to functional use. To validate the 
 motif claims, ideally, motifs and motif combination should be embedded in random backgrounds and 
 measured experimentally in follow up MPRAs. In silico validation with Malinois could suffice if the in silico 
 experiments are performed systematically and are comprehensively. Such interventional experiments are 
 becoming the norm in model interpretability in genomics. Any hypotheses of what motifs/motif combinations 
 are important can be directly tested in a controlled environment to uncover the quantitative effect sizes. 
 [PMID: 33603233; PMID: 33983921; PMID: 35551305] 

 As R1C13 suggested an improved method for nominating motifs, which in turn impacts all future analysis with 
 those motifs, we have combined and reordered the two reviewer comments. 

 (R1C13) Functional motif discovery and mapping using TF-MoDISco and nucleotide contributions 
 In response to the reviewer's recommendation, we substituted our initial approach which relied on the MEME 
 suite and instead leveraged our contributions scores with TF-MoDISco to uncover motif patterns perceived as 
 functional by Malinois. We identified a set of non-redundant, ungapped, core motifs that account for all of the 
 TF-MoDISco motif combinations and patterns, as well as for repressive motifs present in the original STREME 
 motif list that align well with contribution scores but that were not found by TF-MoDISco. We used hypothetical 
 contribution-score matrix scans to nominate sequence matches to these core motifs, aggregating Pearson 
 correlation coefficients of the scans as motif scores. This updated analysis is described the  Main  text: 

 Line 342: 
 “  First, we used Malinois to predict nucleotide-resolution  activity contribution scores for each 
 sequence in the three cell types using a modified version of Integrated Gradients (  Methods  )  69  . 
 We consistently observed that disrupting blocks of positive contribution led to a decrease in 
 predicted activity, while disrupting blocks of negative contribution resulted in an increase 
 (  Supplementary Figure 21, Methods  ). This alignment  with expected prediction effects 
 supports the functional relevance of the contribution scores as perceived by the model. Next, we 
 employed TF-MoDISco Lite  70,71  to identify 66 motif  patterns informed by contribution scores, 
 from which we extracted 36 non-redundant core motifs (7-18 bp) enriched in our MPRA-tested 
 library, with 31 confidently aligning to a known human TF binding motif (  Methods, 
 Supplementary Tables 5 and 6  )  72  ,  73  .  ” 

 We new describe our new motif discovery and  in silico  interventional experiments in the  Methods  : 

 Line 959: 
 “  Motif discovery 
 We used TF-MoDISco Lite  70,71  to extract sequence motifs to be predicted as functional by 
 Malinois through contribution scores obtained through Sampled Integrated Gradients (SIG). As 
 described above, SIG naturally provides hypothetical contribution scores (as defined by 
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 TF-MoDISco) when selecting the uniform random background by simply carrying out the 
 equivalent of the full process minus masking out using the input sequence one-hot matrix. The 
 final contribution scores can then be retrieved masking out the hypothetical contribution using 
 the input sequence one-hot matrices, as required by TF-MoDISco. We computed hypothetical 
 contribution scores for each of the three prediction tasks and ran TF-MoDISco Lite with 100,000 
 seqlets and a window size of 200 (equivalent results were obtained using 1,000,000 seqlets). 
 We aggregated the discovered patterns across prediction tasks following their provided example 
 using modiscolite.aggregator.SimilarPatternsCollapser. TF-MoDISco Lite results are provided as 
 positive and negative patterns. 

 TF-MoDISco patterns to PWMs 
 To convert a TF-MoDISco positive pattern living in the hypothetical-contribution-score space into 
 a Position-Weight Matrix (PWM), we divided the pattern scores by the maximum position score 
 sum and multiplied by 10. To obtain the Position-Probability Matrix (PPM) we applied the 
 Softmax function to each position vector. Some of our TF-MoDISco negative patterns are a 
 combination of a negative pattern (negative contributions) and a positive one (positive 
 contributions). Thus, in order to convert a TF-MoDISco negative pattern into a PWM, we first 
 reversed the sign directionality of the negative portions (as informed by the pattern scores living 
 in contribution-score space, not hypothetical) and compensated their magnitude by multiplying 
 by 1.2 (because our negative contribution scores are in general smaller in magnitude than 
 positive ones perhaps due to the nature of the training data target distribution that has a positive 
 bias). Then, we proceed as with the positive patterns. 

 Core motifs (TF-MoDISco) 
 Since TF-MoDISco, in addition to capturing isolated ungapped motifs, is able to capture patterns 
 that are combinations of motifs, we heuristically extracted core ungapped patterns that, to 
 varying degrees, account for all the combinations observed in the TF-MoDISco merged results. 
 To manually define the starts and stops of core motifs, we relied on scoring the full pattern 
 PWMs against themselves using TOMTOM  97  , information content contours, and visual 
 examination. The core motif IDs are derived from the IDs of the original patterns from which 
 they were extracted. To convert the patterns into PWMs and PPMs, we applied the same 
 operations as described above. Matches to human known TF binding motifs were assigned 
 using TOMTOM with default parameters against the databases JASPAR CORE (2022)  71  and 
 HOCOMOCO Human (v11 FULL)  72  . 

 Core motifs (STREME) 
 In addition to extracting sequence motifs with TF-MoDISco, we also performed a motif 
 enrichment analysis using STREME. First, to assess the agreement between a given STREME 
 motif and its predicted functionality as measured by contribution scores, we weighted-averaged 
 the hypothetical contribution scores corresponding to all the sequence segments determined to 
 be a match to the motif (as provided by FIMO with default parameters, using motif scores as 
 weights), and compared the score averages (one set of averages per each prediction task) to 
 the motif’s Information-Content Matrix (ICM). We will refer to the weighted average hypothetical 
 scores as the “contribution-score” projection. All motifs with overall positive contribution scores 
 that had a strong agreement with their contribution-score projection had been already captured 
 by TF-MoDISco, suggesting that the TF-MoDISco positive pattern results are very 
 comprehensive. However, we found a small number of STREME motifs with negative 
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 contribution scores that had a strong agreement with their contribution-score projection, so we 
 decided to include them to the list of core motifs. It is worth noting that these motifs had 
 negative contribution scores with moderate-to-low magnitude. We speculate that the reason 
 TF-MoDISco might not have been able to detect them is because the contribution allocated in 
 the seqlets that would correspond to these motifs too often falls below the threshold of the 
 distribution of negative scores, making it hard to discriminate them from noise or insignificant 
 scores. Running TF-MoDISco with 1M seqlets did not change the results. We retrieved 11 such 
 STREME motifs with strong agreement with their contribution-score projection not captured by 
 TF-MoDISco, 9 of which were clustered together into 3 groups with nearly identical 
 contribution-score projection (up to 1 or 2 additional positions to the left or right). This gave us a 
 total of 5 STREME negative patterns in contribution-score projection form that were included to 
 the list of core motifs. Their conversion to PWM and PPM forms followed the same process as 
 with the TF-MoDISco patterns. Matches to human known TF binding motifs were assigned 
 using TOMTOM with default parameters against the databases JASPAR CORE (2022)  71  and 
 HOCOMOCO Human (v11 FULL)  72  .  ” 

 (R1C10)  In silico  interventional motif analyses 
 We agree with the reviewer that our previous observations on motifs were based on enrichment analysis, and 
 that interventional experiments could provide insight into the causal role of sequence content on function. We 
 start this analysis using the non-redundant core motif set extracted from the motif patterns nominated by 
 TF-MoDISco as described above, to focus on functional motifs. 

 Per the reviewer’s recommendation, we conduct a comprehensive  in silico  analysis testing the predicted 
 impact of  embedding nominated functional sequence  motifs  into random sequences, similar to the approaches 
 used in the references cited by this reviewer. We do this for all core motifs as well as the for the original 
 TF-MoDISco motif patterns (  Supplementary Figures 22c  and 23c  ). We find strong concordance with 
 predicted motif function based on contribution scores (  Figure 3b  ). Additionally, we perform an orthogonal 
 analysis measuring the predicted activity impact of disrupting motif instances present in our sequence library 
 for both sets of motifs. Again, we observe that all motif contributions were in close concordance to their effects 
 when ablated (  Supplementary Figures 22d and 23d  ). 

 We describe the results of the motif embeddings and ablations in the main text as follows: 

 Line 361: 
 “  All motifs demonstrated predicted effects in accordance  with their assigned contribution when 
 embedded in a random background, as well as when replacing their instances in the library with 
 random sequences (  Supplementary Figures 22 and 23,  Methods  ).  ” 

 As this is a large change from our initial manuscript, we have made extensive additions describing our new 
 methodology. 

 Line 1041: 
 “  Motifs embedded in random background 
 We embedded single motifs in random sequences to measure their standalone predicted effect 
 compared to fully random sequences. For each motif, we built a 200x4 Position-Probability 
 Matrix (PPM) consisting of the motif’s PPM in the middle and random background ([0.25, 0.25, 
 0.25, 0.25]) everywhere else. We sampled 5000 sequences from it and fed them to Malinois to 
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 obtain predictions in each cell type. We also sampled 5000 sequences from a 200x4 PPM of 
 uniform background everywhere (no motif in the middle), and fed them to Malinois to serve as 
 baseline. 

 Motif ablation 
 We sought to assess the predicted effect of disrupting all instances of a single motif in our 
 sequence library. For each motif, we collected the particular batch of sequences that had at 
 least one instance of such motif, replaced all the instances with random segments (sampled 
 from uniform background), and fed them to Malinois to obtain predictions in each cell type. We 
 performed this step 5 times, averaged the 5 predictions of each disrupted sequence, and 
 subtracted from the average the batch’s original predicted activities to obtain the predicted 
 disrupting effect. For example, say that a sequence has one instance of a given motif in 
 positions 20-32. We inserted a random sequence segment in those positions and got the 
 disrupted sequence’s predictions. We did this 5 times, so 5 different random segments (with 5 
 different predictions) in positions 20-32, and averaged the 5 predictions (to mildly marginalize 
 potential effects of replacing with random segments). The disrupting effect would be this 
 average prediction minus the sequence’s original predicted activity. We aggregated the 
 disrupting effects by motif presence (as defined above in the last paragraph of motif penalization 
 in this section). To find instances of core motifs, we used the contribution score-based motif hit 
 method described above. To find instances of the original TF-MoDISco patterns, we used FIMO 
 (with the default parameters), since our contribution score-based motif hit method might not 
 handle gapped patterns as well as FIMO. When submitting the pattern PPMs to FIMO, we 
 trimmed the patterns at both ends such that the start/stop of the pattern is the first/last position 
 to have an information content of at least 0.15 bits.  ” 

 (R1C13) Updating functional program analysis with additional, new TF-MoDISco nominated motifs 
 Subsequently, we employed these matches in a completely updated NMF functional program analysis, now 
 based on this reviewer’s apt suggestion to have Malinois directly annotate functional motifs. This is described 
 in the main text as: 

 Line 427: 
 “To aggregate semantically-related motifs into functional programs, we used Non-negative 
 Matrix Factorization (NMF)  85  to decompose sequences  in our library into a mixture of  12 
 functional programs based on motif content  calculated  using contribution score-based motif 
 mapping  (  Supplementary Figure 27, Methods  ).” 

 We new describe our new motif mapping strategy for NMF extensively in the  Methods  : 

 Line 1026: 
 “  Contribution score-based motif hit mapping 
 To find instances of the core motifs present in the CODA sequence library, we leveraged the 
 hypothetical contribution scores of the sequences to match sequence segments to the core 
 motifs in hypothetical-contribution-score form. First, we padded with zeros left and right all the 
 sequence hypothetical contribution scores, yielding a matrix of dimensions 3x75000x4x210. 
 Second, for a core motif of length  , we computed  all the Pearson correlation coefficients  𝑙 
 between every possible subsequence hypothetical contribution scores of length  (matrices of  𝑙 
 size 75000x4x  ) and the core motif’s hypothetical  contribution scores in forward and reverse  𝑙 
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 complement orientations. For each cell type dimension, we randomly sampled 500,000 Pearson 
 correlation coefficients (arising from a single core motif) to obtain the value  𝑚𝑖𝑛 ( 0 .  75 ,    µ   +     4 σ)
 to serve as a coefficient threshold, where  represent the mean and the standard deviation, µ,    σ
 respectively, of the subsampled distribution. All subsequences for which their hypothetical 
 contribution scores scored above their coefficient threshold were collected as motif hits for the 
 given core motif. We repeated this process for all core motifs across all cell types.  ” 

 R1C11. A robust modified version of Integrated gradients was used to "identify magnitude and direction of 
 effect of each motif in each of our three cell lines. The description needs to be clearer in the methods and 
 evidence should be provided why it is more robust. Generally, it's not clear what value this robust modified 
 version of IG is? Does it provide insights that couldn't be achieved with standard attribution analysis? 

 We regret that a clear methodological description motivating the value of Sampled Integrated Gradients was 
 not clearly described in the methods. We have added the text below in the  Methods  highlighting the practical 
 advantages and value of our adaptation. We have also omitted the qualifier “robust” in the main text since that 
 claim would require a thorough study that would be out of the scope of the paper. 

 Line 844: 
 “  Sampled Integrated Gradients to compute contribution  scores of Malinois predictions 
 We calculated nucleotide contribution scores for each sequence in the proposed library using an 
 adaptation of the input attribution method Integrated Gradients68. Sampled Integrated 
 Gradients considers the expected gradients along the linear path in log-probability space from 
 the background distribution to the distribution that samples the input sequence almost surely. In 
 each point of the linear path, a sequence probability distribution (a.k.a. Position Probability 
 Matrix) is obtained from the log-probability space parameters by applying the Softmax function 
 along the nucleotide axis, and a batch of sequences is sampled from that distribution to be fed 
 into the model. We then calculate the gradients of the batch model predictions with respect to 
 the parameters in the log-probability space, using the straight-through estimator to 
 backpropagate through the sampling operation. The batch gradients are averaged for each 
 point in the path and approximate the gradient integral as in the original formulation of the 
 method. In our case, the subtraction of the baseline input from the input of interest involves the 
 parameters in log-probability space.  This adaptation  of Integrated Gradients provides two useful 
 features. First, the sequence inputs being fed to the model are always in one-hot form, avoiding 
 evaluations of inputs that exist off the vertices of the simplex on which the model was trained 
 which could more easily lead to pathological predictions. Second, the original method relies on 
 choosing an appropriate single baseline input against which to compare the input of interest 
 which might not always be straight forward, whereas our adaptation uses a background 
 distribution of sequences as the baseline. Favorably, when choosing the uniform background 
 (0.25, 0.25, 0.25, 0.25), the parameters in log-probability space where the line path is traversed 
 become the zero matrix, which removes the need to subtract the baseline from the input of 
 interest. We can then more easily extract integrated gradients for all tokens in all positions (by 
 omitting masking the gradients with the one-hot input), which we found useful as hypothetical 
 scores for TF-MoDISco.  ” 

 22 



 R1C12. The motif statistics presented in the results reads as an overly confident analysis. It is not clear how 
 motifs were defined as repressive for instance. How sensitive are these numbers given the heuristic choices 
 to make these definitions? It could be more conservative to state what heuristic was used and give the motif 
 statistics with that disclaimer. 

 Improved clarity and support of predicted motif function. 
 First, we designate motifs as activators or repressors based on their positive or negative average motif 
 contributions as calculated via our implementation of integrated gradianents, averaged across cell lines. We 
 also now note this directionality agrees with the TF-MoDISco analysis. We make the following addition to the 
 Methods  to describe how motif contributions are calculated  and label motifs as activators or repressors: 

 Line 1071: 
 “  Motif contributions 
 To get a motif’s overall contribution, we performed a weighted average of the contribution score 
 sums contained in all the motif instances provided by our motif hit method across the three 
 prediction tasks. The average was weighted using the motif scores corresponding to the 
 Pearson correlation coefficients mentioned above. The overall regulatory directionality of a motif 
 (activator or repressor) is given by the sign of the mean of the weighted averages across cell 
 types. For all motifs, the overall regulatory directionality agrees with the original TF-MoDISco 
 designation as a positive or negative pattern.  ” 

 Sensitivity of motif analysis to analysis choices 
 We chose to address the question of sensitivity of our analyses to heuristic choices by expanding these 
 analyses with additional, orthogonal experiments. How motifs function in the tested elements and the 
 mechanistic insight into their function is an important advance in our paper. On this reviewer’s previous 
 recommendations, we have extended our analysis of motif function to embedding and ablation  in silico 
 analyses that should provide complementary evidence to support reported motif function statistics in  Figure 
 3b  . Each of these analyses are described in detail  in their respective comments: 

 ●  (R1C10) Motif embedding in random sequence backgrounds (  Supplementary Figure 22  and  23  ). 
 ●  (R1C10) Motif ablation from CODA library sequences (  Supplementary Figure 22  and  23  ). 

 We highlight that the three complementary strategies for determining motif function are  all  in agreement  with 
 the motif statistics presented in  Figure 3b  in the  Main  text : 

 Line 361: 
 “  All motifs demonstrated predicted effects in accordance  with their assigned contribution when 
 embedded in a random background, as well as when replacing their instances in the library with 
 random sequences (  Supplementary Figures 22 and 23,  Methods  ).  ” 

 As we see strong concordance across these methodologies, the findings appear quite robust. However, while 
 orthogonal, all three methods are  in silico  . We clarify  in the main text that the supporting  in silico  motif 
 embedding and ablation experiments are based on model predictions. When introduced, we also explicitly note 
 that Malinois is used to derive nucleotide contributions. Additionally, we also include a caveat in the discussion 
 and point towards the utility of future empirical analysis. : 

 Line 342: 
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 “  First, we used Malinois to predict nucleotide-resolution activity contribution scores for each 
 sequence in the three cell types using a modified version of Integrated Gradients (  Methods  )  68  .  ” 

 Line 573: 
 “  Future empirical analysis of motif ablation or embedding  could be used to further validate how 
 the model interprets regulatory sequences and improve training.” 

 R1C14. Further comments for the NMF analysis on motif enrichment. The strength of motif binding sites is 
 not considered -- weak motifs and stronger motifs are binarized as a functional motif according to FIMO, 
 which is known to lead to many false positives. One could in principle use motif scores instead of counts for 
 this analysis – attribution scores or the PWM scan. Also, the sensitivity of the NMF analysis should be 
 explored based on different hyperparameters of FIMO. 

 Updating motif mapping in sequences prior to NMF: 
 We agree with the reviewer that our initial analysis could have been more sophisticated. We have also 
 observed visually that our original FIMO approach struggles to generate expected motif matches at high 
 stringency and quickly generates spurious motif matches when these thresholds are reduced. However, in our 
 experience, we find NMF, and topic modeling generally, is computed from count data and worry that using 
 alternative featurization could confound our ability to interpret the analysis. Upon further exploration based on 
 this comment, we were especially concerned about using FIMO motif scores because PWMs with different 
 information content will have different ranges of possible motif scores. Additionally, continuing to use FIMO 
 motifs would require a detailed analysis of FIMO hyperparameter impacts on our NMF analysis. 

 In our revision, we decided to build upon our new TF-MoDISco analysis to improve the quality of our motif 
 counting rather than use FIMO match scores. We use TF-MoDISco and contribution score-based motif 
 scanning for motif discovery and counting (  Methods  ),  respectively, for NMF based on the reviewer's 
 suggestion. TF-MoDISco constructs motif PWMs based on model derived nucleotide contribution scores, thus 
 only identifying motifs that are predicted to have activating or repressing function. By mapping these PWMs 
 back to sequences based on nucleotide contribution scores, we ensure hits are mapped only when the 
 corresponding subsequence is predicted to be functional. While we cannot avoid binarization of motif hits and 
 use NMF, we believe focusing on functional motifs improves the analysis. By mapping motif hits using PWM 
 concordance with contribution scores, we believe we are mitigating spurious motif matches with non-functional 
 sequences. 

 R1C15. The validation of the regulatory programs is lacking. It is just an observational analysis which may or 
 may not be right. One way to prove regulatory programs are known is to perform in silico experiments - 
 controlled motif embeddings in random background sequences to quantify that predictions behave as one 
 expects. 

 Constructing sequences from NMF programs and testing with Malinois 
 Our original intention was for NMF to serve as observational analysis to show broad patterns of differences 
 between groups of sequences. However, the reviewer raises an interesting question that we agree should be 
 evaluated if we were using NMF programs to define cell specificity. We agree we lack the data to establish a 
 causal relationship between program content and sequence function (e.g. cell type specificity). While it is clear 
 how to embed individual motifs into sequences, as we have done in response to R1C10, we find embedding 
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 programs into sequences non-trivial. Our method of featurizing sequences and computing NMF programs is 
 not end-to-end, making it difficult to generate sequences with well controlled program embeddings. One way to 
 overcome this is similar to the approach applied by Taskiran et al. which used a model trained on program 
 assignments as the oracle for designing synthetic CREs which can then be evaluated for specificity  (Taskiran 
 et al. 2024)  . There is no straightforward way to do  that without training a new model to approximate our NMF 
 results and applying sequence design techniques. We look forward to future studies attempting to develop 
 methods that could directly assess how well program assignments reflect regulatory programs at-scale. 

 We have now updated the manuscript to clarify our NMF is intended only to provide a broad overview of 
 relationships between sequences tested in our study. To limit overinterpretation, we have removed our detailed 
 analysis of differences in the content of specific programs in different groups of sequences. We instead focus 
 on higher level patterns of synthetic elements deploying activating and repressing programs to a higher degree 
 than natural sequences, which is in agreement with the analysis of individual activators and repressors. We 
 reproduce the altered section below (deleted text not shown). 

 Line 423: 
 ”  Complex semantic architectures are syntactically differentially deployed in natural and synthetic 
 sequences 
 In addition to single TF-motif usage and pair-wise co-occurrence, cell type specificity is thought 
 to arise through higher-order motif semantics, which can mediate the complex organization of 
 many TFs to impart CRE activity  7,8,11,12  . To aggregate semantically-related motifs into functional 
 programs, we used Non-negative Matrix Factorization (NMF)  85  to decompose sequences in our 
 library into a mixture of  12  functional programs based on motif content  calculated using 
 contribution score-based motif mapping  (  Supplementary Figure 27, Methods  ). These 
 programs broadly describe related sequences found in the elements we tested. NMF identified  5 
 programs associated with  clear  cell type-specific activity (  1  program in K562, and  2  in each 
 HepG2 and SK-N-SH), with the  7  remaining programs associated with pleiotropic activation 
 and/or repression (  Figure 3d,  Supplementary Figure 28a  ). 

 Natural and synthetic sequences deploy distinct  distributions of semantic  programs (  Figure 3e, 
 Supplementary Figure 28b  ).  While there are quantitative differences in program preference 
 between the different synthetic sequence design methods, there are no programs unique to one 
 method. Overall, synthetic elements have higher program content and program heterogeneity 
 compared to natural CREs (  Supplementary Figure 29a-b  ).  We also found that natural 
 sequences primarily rely on activating programs while synthetic sequences  also frequently 
 utilize programs  with repressive effects in off-target cell types  (median repressing program 
 content: DHS-natural  0.077  ; Malinois-natural  0.064  ; synthetic  0.123  ) (  Supplementary Figure 
 29c,d  ). The vast majority of synthetic sequences (  91.9  %) are composed of both activating and 
 repressing programs  each exceeding a threshold of 0.1  , while relatively few  er  DHS (  26.9  %) and 
 Malinois (  25.3  %) natural sequences show this combination (  Methods  ,  Supplementary Figure 
 29e  ). These results support our motif-based observations that the improved performance of 
 synthetic sequences is due to a combination of on-target activations and off-target repression.  ” 

 R1C16. "to improve interpretability of the topic modeling, we generated an additional 4000 sequences for 
 each cell type which prioritized off-target expression." It is not clear whether the presence/absence of these 
 sequences improves interpretability. 
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 We originally found the sequences helped NMF more clearly organize motifs associated with activators and 
 repressors into their own programs. However, this has been removed after the addition of TF-MoDISco based 
 motif annotation which more clearly identifies functional motifs. 

 R1C17. With regards to: "The regulatory activity contribution scores identify the overall magnitude and 
 direction of the effect of each motif in each of our three cell lines" Attribution methods quantify nucleotide 
 importance, not motif importance. 

 Aggregating nucleotide-resolution contribution scores into motif contributions 
 We regret not having clarified how we quantify motif importance. We agree with the reviewer that attribution 
 methods quantify nucleotide-resolution importance. To address this, we have added to the methods section the 
 text below explaining how we aggregate nucleotide contributions into motif contributions. 

 Line 1071: 
 “  Motif contributions 
 To get a motif’s overall contribution, we performed a weighted average of the contribution score 
 sums contained in all the motif instances provided by our motif hit method across the three 
 prediction tasks. The average was weighted using the motif scores corresponding to the 
 Pearson correlation coefficients mentioned above. The overall regulatory directionality of a motif 
 (activator or repressor) is given by the sign of the mean of the weighted averages across cell 
 types. For all motifs, the overall regulatory directionality agrees with the original TF-MoDISco 
 designation as a positive or negative pattern.” 

 General concerns 

 R1C18. Reproducibility is a major concern. The code repository is not organized well, there is no roadmap 
 for how to execute code, and the code is not commented well. Code should be provided to: 1. take supp 
 table 2 and processes it into training, validation and test sets; 2. build and train Malinois on this dataset; 3. 
 execute each sequence design method; and 4. run inference on a trained model to replicate the figures in 
 the main text. Also, the processed dataset and synthetically generated sequences should be saved as npz or 
 h5 or even pickle. 

 We appreciate the reviewers' concerns about reproducibility and organization. We have made major updates to 
 the codebase since the original submission. These include adding: 

 ●  Code comments for most functions and classes in the submodules of our library. 
 ●  A tutorial notebook to interactively load/pre-process data and train a new model using modules from the 

 library. 
 ●  A terminal command example to also execute the same as point 2. 
 ●  A notebook to deploy hyperparameter optimization on GCP’s Vertex AI. 
 ●  A notebook to load trained models for interactive inference. 
 ●  A terminal example to run sequence generation with each design algorithm. 
 ●  A tutorial notebook to interactively combine models with design algorithms. 

 Additionally: 
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 ●  The processed dataset and synthetically generated sequences are provided as text-based 
 supplementary tables and have already been analyzed by at least one independent group (  Gupta, Lal, 
 Gunsalus & Biancalani et al  2023 biorXiv). We are  happy to provide these data in additional formats as 
 supplementary information at the reviewer and Journal’s discretion. 

 ●  The containerized deployments on a public Google Container Registry for training and inference also 
 offer options for readers to ensure reproducibility. 

 ●  We are committed to continue working to improve usability of the codebase. 

 If the reviewers or the journal suggest other ways to disseminate our results and methods, we would be happy 
 to utilize those options before publication. 

 R1C19. It is not always clear what is novel by the authors versus what was already known or previously 
 established. Being clearer on this in the text could be beneficial. 

 We appreciate that we need to be more clear in delineating what is novel in our work versus established 
 approaches. A major comment from another reviewer (R3C6) requested a detailed comparison to existing, 
 related methods. In that response we comprehensively highlight what is novel in our work and highlight 
 changes to the text to clarify. 

 R1C20. A more thoughtful description of limitations should be included. For instance, modeling based on 
 MPRA, sequence design algos, pathological behaviors outside the data distribution (i.e. out-of-distribution). 
 These of course were not fully explored but could at least be mentioned as a warning to others that blindly 
 think that DNNs that make good predictions on test data can generalize everywhere in sequence space. 

 We agree with the reviewer that readers should be aware of the potential limited generalizability of deep 
 learning models. We now introduce the concept of unreliable predictions for examples with extreme divergence 
 from the training data in the  Methods  text and explain  our strategy for mitigation: 

 Line 698: 
 “  To prevent pathologically extreme activity predictions  that are common to deep learning 
 methods when computing on sequences highly divergent from the training data, we constrained 
 predictions to a limited interval (default: [-2, 6]) when generating sequences.  ” 

 We also highlight out-of-distribution detection as a future aim that will improve the reliability of model guided 
 sequence design in the  Discussion  : 

 Line 603: 
 “  With increasingly complex models, it will be essential  to determine the bounds of reliable 
 predictions across sequence space to ensure synthetic sequence designs are not based on 
 pathological model predictions.  ” 

 R1C21. There is no exploration for which components of CODA/Malinois and so it is not clear what enabled 
 these results. For instance, is MPRA design better than training a model on chromain accessibility sites from 
 ATAC-seq for these 3 cell types? This is a very different question than what was probed in the study, which 
 compares natural accessible sites. 
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 Overall, our goal is to identify elements that can drive transgene expression, making MPRA, with its similar 
 episomal nature, an ideal proxy. We have better clarified in the main text to state our specific goal. 

 Line 157: 
 “  Here, our goal is to design CREs that drive cell-specific  transcription in one of the modeled cell 
 lines, as measured by MPRA  .  ” 

 We also specify in the discussion that our results are limited to our specific system: 

 Line 551: 
 “Synthetic sequences  designed by CODA  easily outperform  natural sequences in driving cell 
 type-specific gene expression  in a reporter system” 

 However, how well open chromatin models could be used for synthetic sequence design is an interesting 
 question we expect many readers may have. Chromatin accessibility has been shown to be only moderately 
 correlated with gene expression. DNA-seq’s first papers showed that correlation with a relatively few 
 handpicked genes was at best Spearman’s ρ = 0.744  (Boyle et al. 2008)  . The most current indexes of DHS 
 sites do not attempt to correlate proximal DHS signal to RNA levels  (Meuleman et al. 2020)  , and instead  are 
 most useful for categorizing active vs inactive genes. ATAC-seq is highly correlated R=0.79-0.83 with 
 DNAse-seq  (Buenrostro et al. 2013)  and again has been  shown to have low correlation (r = 0.2-0.35) between 
 signal at promoters and gene expression  (Nair et al.  2021)  . As briefly mentioned in R1C1, several studies  have 
 shown MPRA has only modest correlation with signals of chromatin accessibility  (Kim et al. 2021)  . This  could 
 be due to predictions being directly on a specific 200 bp of sequence, measuring CREs outside of the 
 endogenous context of the genome, nearby sequences repressing on-target activity or inducing off-topic 
 expression, cooperative effects of multiple CREs acting on a specific promoter, and other endogenous impacts 
 may explain the difference between open chromatin measures and both empirical and predicted reporter 
 results. Because our goal is to drive transgene expression, we focused experimental resources towards an 
 MPRA-based model that could be used for reliable synthetic sequence design. 

 While we do not test if a chromatin accessibility model can design sequences with the desired activity in 
 MPRA, we show that Malinois provides more accurate predictions for synthetic sequences in MPRA than 
 Enformer predictions of DHS, CAGE, H3K4me3, and H3K4me1 predictions in K562, HepG2, or SK-N-SH 
 (  Reviewer Figure R1C1  ). This suggests even a state-of-the-art  chromatin architecture model might be poorly 
 suited for designing CREs for transgenic applications in human cells. We believe this is also consistent with 
 our observation that natural CREs nominated by DHS as cell type-specific underperform compared to 
 Malinois-nominated elements. However, synthetic sequences built using these models have been 
 demonstrated to be successful at designing CREs for different applications  (de Almeida et al. 2024; Taskiran  et 
 al. 2024)  and future work will be required to identify  the best approach for specific applications. 

 R1C22. The authors claim that CODA is generalizable and extendable. I can see how CODA is 
 generalizable and extendable in principle. But the framework is not novel. It is standard practice to use 
 oracles and have either search algos or ML models to help navigate the oracle's functional landscape. This 
 is done quite commonly in ML-guided protein function landscapes. The code itself is far from a usable toolkit 
 or an extensible framework that others would be able to build upon. 
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 We agree with the reviewer that the paradigm of using ML models with search algorithms to navigate a 
 functional landscape is not novel. Indeed, we have implemented three such algorithms that were already 
 established in the existing literature. We present our study not as a novel ML paradigm but rather as a 
 complete and high-throughput pipeline for the nomination of synthetic CREs in human cell lines. Rather than 
 focusing primarily on a novel model architecture, optimization algorithm, or a specific synthetic enhancer, our 
 intention has been to meticulously hone efforts across all steps to ensure their effective performance. The 
 platform's novelty lies in its thoroughness and robustness as a whole with respect to the application of CRE 
 design. We anticipate future research to build upon and refine these results. 

 With regards to the usability and extensibility of CODA, as mentioned in R1C18, we have incorporated 
 notebooks featuring code examples to assist fellow researchers in navigating the CODA pipeline. Our Python 
 library follows a modular structure, offering a collection of base classes intended as foundational building 
 blocks for the creation of custom training and sequence design pipelines. These base classes enable the 
 development of diverse models, facilitate the utilization of other (pre-processed) datasets, support the 
 implementation of various optimization algorithms, and allow for other optimization objectives through the 
 customization of the energy and parameters classes. Hence, our assertion in the text aimed to express that the 
 CODA platform can be extended through: (i)  integrating  advances in deep learning  , such as implementing 
 other training schemes or model architectures; (ii)  conditioning models on orthogonal data modalities  ,  such as 
 training models on other types of data; (iii)  modeling  CRE function in more tissue types  , which he have 
 implemented in R2C2; and (iv)  tasking different biological  objectives  , such as customizing our energy functions 
 for a different optimization objective. We acknowledge that while our platform is extendable, the process may 
 involve a learning curve, so successful extension will require proper effort and engagement. 

 Minor concerns 

 R1C24. On line 64, meaning is ambiguous: "computational models are still only capable of characterizing a 
 fraction of all possible sequence combinations". The CNN has learned a function that defines a value to each 
 input sequence in the domain. So, does this refer to the poor out-of-distribution generalization or the 
 intractability of training and querying a model on a limited subspace. 

 We had included this sentence as a reference to the vastly increased throughput of computational methods 
 compared to MPRA, but that the entirety of the search space (4^200 combination) is still inaccessible with the 
 current algorithms. We have updated the sentence below to improve clarity: 

 Line 65: 
 “Lastly, although computational models are millions of times faster than experimentation, they 
 are incapable of global searches over all possible sequence combinations with the size of a 
 typical human CRE.” 

 R1C25. "optimization guarantees" (line 154) should be clarified. The simple sequence design methods are 
 all greedy search algorithms infamous for their lack of ability to navigate complex surfaces. 

 Clarifying algorithms ability to navigate complex surfaces 
 In our response to R1C5, we describe in detail the rationale behind the choice of the sequence generation 
 algorithms and have removed language that used confusing terminology around optimization guarantees. We 
 agree with the reviewer that AdaLead and Fast SeqProp are greedy search algorithms and have clarified that 
 in the description of their use in the methods. Comparatively, Simulated Annealing can accept worse proposals 
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 with respect to the objective function with some probability early in the annealing schedule allowing escape 
 from local optima. 

 We have made sure to better describe why we chose these algorithms, and highlight these issues in the 
 Methods  : 

 Line 705: 
 “Fast SeqProp  36  was selected as a representative gradient-based  local optimization method 
 that exploits the structure of deep learning models to conduct greedy search while retaining the 
 ability to pass true one-hot encoded inputs to the model.  ” 

 Line 721: 
 “AdaLead  37  ,  another greedy search algorithm, was selected  as a representative evolutionary 
 optimization algorithm for its ease of implementation and previously reported success in DNA 
 sequence optimization.  ” 

 Line 731: 
 “Simulated Annealing  65  was selected as a representative  probabilistic optimization algorithm 
 based on a decades-long history of successful application to a wide range of domains for 
 non-convex optimization. Simulated Annealing starts by jumping between regions with different 
 local optima by occasionally accepting proposals that deteriorate the objective when the 
 sampling temperature is high early in the algorithm. In later stages, the algorithm shifts toward 
 greedy hill climbing as low sampling temperatures only allow proposals that improve the 
 objective to be accepted.  ” 

 Overall, the performance of these three methods is largely similar except for execution time and k-mer diversity 
 (described briefly in R1C9)  .  We expect future, more  focused work using the design-test loop we describe in 
 this paper will more fully explore a more broad range of sequence generator methodologies. 

 R1C26. Colors in Fig 1e could benefit from something that contrasts better, perhaps red. Also, the authors 
 could play with the transparency. 

 We have updated this figure to take into account these suggestions, including a better contrasting red vs blue 
 with transparency. We have included the updated  Fig  1e  panel below. 

 Figure 1e 

 R1C27. Equations should be formatted so that they are clearer (see Methods; e.g., lines 676, 652, 835, 836, 
 etc.) 
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 We have reformatted the equations in the  Methods  to be more clear. 

 R1C29. Grammar: Line 349; Line 652 (equation typo); Line 688. 

 Thank you for identifying these grammar issues and typos, we have corrected them. 
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 Reviewer #2 

 In this manuscript, the authors use MPRAs, epigenomic marks, and machine learning to design 
 tissue-specific enhancers. This impressive body of work tests many enhancers in different cell types to 
 create tissue-specific enhancers. They develop computational tools to predict functional tissue-specific 
 enhancers using MPRA and epigenomic data. They compare synthetic and natural sequences' ability to 
 drive tissue-specific expression as defined by activity in 3 cell lines - erythroid, hepatocytes, and 
 neuroblastoma. They claim synthetic enhancers show greater cell type specificity than the predicted 
 functional natural sequences. The authors test 6 synthetic enhancers via reporter assay in zebrafish and two 
 in mouse, although the nature of the specificity of these enhancers within the embryos is poorly described. 
 The number of enhancers tested in this manuscript is impressive, and the computational tools will be helpful 
 to the research community. The design of tissue-specific enhancers is a novel and exciting area. 

 The premise of the approach and comparison between natural and synthetic enhancers and their ability to 
 drive cell type-specific expression is flawed. The cell types the authors are studying are derived from cancer 
 cell lines; thus, these are not the environment in which the genome evolved. Therefore, it makes sense that 
 their synthetic enhancers would drive better cell type specificity than natural sequences, but this does not 
 mean that, in general, synthetic enhancers are better at driving cell type specificity. The authors make claims 
 about synthetic enhancers vs. natural ones, but they cannot translate their results in transformed stable cell 
 lines to normal cell types in an organism. 

 We are grateful for the reviewer's feedback and pleased that they appreciate the extensive scale and 
 importance of our study. The comments were instrumental in highlighting sections of the manuscript that 
 required clearer articulation of our study's goals and conclusions, especially for terms used with different 
 meanings in different fields. We are confident that the revisions made in response to the reviewers questioned 
 have significantly improved the manuscript's clarity. 

 R2C1.  The summary statement states that their synthetic  sequences can outperform natural sequences in 
 driving tissue-specific gene expression. It is also not clear what out-perform natural sequences means. To 
 demonstrate that synthetic sequences outperform natural sequences, they would need to remove all 
 enhancers contributing to the expression of a gene and replace them with synthetic enhancers, and show 
 the organism survives. Or if there is a therapeutic goal, show that the synthetic sequence drives expression 
 of the target gene more effectively than the natural sequence. It is likely within the genome using 
 endogenous promoters, the natural sequences would outperform the synthetic sequences in nontransformed 
 cells. I feel that the comparison of natural and synthetic sequences detracts from their ability to design 
 tissue-specific enhancers. 

 As the reviewer notes, these studies are conducted in transformed cell lines which do not accurately reflect 
 selective pressures on the genome. Furthermore, our system uses an episomal reporter system for both model 
 training and experimental validation. Our use of the term ‘outperform’ refers not to our ability to design 
 synthetic sequences that would increase organismal fitness or that can completely substitute all CREs 
 associated with a single locus, but rather to our ability to design sequences that best drive cell type-specific 
 reporter expression in the three cell lines in our study, a task that is outside the scope of pressures on the 
 genome. We anticipate that future applications of synthetic enhancers will have similar objectives of ectopically 
 driving transgene expression patterns, which may not have been under the necessary selective pressure. 
 Importantly, our result demonstrates that it is feasible to generate  de novo  such sequences and that sequences 
 which best achieve the design criteria we sought cannot (maybe not surprisingly) be discovered by mining the 
 human genome. We realize we failed to properly define what 'outperform’ refers to in our study. Outperforming 
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 is the engineering goal of designing active (high on-target activity) and specific (low off-target activity) elements 
 in three transformed cell lines. We have updated text in multiple areas, to make this more clear” 

 More broadly, we appreciate the reviewer’s comments and the opportunity to revise the text to more accurately 
 reflect the goals and results of the study. In light of the reviewer’s comments, and upon careful review of the 
 language used in our manuscript, we realize the certain terminology used can have distinct interpretations 
 across the various fields we believe this work will be of interest. For example, our use of “fitness” refers to a 
 fitness function as used in the machine learning field and more specifically in relation to evolutionary 
 algorithms. We realize this term is well-defined  with different meanings in other fields and may lead to 
 unnecessary confusion for many readers. As a result we have now replaced “fitness” with “objective” and other 
 alternative language throughout the manuscript. 

 We provide the modified sections below with new text in blue: 

 Updated Abstract  Line 31: 
 “Through  large-scale in vitro validation  , we show  that synthetic sequences  are more effective at 
 driving cell type-specific expression compared to  natural sequences from the human genome, 
 and maintain specificity when tested in vivo.  ” 

 Updated Results  Line 155: 
 “CODA follows an iterative loop of predicting the activity of sequences,  quantifying  how well 
 sequences fit the design goals  using an objective  function  , and then updating sequences to 
 increase the objective value  .  Here, our goal is to  design CREs that drive cell-specific 
 transcription in one of the modeled cell lines, as measured by MPRA  .  ” 

 Updated Discussion  Line 551: 
 “Synthetic sequences  designed by CODA  easily outperform  natural sequences in driving cell 
 type-specific gene expression  in a reporter system  ,  which suggests that novel functions can be 
 programmed into CREs and interpreted by human cells.  ” 

 Finally, we would like to further clarify that our method is not attempting to modulate expression levels of 
 endogenous genes.  Our goal is to drive cell-specific expression of an episomal gene cassette. The reviewer is 
 right that we expect these sequences to have relevance for a therapeutic goal, however, the target system is 
 expression from a transgene delivered by a system such as AAV, lipid particles or other delivery methods. 
 Because we are optimizing for transgene expression and using an episomal reporter system, we do not 
 anticipate that our synthetic enhancers could substitute for natural CREs. Additionally, it is uncertain how 
 synthetic enhancers might affect the overall fitness of the organism, apart from the potential benefits or 
 drawbacks resulting from the expression of the transgene in specific cell types. 

 R2C2. In terms of the synthetic and natural enhancers that function, they test these in 3 cell lines they 
 trained their data on. This is impressive, and there is a clear preference for the predicted tissue-specific 
 enhancers to be active in the respective cell types. I would like to know how these libraries containing their 
 predicted functional tissue-specific enhancers work on other cell lines? Such as fibroblasts or other epithelial 
 cells and neural cell types for example. Do we know that these enhancers are only active specifically within 
 one cell type? 
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 Measuring cell type specificity in new cell types with MPRA. 
 We agree with the reviewer that cell type specificity beyond the three cell types that Malinois was trained is an 
 important and interesting question. We are pleased to address it in our revision by significant expansion of both 
 wet lab experiments and extensive modeling. We aim to pursue this question more comprehensively in future 
 work with additional technologies we are developing. 

 We have built two new models incorporating large amounts of MPRA data from two additional cell types, 
 A549s (lung-cancer epithelium) or HCT116 (colon-cancer epithelial) cells.  We included either 318,247 or 
 442,482 sequences that were tested in the original three cell lines in additional MPRAs in either A549 or 
 HCT116 cells, respectively (  Supplementary Figure 30a-b  ).  We then built two new models, either incorporating 
 A549 or HCT116 data but otherwise using identical hyperparameter settings as the initial 3 cell models to 
 generate comparable predictors (now included in the  Methods  ). Both the new A549- and HCT116-inclusive 
 models retained similar predictive performance (A549 model: Pearson’s r = 0.78-0.80, Spearman’s rho = 
 0.70-0.77; HCT116 model: Pearson’s r = 0.85-0.87, Spearman’s rho = 0.75-0.80;  Supplementary Figure 
 30c-d  ) compared to the original, 3 cell-type Malinois  models (A549 test set: Pearson’s r = 0.83-0.85, 
 Spearman’s rho = 0.80-0.81; HCT116 test set: Pearson’s r = 0.88-0.89, Spearman’s rho = 0.78-0.83). We have 
 included these new models and underlying data in the methods and supplementary information. 

 Having demonstrated the accuracy of the additional cell type models, we next predicted the activity of the 
 synthetic and natural CREs tested in the original manuscript in these cell types  . Given the high correlation  of 
 activity for the specific sequences measured by MPRA between both A549 and HCT116 with the originally 
 modeled cell lines (A549 vs old cell types: Spearman’s rho = 0.75-0.81; HCT116 vs old cell types: Spearman’s 
 rho = 0.85-0.89,  Supplementary Figure 30a-b  ), it would  be reasonable to expect CODA might design 
 synthetic elements with high off-target expression in these cell types. However, we are pleased to report that 
 the synthetic sequences remain clearly strongest in the tissue they were engineered to be most active in 
 (  Supplementary Figure 30e-g  ). 

 A summary of the results include: 
 ●  All  K562 synthetic CREs are predicted to maintain  maximum activity in K562 (  Supplementary Figure 

 30e  ), while most HepG2 and SK-N-SH synthetic CREs  are predicted to display the strongest activity in 
 the originally intended target, depending on the design algorithm (HepG2: 97.0-100%; SK-N-SH: 
 89.2-97.4%;  Supplementary Figure 30g-h  ). This may  be due to a higher overlap in transcriptional 
 programs across epithelial morphologies (HepG2, SK-N-SH, A549, HCT-116), compared to K562 cells. 

 ●  Synthetic CREs designed for all three original cell types do not display repressed transcriptional activity 
 in A549 or HCT-116 as they do in the original off-target cell types. 

 ●  Together these new results demonstrate that CODA can identify activating functions directed to specific 
 cells, without knowledge of other cell types. However, it cannot include repressive functions for cell 
 types the model was not trained on. This emphasizes the need to train models on empirical data from 
 any cell types that are targeted for repression or the need for an orthogonal method to mitigate function 
 in non-modeled off-target cell types. 

 We include these results and discussion in the updated manuscript 

 Line 450: 
 “  Selected  synthetic CREs drive desired tissue-specific  activity in vivo 
 We next sought to assess if the specificity of synthetic CREs would generalize beyond the initial 
 three cell lines used for design. To determine if low off-target activity is maintained in additional 
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 cell lines we trained two new CNN models for A549 (lung epithelial cancer; prediction Pearson’s 
 r = 0.78) and HCT116 (colon epithelial cancer; prediction Pearson’s r = 0.84) cells, which were 
 not included in the original model used for CODA (  Supplementary  Figure 30a-d, Methods  ). 
 Synthetic CREs maintained maximum activity for their target cell type after inclusion of A549 
 and HCT116, especially those generated using Fast SeqProp (  Supplementary Figure 30e-h  ).  ” 

 “  Supplementary Figure 30. MPRA models for A549 and  HCT116 predict synthetic CREs.  Additional MPRA 
 measurements were made in A549 and HCT116 for 318,247 and 442,482 elements and used to model CRE activity 
 in these cell lines, respectively. (  a-b  ) Pairplot  showing distribution of activity for sequences measured in (a) A549 and 
 (b) HCT116 and other cell types. (  c-d  ) A model trained  on sequences with (c) A549 and (d) HCT116 measurements 
 with the same settings as Malinois accurately predicts MPRA measurements of CRE function. Scatterplots show 
 model performance on held out test data. (  e  ) Predicted  activity of K562-targeting CREs across 5 cell lines. CREs are 
 separated into frames based on design methodology. Text inset indicates percentage of CREs where the intended 
 target had the highest prediction before and after A549 and HCT116 predictions were considered. (  f  )  Same as (e) 
 except for HepG2-targeting CREs. (  g  ) same as (e) and  (f) except for SK-N-SH-targeting CREs. (  h  ) On-target 
 predicted activity of CREs summarized by minGap before and after A549 and HCT116 predictions were included in 
 the calculation. Each frame collects CREs from the five frames to the left. Each box represents CREs from a different 
 design method.  ” 

 Estimating cell type specificity in whole organisms orthogonal machine-learning models. 
 We also provide a more explicit and detailed review of our  in silico  analysis of tissue-specific chromatin 
 signature measurements using Enformer  . Enformer predicts  chromatin feature profiles for enhancers and 
 promoters across many mouse cells and tissues, for a total of 1643 mouse-specific feature tracks. To capture 
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 predicted effects in K562, HEPG2, and SK-N-SH, we created a composite score for 10 tissues including 
 spleen, liver, and neuronal structures, respectively. This score is derived from manually curated predicted 
 chromatin features, such as DHS, ATAC, H3K27ac, and CAGE signals, associated with transcriptional 
 activation in the tissue. The features from Enformer associated with each tissue are collated in 
 Supplementary Table 8  . In this way, we use Enformer  to predict the effect of synthetic CREs in many different 
 tissues in mice (  Methods  subsection:  Enformer analysis  of epigenetic signatures  ,  Supplementary Figures 
 31 and 32  ). We added the following text to the main  text and highlight  Supplementary Table 8: 

 Line 458: 
 “  To assess specificity of synthetic CREs beyond an  episomal reporter context  in vitro  , we 
 evaluated selected sequences for their ability to drive cell type-specific expression  in vivo  .  Using 
 Enformer, a deep learning model trained on gene regulatory signatures from primary tissues, we 
 predicted the impact of synthetic CREs on epigenetic and transcriptional markers for gene 
 activation (  Methods, Supplementary Table 8, Supplementary  Figure 31a  )  34  . Specificity as 
 measured by MPRA in K562, HepG2, and SK-N-SH was significantly correlated with tissue 
 specific Enformer scores in spleen, liver, and neural structures, respectively (  Supplementary 
 Figure 31b-d  ) and was higher in synthetic elements  than both groups of natural sequences 
 (  Supplementary Figure 31e  ).  ” 

 Finally, we adjust the frames on the right hand side of  Supplementary Figure 32  to explicitly show the 
 Enformer composite predictions in 10 different mouse tissues for each synthetic element that underwent  in vivo 
 mouse and/or zebrafish experiments. 
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 “Supplementary Figure 32. Malinois contribution scores/Enformer/MPRA results for in vivo sequences. 
 Collection of synthetic sequences prioritized for in vivo validation. Sequences in panels (a-c) and (d-f) are expected to 
 drive expression in liver and neurons, respectively. Left column: Nucleotide sequence, motif matches, and 
 contribution score tracks for each candidate. Right column:  Bar  plots of empirical MPRA signal (left  y-axis) in K562 
 (teal), HepG2 (gold), and SK-N-SH (red) as well as aggregated Enformer predictions (right y-axis) of epigenetic 
 signals reflecting transcriptional activation in mouse  spleen (dim teal)  , liver (  dim  gold), neural tissue  (  dim  red),  heart, 
 intestine, kidney, limb buds, lung, pancreas, and stomach.” 

 R2C3. They claim that synthetic CREs are fit for purpose in vivo, and yet we do not know this for several 
 reasons. Firstly the information provided about the specificity is very limited, are the three enhancers seen in 
 the liver specifically expressed in hepatocytes only? There are four major cell types in the liver, which cell 
 types are their two enhancers active within? I would like to see staining with co-markers to see this. They 
 also need more controls that test a similar number of sequences they anticipate would not be liverspecific or 
 would be inert and yet contain similar motifs and show these do not drive liver expression. I would like to see 
 testing of three natural sequences that they predict are hepatocyte-specific as well. 
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 We apologize for the lack of clarity regarding the goal of our  in vivo  experiments. They serve as a 
 proof-of-concept that fully synthetic elements would function in animals. While we agree that experiments 
 would be required to critically evaluate the effectiveness of synthetic versus natural sequences  in vivo,  these 
 are not tractable at scale. Instead we provide an  in silico  comparison of natural and synthetic CRE function in 
 mice, in which we are less limited by the number of CREs we can interrogate or number of tissue types we can 
 assess expression in. We provide a detailed discussion of these points below. 

 Clarifying language on scale of  in-vivo  proof of concepts 
 The testing of synthetic sequences  in vivo  was not  intended to be a comprehensive breakdown of CRE activity 
 but rather a proof-of-concept to confirm that our  in vitro  derived sequences did indeed drive expression  in the 
 animals tested (mouse and zebrafish). We’ve updated this section title (Line 450) to be “  Selected  Synthetic 
 CREs drive desired tissue-specific activity  in vivo  “ to make it clear we did not test all CREs  in vivo  .  The 
 success rate of reporter expression in both mouse and zebrafish suggest that our strategy of coupling  in vitro 
 design of cell-specific enhancers with additional  in silico  prioritization can identify synthetic sequences  likely to 
 drive reporter expression. While it is true that we are unable to differentiate between the four liver cell types 
 with our imaging, at a tissue level expression is restricted to the liver. We replace ‘hepatocyte’ with ‘  developing 
 liver  ’ at line 479 to reflect this correction. Lastly,  for each CRE presented here, we also tested a negative 
 control ‘empty vector’ nearly identical to CODA vectors except for the lack of the 200-bp synthetic CRE. These 
 were injected at similar rates as the experimental CREs, and showed very little to no expression signal. We 
 now better highlight this in the methods by including the sentence: 

 Line 1179: 
 “  We also created ‘empty vectors’ which were identical  to CODA CRE vectors except for the lack 
 of a 200-bp insert.” 

 Feasibility of quantitative  in-vivo  validation 
 If we extrapolate that liver-specific synthetic CREs will continue to validate at a 66% rate and estimate that 
 liver-nonspecific elements would fail (i.e., drive expression in the liver) at a 5% rate, we estimate we would 
 need to test 14 liver-specific and 14 liver-nonspecific elements to achieve >90% power to show a significant 
 difference in validation rate by χ  2  contingency test.  This projection increases to over 60 elements if 
 liver-nonspecific elements fail at a higher but still modest rate of 20%. This would translate to testing hundreds 
 to thousands of animals. The costs required to test these many synthetic sequences  in vivo  with sufficient 
 power are unfortunately prohibitive, outside the scope of this project and beyond that of publications with 
 similar goals  (de Almeida et al. 2024; Taskiran et  al. 2024)  . 

 In silico  simulation of  in vivo  validation using Enformer 
 Despite the intractability of  in vivo  extended validation,  we agree with the reviewer that scaled validation of 
 elements in whole organisms would be highly informative. In lieu of experimental validation, we used Enformer 
 to predict the impact of natural and synthetic CREs based on expression (CAGE) and chromatin state (DHS, 
 ATAC, & H3K27ac) in mouse tissues, matching K562 to spleen, HepG2 to liver, and SK-N-SH to adult brain 
 tissues. In addition, we made similar predictions in 7 additional off target tissues (heart, intestine, kidney, limb 
 bud, lung, pancreas, and stomach). We reused the predicted transcription changes from  in silico  insertion of 
 our CREs that we had done previously for CRE prioritization (  Methods:  Enformer analysis of epigenetic 
 signatures  ). We observe that in all tissues similar to our targeted cell types, synthetic CREs are predicted to be 
 more specific (as measured by MinGap of Enformer transcription activation predictions using all 10 tissue 
 predictions) than natural sequences. We include these results as part of  Supplementary Figure 31e  , which is 
 included below for the reviewer. We have also updated the  Main  text: 
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 Line 462: 
 “  Specificity as measured by MPRA in K562, HepG2, and  SK-N-SH was significantly correlated 
 with tissue specific Enformer scores in spleen, liver, and neural structures, respectively 
 (  Supplementary Figure 31b-d  ) and was higher in synthetic  elements than both groups of 
 natural sequences (  Supplementary Figure 31e  ).” 

 “  Supplementary Figure 31. Enformer based prioritization  of oligos for in vivo tests.  (  a  ) Enformer can predict 
 CRE-driven changes in epigenetic and transcription dynamics of transgenes inserted into the H11 safe harbor locus 
 in mice. Three example sequence tracks display predicted DHS signals observed in the livers of 15.5 day old mice. 
 Transgene transcription start site and poly-adenylation signal are indicated by the gray bars. The first track is the 
 predicted signal when the input sequence at the CRE insertion site is all Ns. The second track is an example 
 predicting using a validated HepG2-specific synthetic CRE. The third displays the differential DHS effect.  (  b  ) 
 Empirical K562 MinGap measurements are well correlated with Enformer-predicted features of spleen-specific 
 transcriptional activation (  Methods  ). (  c  )  Empirical  HepG2 MinGap measurements are also well correlated with 
 Enformer-predicted features of liver-specific transcriptional activation.  (  d  )  Empirical SK-N-SH MinGap measurements 
 are also well correlated with Enfomer-predicted features of neural-specific transcriptional activation.  (  e  ) 
 Enformer-based cell type matched tissue-specific transcriptional activation predictions (K562 matched to spleen, 
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 HepG2 matched to liver, SK-N-SH matched to adult brain). Stars indicate family-wise error rate corrected p-values < 
 1e-4.  ” 

 R2C4. Regarding the neural enhancers, the ability to design tissue-specific neural enhancers is also unclear 
 to me and not validated in the current manuscript. The enhancers are active in neural cell types, but how do 
 the neural cell types in the zebrafish relate to neuroblastoma cells or mouse cortex? Would their 
 neuroblastoma active enhancers be active in all neural cell types? If so, is this really cell specificity? More 
 enhancers need to be tested and more details provided on the precise location of expression. They would 
 also need to show that synthetic enhancers that are not predicted to work and yet show the same motifs are 
 non-functional. If the authors want to show natural sequences are less specific than synthetic they would 
 also need to test natural sequences and see the location of expression. 

 The SK-N-SH cell line is derived from a neuroblastoma, and given this origin, we anticipated neuronal 
 expression would be most likely if indeed these sequences were capable of driving expression  in vivo.  We 
 agree with the reviewer that substantial future work is needed to explore the design and testing of 
 tissue-specific neural enhancers  in vivo  at-scale.  This is an exciting area of exploration for which we are 
 currently trying to develop new technologies to feasibly address. They however currently require significant 
 time and resources beyond the scale of recently published papers, and outside the scope of what we set out to 
 assess in our current manuscript. Our intention is that this current body of work will serve as a starting point to 
 explore exactly the excellent questions raised by the reviewer. In response to the reviewer’s feedback, 
 however, we have carried out further characterization of our  in vivo  findings by performing (i) 
 immunohistochemistry on the mouse brain, (ii) RNA-seq experiments in the brain, liver, and spleen, and (iii) 
 new, saturation mutagenesis MPRA. We describe each of these new experiments and their findings below. 

 Validating a synthetic neuronal CRE 
 Our only initial objective with CODA was to achieve cell type specificity  in vitro  . Given the resounding  success, 
 we elected to nominate several sequences for  in vivo  testing. We did this to establish a baseline on the 
 transferability of an  in vitro  designed sequence to  an  in vivo  system for future studies. To be clear,  we are not 
 intending to make statements regarding if CODA can design sequences that are superior for  in vivo 
 expression. However, we believe the inclusion of the  in vivo  testing is important and demonstrates that  in vitro 
 screening procedures of ML-designed elements coupled with additional prioritization can generate sequences 
 with exceptional  in vivo  specificity. To strengthen  this claim, in line with this reviewer’s suggestion, we have 
 performed immunohistochemistry on the mouse brain samples that show transgene expression is isolated to 
 neurons within layer VI of the cortex and the subplate (  Figure 4e,f  , and detailed analysis in  Supplementary 
 Figure 37  ). We reference this in the main text as  well as included updated methods for these experiments. We 
 reproduce the new panel and legend for the reviewer below: 
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 “  Figure 4:  (  e  ) LacZ expression in deep cortical layers  is neuron-specific. Top panel: representative confocal images 
 of layer 6 neurons, microglia, astrocytes, and merged image demonstrating the absence of transgene in control mice. 
 Lower panel: confocal images show that transgene expression is exclusive to cortical neurons with arrows indicating 
 colocalization between LacZ signal and neurons. Scale bars: 20um. (  f  ) Box plot showing proportion of neurons, 
 astrocytes, and microglia positive for the transgene. Neurons exclusively express LacZ. ****: adj p < 0.0001 for 
 Kruskal-Wallis One-Way ANOVA.  ” 

 Molecular validation of CRE targeting specificity 
 To address questions of specificity with more sensitivity than microscopy, we performed new RNA-seq 
 experiments in brain, liver, and spleen. Again we see that transgene LacZ expression is highly specific to the 
 brain (  Figure 4g  ). We have updated the main text and  methods to reflect these analyses. Results from this 
 analysis have been added to Figure 4 (above) with  the legend for the reviewer below: 

 “  Figure 4:  (  g  ) Synthetic N1 CRE drives specific transgene  expression in the brain. LacZ expression by synthetic N1 
 CRE is measured using RNA-seq and normalized by the expression of LacZ in mice transgenic for the minP empty 
 vector.  ” 

 We would like to test more sequences in order to refine how we design and nominate synthetic sequences and 
 to compare them to natural sequences; however, the additional animals required to comprehensively test this 
 is outside the scope of our current goal of determining whether or not these synthetic sequences, designed to 
 drive reporter expression in transformed cell lines, are capable of driving  in  vivo  expression. 

 Interrogating functional motifs in our neuronal CRE 
 Following this reviewer’s suggestion to better understand the mechanisms of our synthetic neuronal CRE, we 
 completed a new, saturation mutagenesis MPRA. Originally, we used Malinois contributions scores in SK-N-SH 
 to identify two primary ETS binding domains and four CREB-like binding domains as driving activity. In our 
 MPRA saturation mutagenesis, we mutate each nucleotide in the CRE to every other nucleotide, allowing us to 
 generate empirical functional maps of nucleotide importance to CRE activity, complementing our predictions. 
 Both ETS and three of CREB motifs are shown to drive the CRE’s activation. We’ve now included this as an 
 update to main  Figure 4h  , updated methods, and included  this update to the main text: 
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 Line 509: 
 “  To assess contribution scores from Malinois we conducted  an empirical saturation mutagenesis 
 MPRA in SK-N-SH, which confirmed high-contribution regions and supported motif assignments 
 identified from the contribution scores (  Figure 4h,  Methods  ).  ” 

 ”  Figure 4:  (  h  ) Nucleotide level effects of synthetic  neuronal CRE N1. Top track: Malinois contribution scores reveal 
 the role of ETS and CREB-like binding domains in mediating synthetic CRE activity in neurons. Subsequences of 
 high predicted contribution to SK-N-SH activity overlap with ETS- and CREB-like binding motifs based on visual 
 inspection. Bottom track: Single nucleotide effects measured experimentally using MPRA saturation mutagenesis. 
 Circular points represent the expression change measure by MPRA when only that position is mutated in N1. Letters 
 represent the reference nucleotide of the N1 sequence at that position with the height corresponding to the mean 
 expression change at that position with opposite sign.  ” 

 R2C5. The authors state, “There is no guarantee that an optimal CRE for an intended purpose has arisen 
 naturally through evolution.” I agree, but I would caution against trying to make statements about evolution 
 when the analysis is within transformed cell types. There are several statements about evolution, and I would 
 be careful with these types of statements as they can be misleading. Evolution has not been working on 
 transformed cell lines, and thus one would not expect the natural sequences to be optimized to drive 
 expression in these cell lines. 

 We agree with this reviewer that the evolutionary pressures shaping the genome have not acted on 
 transformed cell lines, nor should we expect explicit selection for gene expression objectives like those 
 presented here. After considering the reviewers comment, we now appreciate that our statement could be 
 understood in multiple ways. We were trying to convey that, given our experimental goal to design sequences 
 capable of driving reporter assay expression in a single transformed cell line, it is unlikely that sequences 
 optimal for that task would exist naturally due to evolution. Given the redundancy and sharing of CREs at 
 individual loci  (Osterwalder et al. 2018)  , and emerging  evidence that suboptimal CREs are preferred by 
 evolution  (Farley et al. 2015; Jindal and Farley 2021)  ,  it is unclear if we should expect sequences in the 
 genome to be highly specific for transformed or even natural tissues. Furthermore, the human genome has a 
 severely constrained search space further hindering our ability to identify sequences necessary for bespoke 
 objectives, such as those with therapeutic purposes  (de Boer and Taipale 2024)  . Our work suggests that  some 
 objectives are likely outside the scope of typical evolutionary pressures but not outside what may be possible 
 with synthetically designed sequences. 

 To better articulate these ideas to the reader, we have made the following modifications 1) we have removed 
 ‘through evolution’ to make it clear we are not suggesting the functions we are trying to design are the same 
 functions evolution acted on, and 2) added “these intended purposes” which links to the clearly non-natural 
 “therapeutic or biotechnology applications” described earlier in the sentence. 
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 Line 25: 
 “While there is great potential for strategically incorporating CREs in therapeutic or 
 biotechnology applications that require tissue specificity, there is no guarantee that an optimal 
 CRE for  these intended purposes  has arisen naturally  through evolution  . ” 

 This point was reiterated in the  Discussion  , so we  have also made a similar change to emphasize evolution is 
 not acting on transformed cell lines: 

 Line 562: 
 “The dearth of natural sequences capable of achieving exquisite specificity  in a desired cell type 
 in our study highlights the difficulty of using human genomic sequences to achieve non-natural 
 objectives for which evolution  may not have  acted  on  .” 

 R2C6. Regarding the discovery of syntax, the authors state “Synthetic sequences leverage unique sequence 
 syntax to promote activity in the on-target cell type and simultaneously reduce activity in off-target cells.” 
 The syntax is not clearly defined, and I don’t think this manuscript contributes to our understanding of syntax 
 within enhancers. I understand that TF motifs are found, but are unique syntaxes that drive on target and 
 reduce off-target demonstrated within their data? Can they make a library where they delete these syntax 
 elements and show that they lose on-target and gain off-target expression? This experiment would be 
 required to validate their claims. 

 Sequence content and motif differences in synthetic sequences 
 Our descriptions of regulatory syntax aim primarily to describe the features, namely TFs and their 
 combinations, utilized by different classes of sequences. We have not outlined prescriptive rules for how 
 regulatory syntax is encoded in our sequences, but instead have classified sequences based on their usage of 
 specific syntactic elements by multiple observational metrics including motif co-occurrence, NMF, and k-mer 
 analysis. Additionally, analyses by an external group showed that our designed sequences differed significantly 
 from natural sequences and random sequences (  Gupta,  Lal, Gunsalus & Biancalani et al  2023 biorXiv). 
 Similarly, our new analysis of k-mer content in Supplementary Figure 13 shows clear differences in 4-mer 
 content between natural and synthetic cell type-specific elements. Together, these data suggest that designed 
 synthetic sequences are distinct from natural sequences chosen for accomplishing the same objective. 

 As described in depth in R1C10, we completely redid our motif analysis and subsequently our program 
 analysis, using predicted functional motif patterns nominated by TF-MoDISco. To address this and reviewer 1’s 
 concerns about the importance of individual motifs, we used  in-silico  motif ablation and embedding studies  to 
 show that disruption and creation of a motif has the expected impact. Across  Supplementary Figures 22  and 
 23,  we observe very strong correspondence between  expected CRE activity impacts when a motif is ablated or 
 embedded, suggesting that our identified motifs are a functional part of that cell type’s regulatory syntax 
 learned by Malinois. While further study is necessary to define the specific rules governing the syntax of our 
 designed sequences, the evidence presented supports the claim that they are employing functional regulatory 
 syntax to drive cell type specificity. 

 Updating program analysis 
 Using the new NMF program analysis on TF-MoDISco-nominated motifs, we restricted our exploration of motif 
 syntax to only motifs with predicted function (as deeply described in R1C10). With this analysis, we again see 
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 distinct, quantitative differences in semantic program usage such as higher rates of deploying both activating 
 and repressive programs. To clarify, in this analysis we observe unique patterns of program usage in synthetic 
 elements, but not see programs that are unique to synthetic elements. We agree that the original statement in 
 the  Abstract  about  unique  programs was unclear and  could be construed as an overstatement. We have 
 updated this to use more clear and conservative language: 

 Line 34: 
 “Synthetic sequences  exhibit distinct  sequence syntax  associated with  activity in the on-target 
 cell type and simultaneously reduce activity in off-target cells.” 

 We also now describe the results of our program analysis in more detail in the main text, specify that we do not 
 find unique programs, and include the updated statistics using the new NMF analysis, none of which change 
 our initial conclusions: 

 Line 436: 
 “  Natural and synthetic sequences deploy distinct  distributions  of semantic  programs (  Figure 3e, 
 Supplementary Figure 28b  ).  While there are quantitative  differences in program preference 
 between the different synthetic sequence design methods, there are no programs unique to one 
 method. Overall, synthetic elements have higher program content and program heterogeneity 
 compared to natural CREs (  Supplementary Figure 29a-b  ).  We also found that natural 
 sequences primarily rely on activating programs while synthetic sequences  also frequently 
 utilize programs  with repressive effects in off-target  cell types  (median repressing program 
 content: DHS-natural  0.077  ; Malinois-natural  0.064  ;  synthetic  0.123  ) (  Supplementary Figure 
 29c,d  ). The vast majority of synthetic sequences (  91.9  %)  are composed of both activating and 
 repressing programs  each exceeding a threshold of  0.1  , while relatively few  er  DHS (  26.9  %) and 
 Malinois (  25.3  %) natural sequences show this combination  (  Methods  ,  Supplementary Figure 
 29e  ).  “ 

 R2C7. The authors state that “Malinois contribution scores enable nucleotide resolution interpretation of 
 sequence activity.” In Figure 3a, the authors show a synthetic enhancer that drives expression in HepG2 
 Cells, they highlight motifs found by Malinois that are important for the activity. To demonstrate that Manolis 
 finds the functional features within the enhancer with base pair resolution, the authors need to mutate these 
 features and show that this renders the enhancer inactive or no longer tissue-specific. Can the authors do 
 this validation on a library of enhancers? 

 Addressing the reviewer’s comment, we conducted the aforementioned analysis  in silico  using  Malinois  as a 
 proxy of MPRA as suggested by reviewer 1. To test whether contribution scores capture functional features 
 learned by Malinois, we disrupted blocks of clustered positive or negative contributions by randomly mutating 
 the corresponding sequence segments corresponding to block calls, and obtained Malinois’ predictions of the 
 mutated sequences. Similarly, we tested sequences randomly mutating positions outside positive and negative 
 block calls. We observed that mutating blocks of positive or negative contributions globally decreased or 
 increased the predicted activity, respectively, when compared to the undisrupted sequences. The effect was 
 most dramatically observed for the target cell type, where disruption of positive contributions completely 
 annihilated the predicted activity. In addition, the disruption of negative contributions further increased the 
 predicted activity in the target and off-target cell types. In contrast, disrupting positions not present in block 
 calls had a more neutral effect in activity. We summarized our results in  Supplementary Figure 21  . 
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 Supplementary Figure 21. Contribution block ablation.  (  a  ) Predicted activity (labeled as initial) in K562  (teal), 
 HepG2 (gold), and SK-N-SH (red) of the library sequences targeting K562. Activity predictions of disrupted 
 sequences when ablating segments corresponding to negative (gray), positive (dark gray) contribution blocks, or 
 outside blocks (light gray) determined by contribution scores in each cell type. The number above each box denotes 
 the number of sequences for which a contribution block type was found. All initial activity boxes correspond to 25,000 
 sequences. Boxes demarcate the 25th, 50th, and 75th percentile values, while whiskers indicate the outermost point 
 with 1.5 times the interquartile range from the edges of the boxes. (  b  ) Same as (a) but library sequences  targeting 
 HepG2. (  c  ) Same as (a) but library sequences targeting  SK-N-SH. (  d  ) Distributions denoting the number of  positions 
 disrupted in (a) by negative (gray), positive (dark gray) contribution blocks, or outside blocks (light gray). Boxes 
 demarcate the 25th, 50th, and 75th percentile values, while whiskers indicate the outermost point with 1.5 times the 
 interquartile range from the edges of the boxes. (  e  )  Same as (d) but disrupted in (b). (  f  ) Same as (d)  but disrupted in 
 (c). 

 We have included the complete details of the  in silico  experiment in the methods section, and added the lines 
 below to the main text referencing the analysis. 

 Line 342: 
 “  First, we used Malinois to predict nucleotide-resolution  activity contribution scores for each 
 sequence in the three cell types using a modified version of Integrated Gradients (  Methods  )  69  . 
 We consistently observed that disrupting blocks of positive contribution led to a decrease in 
 predicted activity, while disrupting blocks of negative contribution resulted in an increase 
 (  Supplementary Figure 21, Methods  ). This alignment  with expected prediction effects 
 supports the functional relevance of the contribution scores as perceived by the model.  ” 
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 In addition, as a single empirical example, we performed saturation mutagenesis MPRA (MPRA-satmut) on the 
 synthetic CRE (N1) that was originally evaluated  in  vivo  . This experiment used MPRA to directly measure  the 
 effect of every possible mutation along the 200-bp sequence. The resulting activity profile from MPRA-satmut 
 is highly concordant with the contribution scores we initially provided in  Figure 4h  . We have now updated 
 Figure 4  to include both the contribution scores from  Malinois and the experimental results from 
 MPRA-satmut. This single example demonstrates how contribution scores compare to an experimental 
 approach. 

 “  Figure 4h:  Nucleotide level effects of synthetic  neuronal CRE N1. Top track: Malinois contribution scores reveal the 
 role of ETS and CREB-like binding domains in mediating synthetic CRE activity in neurons. Subsequences of high 
 predicted contribution to SK-N-SH activity overlap with ETS- and CREB-like binding motifs based on visual 
 inspection. Bottom track: Single nucleotide effects measured experimentally using MPRA saturation mutagenesis. 
 Circular points represent the expression change measure by MPRA when only that position is mutated in N1. Letters 
 represent the reference nucleotide of the N1 sequence at that position with the height corresponding to the mean 
 expression change at that position with opposite sign.  ” 
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 Reviewer #3 

 Massively parallel reporter assays (MPRAs) are increasingly common technique to interpret human genetic 
 variation, screen for enhancer activity, and understand the principle of gene regulation. One application of 
 MPRA data is the prioritization and design of sequences that can label specific cell types. Gosai et. al. 
 develop computational methods to learn a “regulatory grammar” for a specific cell types based on MPRA 
 data. Then, they apply those models to generate synthetic sequences that have greater specificity for the cell 
 type of interest. The research presented here is cutting edge and of broad interest to multiple scientific 
 communities. The strength of the manuscript is the careful benchmarking of different evolutionary algorithms, 
 the interpretations of transcription factor binding site motifs, and the in vitro validation their results. In spite of 
 these positives, there are major issues to address. First, the manuscript depends on unpublished MPRA 
 data for which there is no described quality control or experimental design included. Second, the Malinois 
 model is not adequately benchmarked for its cell type specificity or compared to alternative computational 
 models. This is crucial, given that Malinois is used as a benchmark for CODA. Third, the application of the 
 approach to label cell types in vivo requires a strong similarity between the regulatory grammar of that cell 
 type and the in vitro model of that cell type. This relationship isn’t adequately explored. Fourth, Malinois and 
 CODA as a method for finding sequences to label specific populations aren’t benchmarked against published 
 methods. In summary, there is strong potential for this manuscript to have an impact, but additional rigor in 
 some components of the analysis are required to demonstrate the author’s claims. 

 We appreciate the enthusiasm for this work and agree with the reviewer one of the key strengths of this paper 
 is the careful benchmarking and validation of results. We hope we address the reviewers' concerns below. 

 R3C1.  The increasing amount of available MPRA data  makes this manuscript especially timely. There is a 
 need of innovative computational methods to better leverage and understand this type of data. This work fills 
 an important gap and represents a departure from the use of natural sequences towards potential 
 engineering with synthetic sequences. 

 R3C2. The CODA portion of the manuscript is well motivated and well written. The choice of evolutionary 
 algorithms makes sense in the context of the study. The in vitro validation provides a good demonstration of 
 CODA’s utilitity. 

 We agree with the reviewer there is a gap in the field studying comparing synthetic and natural approaches to 
 sequence engineering. In addition to significantly advancing synthetic engineering, our comprehensive 
 evaluation of synthetic and natural sequences together provides a true assessment of the benefits synthetic 
 designs have. We also appreciate the reviewers assessment that our study is well motivated and well written. 
 We believe the effective communication of a study to its scientific audience is paramount and appreciate all 
 three reviewers' contributions towards improving towards that goal. 

 R3C3. The research depends on large amounts of unpublished MPRA data, which seems to have been 
 collected in the laboratory of the senior author. The details of how the MPRA experiments were designed 
 (especially which sequences were included) and the quality control metrics of that dataset have a bearing on 
 what conclusions can be drawn from the study. 

 We regret that the details of the MPRA design were lacking and underlying data unpublished at the time of 
 initial submission. We are near completion of a preprint describing the experiments used in the training set and 
 expect the preprint to be released early-March in parallel with other ENCODE 4 manuscripts. To facilitate 
 review of this manuscript, we would be happy to provide an early draft of this work upon request. We will note, 
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 all data has been publically available since February 2023 on the ENCODE portal (ENC IDs are included in 
 Supplementary Table 1  and indeed many groups both  internal and external to ENCODE have already 
 downloaded, assessed, and used the datasets in their own research programs. Methods, metadata, and 
 experimental details about the generation of this data are also available on the ENCODE portal. 

 R3C4. For Figure 1, it’s not clear why the GATA1 locus is the focus. It would be more helpful to stratify the 
 accuracy across the different input datasets. Hyper parameters seemed to be tuned on chromosome X, 
 where GATA1 is locus, which could introduce circularity and inflate the model performance. 

 We chose GATA1 as it is one of the few comprehensively tiled loci that  previously  existed using our MPRA 
 design strategy of synthesized 200-bp elements, and the only one not in a training set chromosome. This 
 screen consists of 53,662 elements tiling 2.09Mb of sequence with a 50-bp step size. As we later use Malinois 
 to assess the entire genome for CRE specificity, we reasoned that a display of Malinois ability to match MPRA 
 signal across a genomic locus would be useful for the reader. 

 The reviewer is right to be concerned about the circularity of testing generalizability on the validation set used 
 for hyperparameter tuning. However, while chromosome of origin is a useful way to organize oligos into the 
 train/validation/test splits, the oligos do not comprehensively cover chromosomes. Therefore, there are vast 
 segments of the training and validation chromosomes that were never used to fit or select a model, and 
 elements from these regions are suitable for benchmarking. Furthermore, only 407 out of 52,906 oligos from 
 the validation set overlap the tiled region around GATA1, so it is unlikely for model selection to be appreciably 
 biased towards high performance at the GATA1 locus specifically. 

 To improve our benchmarking and address the reviewer’s valid concerns, we now exclude confounding 
 sequences by removing oligos from the GATA1 tiling screen containing any overlap with oligos in the validation 
 set and analyze the remaining oligos. Note that each individual validation set oligo dispersed throughout the 
 GATA1 locus will overlap multiple GATA1 tiling oligos due to the 50-bp tiling step size. We updated 
 Supplementary Figure 5a  and note that the performance  metrics are nearly unchanged when using oligos 
 with no validation set overlap (before filtering: Pearson’s r = 0.91, Spearman’s rho = 0.85; after filtering: 
 Pearson’s r = 0.91, Spearman’s rho = 0.84). This filtering is now also mentioned in  Methods  and 
 Supplementary Figure 5  legend: 
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 “Supplementary Figure 5. Correlation of Malinois predictions and empirical MPRA tiling data.  (  a  ) Malinois 
 predictions are highly correlated with empirical MPRA measurements of tiled sequences in the GATA locus 
 (chrX:47,785,602:49,880,397)  5,48–50  in K562 (Pearson’s  r = 0.91,  Spearman’s ρ = 0.84  ). X-axis and y-axis  correspond 
 to empirical measurements and Malinois predictions, respectively for oligos in the library  (n = 51242  oligos)  . 
 Sequences  which overlap with oligos from the validation  data split used for model selection were removed from this 
 plot and correlation calculations (n = 2420 oligos omitted). Additionally, oligos  with a replicate log2FC  standard error 
 greater than 1 in any cell type were omitted from the plots.“ 

 We provide the modified sections below with new text in blue: 

 Updated Methods  Line 644: 
 “For locus-specific benchmarking we aggregated the log  2  FC of oligos that tile the GATA1 locus 
 (OL43) following the same counts filtering steps as described above. We generated 
 per-genome-base activity measurements by averaging the MPRA activity of each oligo that 
 overlaps that base pair. We remove oligos genomic coordinates which overlap those in the 
 UKBB and GTEx libraries in scatterplots and correlation calculations. We also aggregated the 
 log  2  FC output of 318,247 and 442,482 sequences tested  in A549 (OL27, OL28, OL29, OL30, 
 OL31, OL32, OL33) and HCT116 (OL41, OL42), respectively following the same counts filtering 
 steps as described above.  ” 

 We also have access to MPRA tiling data from 6 additional loci that overlap with chromosomes included in the 
 training split. Here again, we removed oligos containing any overlap with oligos in the training data split. 
 Overall, Malinois maintains consistent, high-quality predictions across all 7 of these loci individually (Pearson’s 
 r = 0.85-0.91; Spearman’s ρ = 0.79-0.88) and the two libraries on aggregate (Pearson’s r = 0.88-0.90; 
 Spearman’s ρ = 0.82-0.83). 
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 Reviewer Figure R3C4. Malinois predicts the results of additional tiling screens with high accuracy.  (  a  ) 
 Aggregate and per-locus performance of Malinois predictions on an MPRA using OL43 which contains oligos tiling 
 the GATA1 and MYC loci. (  b  ) Aggregate and per-locus  performance of Malinois predictions on an MPRA using OL45 
 which tiles the BCL11A, HBA2, HBE1, LMO2, and RBM38 loci. For both (  a  ) and (  b  ) sequences which overlap  with 
 oligos from the training and validation data splits are omitted from the plots and correlation calculations. Additionally, 
 oligos with a replicate log2FC standard error greater than 1 in any cell type were omitted from the analysis. 

 We feel these comparisons are trustworthy due to careful removal of sequences overlapping the training data. 
 However, we are concerned including them may distract readers because these loci (excluding GATA1) are on 
 chromosomes from where oligos in the training split were derived. 
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 R3C5. The cell type-specificity of Malinois is key to the study, but there are several issues with how that 
 component of the project is validated. First, Malinois is presented as a new computational method, but it is 
 not benchmarked relative to others that could be trained on similar data, including an ENFORMER-like 
 model. 

 Second, the cell type-specificity of Malinois isn’t compared to the cell type-specificity of open chromatin or 
 other measurements, just the raw values. Differences in signal and depth could play a role in accuracy. 

 Third, based on Supplemental figure 3a, I get the impression there is a low proportion of cell type specific 
 CREs. To account for this, there should be a greater exploration and visualization of the number of CREs 
 enriched for each cell type. A statistical test that better handle class imbalance would be helpful to quantify 
 the cell type-specificity. The spearman correlation is currently applied. These concerns are especially 
 important given that CODA is compared to Malinois alone. If Malinois isn’t efficient at determining cell type 
 specificity due to these concerns, then CODA’s improvement over Malinois could be overestimated. 

 Benchmarking of Malinois activity predictions 
 We agree with the reviewer that benchmarking additional models on our data set would provide useful context 
 to evaluate Malinois. To this end, and also addressed extensively in R1C1/4, we benchmarked 
 MPRA-DragoNN and Enformer, published models for MPRA and chromatin state, respectively. We now include 
 a comparison of these models' predictions and Malinois’ to empirical MPRA results of 77k elements in 
 Reviewer Figure R1C1. We show Malinois outperforms these previously trained models on these data. We 
 caution overinterpretation of Enformer’ lower performance, as it was not initially trained on any MPRA data, 
 and is instead tasked with predicting features like open chromatin. Retraining the model with our data would 
 take extensive resources and expertise beyond the scope of this paper. Furthermore, the computational 
 efficiency of Malinois compared to a Transformer model such as Enformer vastly improves the tractability of 
 iterative sequence design, as done in this study. 

 Since we finalized Malinois in November 2021, additional advances in deep learning have been proposed that 
 could likely improve on Malinois predictions. Our benchmarking on unpublished, privately communicated 
 models we have tested through correspondence with multiple labs in the field indicates Malinois remains 
 relatively strong. As described in R1C1/4, ReporterNet, which was trained on the identical dataset as Malinois, 
 achieves similar overall performance. We included these comparisons to unpublished studies for the reviewer, 
 and are confident similar analyses will be made public in those paper’s respective preprints. 

 We agree with the reviewer that chromatin accessibility measurements may not be of uniform quality 
 genome-wide. To mitigate this we conducted comparisons between Malinois predictions and raw DHS signal at 
 and around DHS peaks where experimental confidence is high (  Figure 1f  ,  Supplementary Figure 6  ). 

 Improved visualization/quantification of specific CRE numbers 
 We agree with the reviewer that only a small proportion of sequences in the training, validation, and test 
 dataset plotted in  Supplementary Figure 4  (previously  Supplementary Figure 3) were truly cell type-specific. 
 One of the striking results of this study is that synthetic elements with strong cell type-specific activity can be 
 reliably designed by a model trained on data with a dramatic imbalance between specific and non-specific 
 elements. As seen in the top three plots of  Supplementary  Figure 4a  comparing empirical values from two 
 different cell types, it is evident how few points are captured along the axis (cell type-specific). More important 
 is how the shape of the plots containing these sequences compare to those containing cell type-specific 
 synthetic sequences (  Supplemental Figure 20  ). For  context, the sequences in the training, validation, and test 
 datasets were selected for overlapping a variant associated with either a complex trait in the human population 
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 or an eQTL in GTEx. The majority of the variants tested were either controls (negative control variants 
 matched to trait associated variants) or non-causal variants in linkage disequilibrium with the causal variant. As 
 a result, for practical purposes we can consider this dataset to be mostly random with a possible slight 
 preference toward distal CREs (complex traits and eQTLs) and promoters (eQTLs). The significant proportion 
 of shared signal seen in  Supplementary Figure 4a  is  reflective of what we typically observe by MPRA, that 
 most sequences from the human genome have shared activity across cell types, likely a reflection of a set of 
 shared activating factors (e.g. ETS, SP, etc). Furthermore, we have a working internal hypothesis that cell type 
 specificity is harder to achieve for episomal assays than for a chromatinized. The fact that shared elements are 
 common highlights one of the significant capabilities of CODA: that Malinois can learn cell type-specific signals 
 despite there being only a few examples in the training data, and that its accurate interpretation of these 
 features is correctly exploited by CODA when designing synthetic cell type-specific sequences. 

 R3C6. The ultimate goal of the research is to label specific types of cells. There are other methods for 
 predicting the how sequence specific certain cell type are. Currently, there is no comparison of this method 
 to those previous methods. These include: 

 https://doi.org/10.7554/eLife.48089 
 https://doi.org/10.7554/eLife.69571 
 https://doi.org/10.1038/s41434-021-00227-z 
 https://doi.org/10.1093/nar/gkad375 
 https://doi.org/10.1101/2022.07.26.501466 

 Firstly, we appreciate the reviewer highlighting these important additional citations, and apologize for our 
 oversight in not including them in our submission. We had already begun to note the oversight, and 
 incorporated some of these citations in our  biorxiv  preprint released in the days following our initial  submission 
 to  Nature  . We agree each paper represents a valuable  advance in the field, and we have now included all five 
 citations throughout our manuscript, as well as added additional citations published after submission. One 
 notable addition is de Almeida et al. which was published alongside Taskiran et al. (cited above by the 
 reviewer) at  Nature  on Feb 1st  (de Almeida et al.  2024; Taskiran et al. 2024)  . 

 Importantly, we also provide a detailed analysis of each of these papers below for the reviewer, and we note 
 how our work both compliments and extends each. Broadly, the largest difference between our study and all 
 prior work to our knowledge is that ours performs large-scale experimental validation of cell type-specific 
 sequences. Previous work has only validated a small number of sequences (10-287 CREs and only several 
 controls). Our study uses MPRA to test 51,000 synthetic CREs, more than all previous studies combined. This 
 well-powered analysis allows us to directly compare the success rate between synthetic and natural creating a 
 benchmark not previously established. 

 We have separated our discussion of previous work into two categories: approaches that use/identify natural 
 sequences and those that generate synthetic sequences from model predictions. 

 (i) Natural sequence prioritization or rational design using natural sequences:  Four of the 
 citations provided above employ various approaches to identify, prioritize and test naturally existing 
 sequences to accomplish cell type-specific expression. 

 PESCA and SNAIL 
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 ●  PESCA (Hrvatin et al, eLife 2019), uses ATAC-seq and sequence conservation to nominate 
 CREs specific for neuronal subpopulations  (Hrvatin  et al. 2019)  . 

 ●  Similarly, an effort by Lawler et al. called SNAIL, uses ATAC and DHS datasets to identify 
 sequences specific to parvalbumin-expressing brain cell types  (Lawler et al. 2022)  . Unlike 
 PESCA, SNAIL uses machine learning to prioritize candidates with an SVM-based classifier to 
 assign a binary on- or off-target classification. 

 ●  We believe both methods have significant similarities to the selection approach of DHS 
 sequences used in our manuscript and to a lesser degree that of Malinois nominated sequence. 

 ●  A major strength of both studies is the  use of in  vivo  validation. Hrvatin et al. tests 287 human 
 CREs while Lawler et al. evaluates 2 sequences, both in mice. 

 ●  However, unlike our approach, they only evaluate sequences they nominate, failing to provide 
 any baseline expectations to judge the success of their methods. 

 ●  We tested 24,000 natural sequences (DHS and Malinois nominated) by MPRA and conclusively 
 demonstrated synthetic sequences outperform natural sequences for all three cell types.  Our 
 extensive comparison of natural and synthetic sequences establishes for the first time that for 
 certain objectives natural sequences in the genome are not the optimal solution  . 

 Minipromoters: Simpson and Wasserman  labs 
 ●  Equally impressive efforts in two studies by the Simpson lab and Wasserman labs (  Korecki et al, 

 Gene Therapy 2021 & Fornes et al. NAR 2023  ) use a related approach of nominating natural 
 sequences termed “Minipromoters”  (Fornes et al. 2023;  Korecki et al. 2021)  . 

 ●  Their approach combines promoters with distal CREs and further manipulates these sequences 
 using rational design principles. We especially appreciate this approach because it uses 
 combinations of CREs to create cell-specific elements which likely better reflects how the 
 genome actually accomplishes cell specificity. 

 ●  Again, these works only evaluated a small number of sequences, testing 24 sequences across 
 both papers. It will be interesting in the future to evaluate how well this combinatorial approach 
 works compared to our synthetic sequences. 

 ●  We note that Minipromoters are substantially larger (800-2500 bp) than the 200-bp sequences 
 designed by CODA which limits their direct evaluation at-scale and also limits their therapeutic 
 applications due to the design constraints of some viral vectors 

 (ii) Design of fully-synthetic sequences:  The work  of de Almeida et al. and Taskiran et al. both use 
 deep learning models of CRE activity to inform the design of synthetic sequences  (de Almeida et al. 
 2024; Taskiran et al. 2024)  . Both approaches rely on ATAC-seq data for model training, with de Almeida 
 et al. fine-tuning their model on  in situ  reporter  assays as a binary classifier. Each paper provides 
 significant contributions to the fields of gene regulation and synthetic CRE design, and we enjoyed 
 reading both papers. However, we believe there are several aspects of our study that provide 
 significant advancements that were not the focus of de Almeida et al. or Taskiran et al. 

 de Almeida et al. 
 ●  In de Almeida et al. CREs were generated by scoring up to 3 billion random sequences and 

 selecting the top performing sequences. They then functionally validate 40 synthetic CREs in 
 Drosophila embryos across 8 tissues,  which while not  enough to be statistically powered, gives 
 us a reasonable comparator to our large-scale validation in humans. 

 ●  In their study, 68% were active in the target tissue, but 25% also had off-target tissue specificity. 
 This is lower than the 94.1% success rate of CREs we identified in our work, but not 
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 incompatible with our findings due to difference in methodologies, and  de Almeida et al. 
 employing  more extensive testing of off-target effects. 

 ●  Another important distinction between our work and that described in de Almeida et al. is the 
 efficiency of our design process. In de Almeida et al. they score random sequences selecting 
 those that score best with their design criteria. In our work, we utilize search algorithms to 
 identify local optima greatly increasing the efficiency of our process and also likely leading to 
 CREs with greater specificity. 

 ●  To measure these efficiency differences we used the same zero-order Markov process deployed 
 by de Almeida within CODA for sequence design. We ran this approach for roughly 37 hours to 
 generate 15000 elements, screening 6.144 billion elements in the process and compared the 
 resulting sequences to 15000 sequences designed using FastSeqProp (52.1 minutes) and 
 Simulated Annealing (31.5 minutes). Both Fast SeqProp and Simulated Annealing identified 
 CREs that significantly outperformed a random search approach (  Supplementary Figure 38  ). 
 In fact, if we linearly extrapolate the 2.5%-tile bound (e.g., the 2.5% best elements) we estimate 
 the zero-order Markov process will take 1106 hours to intersect with the same 2.5%-tile bound 
 of Fast SeqProp. Thus Fast SeqProp and Simulated Annealing improve efficiency by over 
 1000-fold, which is a conservative estimate given our linear projection ignores the decay in rate 
 of improvement over time of zero-order Markov processes. 

 ●  We have added this important observation of our increased efficiency to the  Discussion  . 

 Line 553: 
 “  Due to the intractability of fully searching sequence  space, CODA cannot assuredly identify 
 global specificity maxima, but our exhaustive evaluation of natural sequences demonstrates the 
 design methods we used can identify synthetic sequences that regularly outperform natural 
 ones with 1000-fold greater efficiency compared to previous methods using a zero-order Markov 
 approach (  Supplementary Figure 38  )  40,41  .  ” 

 “  Supplementary Figure 38. Projection of efficiency  of zero-order Markov chains for model 
 directed sequence design.  200-mers were uniformly  randomly sampled (i.e., sampled from a 
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 zero-order Markov chain) and tested using Malinois to calculate MinGap for K562 targeting 
 sequences. We plotted the negative MinGap of the cumulatively best 15000 elements collected 
 over 3000000 steps with 2048 samples taken at each step (total of 6.144 billion elements 
 screened).  We plot the median (blue line) and 95%-tile interval (blue shaded region) of the 
 negative MinGap trajectory of the best element collection. As a comparison, we designed 15000 
 elements using Fast SeqProp (52.1 minutes) and Simulated Annealing (31.5 minutes) with the 
 same objective and plotted the median and 95%-tile intervals of predicted MinGap for these 
 groups.  ” 

 Taskiran et al. 
 ●  In Taskiran et al. the authors used three design approaches, (i) random sequences with single 

 base changes added in a stepwise progression, (ii) motif embedding, and (ii) generative 
 adversarial networks. 

 ●  Out of all the papers described here, Taskiran et al most closely matches our approach. 
 ●  The work however does not include large-scale validation of the comparisons to baseline 

 controls that allow meaningful conclusions to be drawn regarding the success of synthetic 
 CREs. 

 ●  The work is also primarily focused on design within drosophila with some additional work done 
 in two human cell lines. 

 ●  The majority of validation performed by Taskiran et al. is performed  in silico  , with only ~30 
 unique sequences tested  in vivo  (Drosophila) and ~30  unique sequences confirmed in a human 
 cell line model (we note the approximate count is due to a lack of clarity what was tested and 
 how  unique  sequence is defined). 

 ●  Our strategy to model CRE activity across cell types directly is fundamentally different from the 
 approach by Taskiran et al. which deploys a neural approximation of topic modeling from 
 sequences. Our model enables us to construct highly flexible objective functions to rationally 
 design sequences with any possible activity profile across the modeled cell types. In contrast, 
 the approach taken by Taskiran et al engineers sequences by optimizing for topic predictions 
 with predetermined cellular activity profiles, some of which are cell-specific. While it will be 
 interesting to see in future work which process is optimal, we note that therapeutic applications 
 could demand CREs of novel activity profiles across cell types which are unlikely to be captured 
 by topic modeling. 

 ●  Our large-scale MPRA of synthetic elements allows us, to our knowledge for the first time, to 
 empirically investigate how multiple sequence generation methods, cell type targets, sequence 
 programs, and synthetic vs natural sequences impact specificity with statistical power. 

 ●  We have added qualitative statements to the paper noting that highly specific sequences in the 
 fly brain have been developed with conceptually similar approaches: 

 Line 67: 
 “Efficient frameworks to generate sequences from predictive models could enable rational and 
 interpretable design of candidate CREs  4,34–39  ,  as  demonstrated by recent work  designing 
 synthetic CREs to drive cell type specificity in drosophila  40,41  . However, synthetic CREs 
 designed using predictive models are untested in vertebrates, and their effectiveness compared 
 to natural sequences remains unknown  .” 

 In summary, we have included text to the paper describing important commonalities shared across all these 
 works (Lines 53-71 & 542-560), that 1) synthetic CREs have been shown to drive specificity in different tissues 
 and organisms and 2) sequence-based models can learn fundamental logics of regulatory grammar to drive 
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 this specificity. We also have clarified through the text the specific advances and approaches unique to our 
 paper, briefly summarized here: 

 ●  Our models are trained on large scale uniformly processed reporter data that are direct readouts of 
 transcription rather than epigenetically correlated markers like ATAC/DHS. This distinction provides a 
 high-performance model that is more directly related to the objectives of many therapeutically relevant 
 design tasks (e.g. AAV and LNP based gene therapy) 

 ●  Our objective function designs sequences for cell type specificity as predicted directly by the oracle. 
 This is fundamentally different from the approach by Taskiran et al. which optimizes for cell-specific 
 topics that are predetermined to be cell-specific. We believe our approach is more robust and has 
 greater flexibility than a function which reflects a linear combination of individual topic functions. It will 
 be interesting to see in future work which process is shown as the optimal approach. 

 ●  Our large-scale testing of 51K synthetic elements and 24K genomic elements allowed us to directly 
 compare specificity between different synthetic approaches and natural sequences. 

 ●  We have included in-vivo, whole-organism validation in vertebrates, including 6 elements in zebrafish 
 and 2 elements in mice. This is the first instance that we know of that a truly synthetic CRE generated 
 by a deep learning model has been demonstrated to work in mammals. 

 R3C7. The final claim of the abstract is that the method is able to “write regulatory code that is fit-for-purpose 
 in vivo across vertebrates.” The experiments in brain and liver are promising, but are not sufficient to support 
 that claim. It isn’t clear if it is possible to collect a in vivo dataset large enough to apply CODA to. 
 Alternatively, the method requires that the regulatory grammar of the in vivo cell type is similar enough to the 
 in vitro system for CODA to be useful. That demonstration is also not shown at a large scale. 

 We agree that this claim is an overstatement as written, and does not convey that it is based on a smaller 
 number of in-vivo experiments than the large-scale MPRA datasets. Accordingly, we have updated the abstract 
 to now state our ability to engineer sequences without the suggestion we have demonstrated reliable success 
 in vivo: 

 Line 36: 
 “  Together, we provide a generalizable framework to  prospectively engineer CREs  from MPRA 
 models  and demonstrate the required literacy to write fit-for-purpose  regulatory code” 

 Minor Points 

 R3C8. In figure 1, a continuous representation should be used to describe the relationship between Malinois 
 predictions and the open chromatin and other genomic measurements. P values are difficult to interpret 
 given the large number of data points. 

 We have ensured that all of the values shown in Fig 1e are continuous. We realized that a  Methods 
 description for this analysis was lacking and have since updated it. Briefly, the MPRA over the 2.1MB GATA1 
 locus includes nearly all (dropouts indicated on figure) 200-bp oligos spanning the region, using a step side of 
 50bp, as generated for the ENCODE project (ENC IDs are included in  Supplementary Table 1  ).  The signal  for 
 each base pair is generated by averaging the MPRA activity of each oligo that overlaps that base pair. The 
 Malinos activity is generated following the same strategy, using predictions for each oligo rather than empirical 
 data. Signal is directly overlaid and colored to show non-overlapping sections. Pearson’s r and Spearman’s rho 
 between the two tracks, as well as DHS signal from K562 are also included in  Fig S4B. 
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 We have now included an updated  Methods  section for  this analysis: 

 Line 644: 
 “  For locus-specific benchmarking we aggregated the  log  2  FC of oligos that tile the GATA1 locus 
 (OL43) following the same counts filtering steps as described above. We generated 
 per-genome-base activity measurements by averaging the MPRA activity of each oligo that 
 overlaps that base pair.  ” 

 R3C9. Supplemental figure 3 does not have scatter plot comparisons for the SK-N-SH cells. 

 The axis labels for this plot initially were listed only once and denoted all plots within a column. This was 
 unclear, and could make it appear like the scatter plots for SK-N-SH were missing. We’ve updated the labeling 
 to make it clear in the manuscript and provide the updated panels below: 

 Updated Supplementary Figure 4a 

 R3C10. Starr-seq is a continuous signal and an assay similar to MPRA. It would be helpful to see both 
 treated as a continuous signal to look for correspondence. 

 We have included an additional analysis outside of the deeptools pileup plots shown in Figure 2f,  comparing 
 Malinos signal to STARR-seq signal in peaks of activity identified by STARR-seq as well as upstream and 
 downstream flanking regions. Shown in  Supplementary  Fig 6C  for the two cell lines (K562 and HepG2) that 
 have genome-wide STARR-seq, we see the Malinois signal is significantly different in peaks vs flanking 
 regions, highlight correspondence between a Malinois and an MPRA-orthogonal reporter assay. The panel is 
 included for the reviewer below as well: 
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 Supplementary Figure 6. Malinois concordance with DHS/H3K27ac/STARR.  (  c  ) Malinois genome-wide 
 predictions are significantly associated with candidate CRE mapping (DHS-seq, and H3K27ac ChIP-seq) and 
 orthogonal signals of CRE functional characterization (STARR-seq).  Boxplots display average signal generated  by 
 Malinois genome-wide predictions within peaks annotated using DHS, H3K27ac, or STARR-seq (orange) compared 
 to paired upstream (blue) and downstream (green) flanking regions.  Boxes demarcate the 25th, 50th, and 75th 
 percentile values, while whiskers indicate the outermost point with 1.5 times the interquartile range from the edges of 
 the boxes.  Stars indicate a significant (-log  10  p-value  >100) for two  t-tests comparing signals within peaks and both 
 upstream and downstream regions outside of peaks  . 

 R3C11. In figure 2c, the performance of the DHS natural and Malinois natural are surprisingly poor. Why is 
 open chromatin and H3K27ac a poor indicator of specificity? Does the relatively poor Malinois performance 
 suggest reproducibility issues? 

 We agree with the reviewer that the observation that open chromatin combined with H3K27ac filtering is a poor 
 indicator of specificity could be surprising to many readers. Figure 2c displays that natural sequences, either 
 nominated from DHS signal or Malinois MPRA predictions, do generally have worse performance at identifying 
 highly specific sequences. Empirically, we observe that natural DHS sequences are generally less active than 
 synthetic sequences, and have higher amounts of pleiotropy as defined by activity in the MPRA. This could be 
 an endogenous feature of natural sequences, perhaps driven by evolution’s reuse and cooption of regulatory 
 elements in different tissues, or due to discrepancies between quantitative DHS signal and transcriptional 
 output. As we discuss in detail in R1C21, open chromatin signals display only a weak, but significant, 
 correlation with MPRA  (Kim et al. 2021; Puig-Alcaraz  et al. 2016)  or gene expression  (Nair et al. 2021)  .  For 
 Malinois-nominated natural sequences, we see that they actually perform better in terms of specificity. This 
 could be due to predictions being directly on a specific 200 bp outside of the endogenous context of the 
 genome, nearby sequences repressing on-target activity or inducing off-target expression, cooperative effects 
 of multiple CREs acting on a specific promoter, and other endogenous impacts may explain the difference 
 between open chromatin measures and both empirical and predicted reporter results. We have included these 
 ideas in the discussion: 

 Line 565: 
 “This is possibly a reflection of selective pressure that has shaped DHS elements across 
 mammalian evolution to be optimized for redundancy, versatility, and modular function  91,92  or 
 alternatively, a weak correlation between quantitative DHS signal and CRE activity.” 

 While the performance of natural sequences vis a vis  specificity  may be relatively poor, as an activity  predictor, 
 Malinos actually performs well on both natural and synthetic sequences. If we separate correlations between 
 Malinois predictions vs DHS natural using K562 as an example, Malinois-natural sequences have a pearson 
 correlation to empirical results of 0.91 while DHS-natural have a correlation of 0.86. This suggests that 
 Malinois does not have a reproducibility issue related to the source of the sequence, and instead points to 
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 biological differences between the sequence sources. We summarize these results in more depth in 
 Supplementary Figure 16  and reproduce the figure in  our response to R3C13  . 

 R3C12. For each cell type (and across cell types) how well do the new MPRA results correlate with the 
 previous MPRA results for the same sequences? Are there experimental differences, either procedure or 
 source of the cell line, that could be driving performance? 

 Cross library reproducibility 
 To remove the possibility of experimental noise impacting performance assessments for different sequence 
 design methods, all natural and synthetic cell-specific designs are tested in one library. Therefore, technical 
 variability between experiments will not induce differences in function between natural and synthetic elements. 
 Moreover, we retained all experimental procedures, cell lines, and analyzes consistent between MPRA data 
 used in training and final CODA MPRA that compared natural and synthetic CREs simultaneously.  To assess 
 the possibility of systematic experimental differences between old and new experiments impacting the 
 generalizability of our models and observations, we compared MPRA measurements for 594 control elements 
 that were tested in both the initial training set and the final CODA library. We show MPRA measurements for 
 individual sequences are highly correlated between experiments (  Supplementary Figure 14  ). We do observe 
 a small subset (<5%) of elements that display differences between each library in the HepG2 cell line. We have 
 not been able to discern any sequence-specific or technical reason for these differences, but it does not 
 appear to impact sequence generation abilities for HepG2. 

 Line 268-277: 
 “  We experimentally tested the library of 77,157 natural  and synthetic sequences (  Figure 2b  ) to 
 determine if machine-guided sequence design could reliably generate biologically functional 
 elements with desired activity. In total, the library included 51,000 synthetic sequences (36,000 
 standard and 15,000 motif-penalized), 24,000 natural sequences (12,000 DHS-natural and 
 12,000 Malinois-natural), and 2,157 experimental controls.  We quantified activity of an individual 
 CRE as the log  2  fold change (log  2  FC) of expression  of the reporter gene driven by the CRE 
 compared to a set of negative controls (  Figure 2b,c  ).  A set of 594 control elements shared with 
 the training data libraries confirms the high reproducibility of MPRA measurements across 
 experiments (Pearson’s r 0.97, 0.81, and 0.98 for K562, HepG2, and SK-N-SH, respectively; 
 Supplementary Figure 14  ).  ” 

 “  Supplementary Figure 14. MPRA measurements for individual  elements are reproducible between different 
 experiments and libraries.  MPRA activity measurements  made in the training data plotted on the x-axis are highly 
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 correlated with later measurements made in the CODA library on the y-axis. Measurements were made in K562 
 (teal), HepG2 (gold), and SK-N-SH (red).  ” 

 R3C13. The proportion of oligos with error that are too high to serve a reliable indicator should be more 
 thoroughly described and addressed. A computational model that produces sequences with high variability 
 should be considered inferior. 

 We agree with the reviewer that a model, whose predictions of designed sequences correlate with MPRA 
 measurements better than Malinois’, would be considered a superior model. However, to our knowledge, such 
 a model has not yet been published. In fact, we have been impressed with the ability of Malinois to accurately 
 predict synthetic sequences. Prior to receiving the experimental validation results, we had concerns that 
 synthetic sequences were out-of-distribution compared to the training dataset resulting in spurious predictions. 
 Instead, prediction performance for synthetic elements appears to be similar, if not slightly better than natural 
 sequences selected for the same objective (  Supplementary  Figure 16  ). This suggests the model is generally 
 performing well, and more importantly, it accurately predicts the synthetic sequences it assists in designing. 
 Furthermore, Malinois is outperforming all published models and performs similarly to the best unpublished 
 models of which we have knowledge. In  R1C4  , we describe  how we retrospectively benchmark Malinois’ 
 predictions of synthetic sequences to two published models, MPRA-DragoNN and Enformer, and to two 
 models still in development, MPRA-LegNet and ReporterNet. In panels (b) and (d) in  Reviewer Figure R1C1  , 
 we show that both published models exhibit poor performance compared to Malinois when predicting the 
 activity of synthetic sequences. On the other hand, in  Reviewer Figure R1C4  , we show that Malinois performs 
 comparably to MPRA-LegNet and ReporterNet in that task. We recognize the possibility that the models above 
 could achieve better performance when predicting sequence designs of their own creation. Unfortunately, none 
 of those models have been used to design sequences that are also empirically validated for specificity. 

 Supplementary Figure 16. Granular Malinois prediction performance of CODA library.  Pearson correlation 
 coefficient values between Malinois activity predictions and MPRA empirical measurements in K562 (teal), HepG2 
 (gold), and SK-N-SH (red) of the CODA library broken down by method group. 
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 In response to multiple comments, we added text in the discussion that future, more accurate models will 
 benefit sequence generation: 

 Line 599: 
 “As the technology underlying sequence-to-function models continues to evolve, are 
 mechanistically interrogated through ablation studies, and are trained on high-quality MPRA 
 data sets, we expect synthetic element designs to become even more reliable and reduce the 
 experimental burden for in vitro and in vivo validation.” 

 R3C14. The propeller plots are a useful visualization and do confirm that the sequences with the largest fold 
 difference are also the ones high specificity. However, it would also be useful to have visualization for each 
 pair of cell types that compare the specificity in 2D space. 

 Following the reviewer's suggestion, we have included 2D scatter plots (  Supplementary Figure 20  ) comparing 
 each pair of cell types for each sequence group. 
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 “  Supplementary Figure 20.  Cell-type activity comparisons.  Scatter plots comparing empirical log2(Fold-Change) 
 activity in each pair of cell types for each design group. Color indicates the target cell type for which sequences were 
 designed (synthetic) or selected (natural).  ” 
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Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 

The authors have adequately addressed previous concerns, significantly improving clarity and 

coherence. I have some minor concerns regarding the problem statements, which appear as "straw 

man" arguments. 

For example, in the intro (page 2, line 62-67), the authors state that genomic DNNs have been largely 

applied to chromatin demarcated by DHS rather than direct CRE activity. This is misleading as there are 

plenty of studies that fit quantitative CRE activity data from MPRAs, lentiMPRA, and STARR-seq. Proper 

citations should be made and the statement should be made more precise. 

Also, the authors state that experimentation are incapable of global searches over all possible sequence 

combinations within the size of human CREs. This is also misleading as computational approaches are 

also limited in this search. For a sequence of length 200, there are 2.58225e+120 possible combinations! 

The motivation for the method should be more precise and to the point. There is no need to create a 

gap in the field where there is no gap. 

The data splits are unclear. Information about the MPRAs testing allelic effects is not provided in a form 

that is comprehensible to a reader without having to go through each dataset. How the loci probed were 

split so as to ensure no train-test leakage is not clear. 

Malinois is clearly a very odd architecture choice due to its inefficiency in processing 400 nts of padding 

as opposed to the 200 variable sequences that are important. The authors should highlight this oddity 

and explain the inefficiencies of this choice. The authors could have just initialized the filters of a CNN 

that considers 200 nts; even with all filters from 3 conv layers of basset with the same pooling is just 

outside the 200 nts, so the necessary padding would be much less and handled within the backend using 

'zero padding'. The lack of alternative model comparisons, beyond a 2016-based model, such as LegNet 

and beyond, should also be highlighted as Malinois was used just for the purposes of this study but is not 

likely to be close to state-of-the-art for CRE activity prediction tasks (see random promoters DREAM 

challenge). I understand a comprehensive comparison is beyond the scope of the manuscript -- any 

expectation and confusion can be remedied by carefully wording that malinois is not a central part of the 

main thesis, which (I believe) is that trained sequence-function DNNs can be used to design cell-type 

specific regulatory sequences as they can act as a scoring function. The challenge is that sequence space 

is large and so navigating it can be computationally prohibitive. CODA framework can help navigate this 

search space relatively efficiently, compared to 0-order Markov model. More interestingly, the local 

search methods all work relatively well (including single-nucleotide evolution (Ibrahim et al 2023, 

Vaishnav et al 2023), which suggests that there are many modes within the local sequence space that 

generate valid functional sequences. 



Referee #2 (Remarks to the Author):  

I appreciate that the authors have done extensive work to revise their manuscript. These have addressed 

many of my concerns, however, the way in which this data is presented still does not accurately reflect 

the data and this main concern remains. The manuscript needs extensive rewriting to accurately reflect 

the data and to tone down some of the conclusions. This would make the paper far stronger. The main 

concerns relate to referring to cell type specificity or cell specificity when referring to specific expression 

in a particular transformed cell line and how these transformed cell lines relate to in vivo expression 

patterns. Another key issue is the use of syntax when looking at combinations of TFs rather than syntax. 

The data and findings in the manuscript are compelling and I’m disappointed to see how it is presented. 

I do not feel my comments have been addressed sufficiently and to a reader the conclusions are still 

misleading. The main one being that synthetic enhancers can be designed to give more tissue 

specificity than genomic elements. This is true for the specific transformed cell lines they have tested 

and may be true more globally but is not validated in this manuscript. This manuscript shows that 

synthetic elements outperform genomic elements to drive expression specifically in transformed cell 

lines which may be logical given that evolution has not selected for elements that drive expression in 

a particular cancer cell line. It is impressive that these elements do drive expression in related cell 

types in vivo, but they are related, and it is not the same cell-specificity and this needs to be clarified. 

The data is good but there is no need to overstate and inaccurately report the data. The focus on 

genomic vs synthetic to me is still a distraction for the main point of this paper, which nicely 

demonstrates that you can design enhancers with desired specificity using synthetic sequences and 

MPRA data and that using synthetic enhancers increases search space and can find novel mechanisms 

of driving the desired specificity. 

Specific examples of problematic statements: 

Through large-scale in vitro validation, we show that synthetic sequences are more effective at driving 

cell type-specific expression compared to natural sequences from the human genome and maintain 

specificity when tested in vivo.

The synthetic sequences outperform natural sequences in the human genome in driving in 

expression in transformed cell lines, there is not enough data to make this claim so sweepingly 

about cell-type specific expression globally as the assay was done in cell lines in which the 

genome has not evolved. The in vivo expression is within the same organ systems as the cell 

lines of the original study, which is impressive and interesting, but it is not accurate to say 

maintain specificity when tested in vivo here. This is still very misleading. 

Synthetic sequences exhibit distinct sequence syntax associated with activity in the on-target cell 

type and simultaneously reduce activity in off-target cells. 

There is no syntax shown in the manuscript, it would be more accurate to use the term different 

combinations of TFs or TF vocabulary. 



Main text: 

Here we present a method to engineer novel synthetic CREs capable of driving gene 

expression with cell type specificity. 

It is cell specific within transformed cell lines. This should be clarified. 

We leverage innovations in modeling regulatory grammar across cell types 

What are the innovations in modeling regulatory grammar? Isn’t the innovation the use of MPRAs and 

models that look at TFBS combinations and vocab? 

Coupled to sequence generation algorithms, we deploy our model to generate thousands of cell type-

specific, synthetic CREs, which we functionally validate using MPRAs and in vivo using mouse and 

zebrafish. 

It would be more accurate to say .... And we see the expression in related cell types within the same 

organs in vivo using mouse and zebrafish. 

Results: 

We were able to identify naturally occurring sequences with cell type specificity. 

Would be better and more accurate to state ...With expression specifically in particular cell 

lines. 

Synthetic sequences from all three algorithms outperformed both groups of natural sequences 

as cell type-specific CREs in all three cell types. 

This needs to be rewritten to reduce the misleading nature of this statement to something like synthetic 

sequences outperformed genomic sequences as cell line specific CREs in all three transformed cell lines. 

Although this may be expected given the nature of these transformed cell lines and the fact that the 

genome has not evolved to drive expression specifically in transformed cell lines. 

We sought to link sequence content to the responsible regulatory syntax. 

The manuscript as it stands only finds combinations of TFs and TF vocab, I cannot see any evidence of 

regulatory syntax. Please do not refer to syntax when the syntax is not studied. 

suggesting that natural sequences are less likely to use repressive grammar in constructing cell type-

specific CREs. 



I find this misleading as it is at over-generalization about cell type specificity and the fact that genomic 

sequences are less likely to use repressors, while this may be the case in the transformed cell lines it 

does not mean that this is the case in general. It would be more accurate to say: 

This suggests that genomic sequences that show specific expression within the transformed cell lines are 

less likely to use repressive TFBs in constructing transformed cell line specific CREs. 

The section starting: Complex semantic architectures are syntactically differentially deployed in 

natural and synthetic sequences

This section is hard to understand and ultimately boils down to different combinations of TFs are seen 

in different types of CREs. The use of semantic architectures seems overly complex to me, and it would 

be better to simply state what the data finds. The section title suggests finding different syntax in 

different enhancers, but they are talking about the use of different TFs namely activators and 

repressors. 

It is unclear to me what these “programs” identified by NMF are supposed to be. It is unclear 

how these relate to more than just the combo of binding sites. 

Using empirical MPRA results, Malinois contribution scores, in silico predictions of tissue-specific 

epigenetic signals, and element syntax, we nominated three liverand three neuronal-specific CREs for 

in vivo characterization in zebrafish embryos ( 

These are 3 liver transformed cell line and neuroblastoma cell lines CREs, that they decided 

to see if they had liver, and neural activity in vivo. This should be stated. It is impressive that 

these do drive expression in the organs from which the transformed cell line is derived, and 

this should be discussed, rather than oversimplifying to suggest that the cell line and the 

location of expression are demonstrating conserved cell-type specificity. 

It is unclear how they used element syntax to select enhancers, it appears to me that they used 

combination of TFBS. In the methods section they don’t mention anything about looking at binding 

site arrangement. Thus is it really syntax or just combinations of TFs? 

Remarkably, we detected minimal off-target expression in non-targeted cell types 

Please expand in the main text. It looks like there is expression in non-liver and neural cells 

in the zebrafish assays. This is fine but needs to be explained to the reader. 

We confirmed cortex specific expression with focal activity occurring in the neurons at neocortical layer 

6 and at subplate neurons (Figure 4e-g, Supplementary Figure 37a,b). Please explain the link between 

the cell line used for the MPRA assays (the neuroblastoma cell line) and the cell types in which the 



enhancer is found beyond the fact that they are neural. Why would one expect these CREs to be only 

expressed within neocortical layer 6?

Discussion: 

Due to the intractability of fully searching sequence space, CODA cannot assuredly identify global 

specificity maxima, but our exhaustive evaluation of natural sequences demonstrates the design 

methods we used can identify synthetic sequences that regularly outperform natural ones with 1000-fold 

greater efficiency compared to previous methods using a zero-order Markov approach (Supplementary 

Figure 38) 40,41 . 

Again the sequences outperform in designing enhancers that drive expression specifically in 

transformed cell lines. I understand the use of outperform in different fields but this needs to be clear, 

so it is not misleading. 

Synthetic sequences designed by CODA easily outperform natural sequences in driving cell type-specific 

gene expression in a reporter system, which suggests that novel functions can be programmed into CREs 

and interpreted by human cells. 

.... In driving cell line specific gene expression, which suggests that synthetic enhancer can be 

programed into CREs and interpreted by transformed human cell lines. Again this is likely to be the 

case when you use a cancer cell line to do the assays and needs to be stated for the reader. 

The dearth of natural sequences capable of achieving exquisite specificity in a desired cell type in our 

study highlights the difficulty of using human genomic sequences to achieve non-natural objectives for 

which evolution may not have acted on. 

My comments relating to this have not been addressed sufficiently and this needs to be spelled out to 

the reader. The synthetic elements will of course do better as the focus is on elements that are driving 

expression in transformed cell lines which the genome has not evolved to do. 

This suggests that  our models  have learned a component of the foundat ional  

rules governing CREs  and possess  the abi l ity  to  extrapolate this  knowledge to 

unobserved or  rarely observed syntax combinat ions.  Replace syntax  with TFs  

combinat ions.

we were able to identify natural sequences in the genome with moderate proficiency for cell-specific 

activity, albeit to a lesser degree than synthetics. 

we were able to identify sequences in the genome with moderate proficiency for cell-specific activity, 

albeit to a lesser degree than synthetics in the transformed cell lines. 



(Remarks on code availability): The code is easier to understand that it was in the previous version. I'll 

defer to the other two reviewers on this who are more computational experts than I. 



Referee #3 (Remarks to the Author): 

Summary 

The authors do a very thorough job addressing my concerns and those of the other reviewers. In 

particular, the comparisons to other methods (Enformer, MPRA-DragoNN) provide better 

benchmarking. The new TF-MoDISco results improve the confidence that the models are learning the 

relevant regulatory code. However, there are still two major concerns. First, there are still key details 

missing in the transfer learning procedure, including whether potential circularity. Second, the 

manuscript still relies heavily on MPRA experiments that have still not been adequately described. 

Major points: 

The motivation behind Malinois and its role in the manuscript are made much more clear by the 

additions to the text. However, it also raises new questions: 

- Given the improvement that transfer learning provides, how does Bassett on its own do in predicting 

MPRA activity? This is critical because it gets to whether the neural network model requires MPRA data 

or whether open chromatin is sufficient. 

- How much of Malinois’ performance boost relative to MPRA-DragoNN and Enformer are due to 

transfer learning? 

- The authors have addressed my original concerns of circularity, but new ones have been introduced. It 

seems like the parameters from the Bassett architecture, which is trained on a global library of open 

chromatin, have been used to initialize the models. This could be then be introducing circularity across 

many of the loci. 

The lack of detail on the MPRA experiments are still a major concern. There is still no preprint. 

Other Items: 

The addition of TF-MoDISco substantially improves the manuscript. The interpretation of individual 

motifs, especially those recognized by cell type-specific transcription factors. 

The comparisons to Enformer and MPRA-DragoNN improve the manuscript. 

The thorough comparison to previous methods, including the newly published ones, is helpful. 

The new supplemental figure 20 provides a very compelling visualization of cell type-specificity. 



Reviewer #1

The authors have adequately addressed previous concerns, significantly improving clarity and
coherence. I have some minor concerns regarding the problem statements, which appear as "straw
man" arguments.

We thank the reviewer again for the constructive comments during the review process and are pleased
to know we satisfactorily addressed previous concerns. We hope the following responses help to
address and clarify the reviewer’s remaining minor concerns. New in-line references are provided in
long form for ease of review.

R1C1. For example, in the intro (page 2, line 62-67), the authors state that genomic DNNs have been
largely applied to chromatin demarcated by DHS rather than direct CRE activity. This is misleading as
there are plenty of studies that fit quantitative CRE activity data from MPRAs, lentiMPRA, and
STARR-seq. Proper citations should be made and the statement should be made more precise.

We agree with the reviewer that our original text did not properly highlight recently published
approaches that model CRE activity measured by reporter assays. We have updated the text and
added citations to address this issue, clearly stating that while the majority of DNNs have been trained
on chromatin features, recent work has shown advances when trained on functional CRE activity data.

Line 63:
“While these sequence models are promising tools for the interpretation of genetic
sequences27,28,31,33, they have largely been trained on, and predict, proxies of regulatory
activity such as regions of open chromatin demarcated by DNAse Hypersensitivity sites
(DHS), rather than direct CRE activity measured by reporter assays. Recent works, such
as DeepSTARR31 and EnformerMPRA21 have demonstrated that training such models
directly on reporter assays can provide substantial performance gains.”

R1C2. Also, the authors state that experimentation are incapable of global searches over all possible
sequence combinations within the size of human CREs. This is also misleading as computational
approaches are also limited in this search. For a sequence of length 200, there are 2.58225e+120
possible combinations! The motivation for the method should be more precise and to the point. There
is no need to create a gap in the field where there is no gap.

We wholeheartedly agree with the reviewer that it is unfeasible for both experimental and
computational analysis to perform global searches, and had meant this as the gap that exists. We had
previously noted at lines 65-67 (numbering corresponds to previous submission) in the manuscript that
computational approaches are limited in global searches, even with their million times increased speed
over experimental methods. However, we see that the original sentence might not have been clearly
structured as originally written. We have updated the text to help make clear that global searches are
impossible for computational approaches.

Line 68:
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“Lastly, although computational models are millions of times faster than experimentation,
these models are still incapable of global searches over all possible sequence
combinations within the size of a typical human CRE. Efficient frameworks to generate
sequences from predictive models could help address this gap and enable rational and
interpretable design of candidate CREs4,34–39, as highlighted by recent work designing
synthetic CREs to drive cell type specificity in drosophila40,41.”

We expect the scale of the problem is underappreciated by many in the field. As a result, we reference
the vast size of the search space at line 45 to underscore the problem and the opportunities for
discovery. We are in full agreement with the reviewer that both computational and experimental
approaches are limited in their search capabilities, and we welcome further suggestions from the
reviewer if they believe there are additional modifications we can make to emphasize this.

Line 45:
“Indeed, 200 base pairs of DNA can encompass over 2.58x10120 possible sequences,
more combinations than atoms in the observable universe. This unexplored CRE
sequence space, combined with our current poor understanding of the underlying
principles driving CRE function, leave available a vast untapped reservoir of potential
CREs for clinical and biotechnological applications8.”

R1C3. The data splits are unclear. Information about the MPRAs testing allelic effects is not provided
in a form that is comprehensible to a reader without having to go through each dataset. How the loci
probed were split so as to ensure no train-test leakage is not clear.

We appreciate the reviewers attention to how we handle and describe our data splits, and the
underlying data, to ensure there is no train-test leakage.

Clarifying data splits.
We have updated the Methods section to help clarify the data was split in a manner that ensures no
train-test data leakage.

Line 657:
“Oligos from chromosomes 19, 21, and X were held out from the parameter training loop
as a validation set guide hyperparameter tuning. Oligos from chromosomes 7, 13 were
held out from both parameter training and hyperparameter tuning loops as a test set for
reporting performance. Oligos from the remaining chromosomes were used in the
training loop. Oligos that contain alternative alleles are assigned to the same
chromosomes as the reference allele oligos.”

Detailed information on allelic effects.
We appreciate the reviewer highlighting a unique feature of our MPRA dataset. To provide additional
details that may be of interest to the reader, we have expanded the Methods section that describes the
dataset. We now provide the proportion of sequences in our dataset that were designed to test allelic
effects and precisely how the sequences are designed.

Additional details can be found in our newly released preprint that describes the design and analysis of
the entire dataset used for training in our manuscript (Siraj et al. 2024) (DOI:
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https://doi.org/10.1101/2024.05.05.592437). All data related to the preprint and this manuscript is also
publically available on the ENCODE portal (Supplemental Table 1, Link to Encode Portal).

Line 635:
“The majority of projects focused on testing the allelic effects of human genetic variation
with the remaining projects testing only the reference sequences of the human genome.
In total, 798,064 unique oligos were aggregated, originating from 10 independent
experiments (from three different projects: UKBB [OL27, OL28, OL29, OL30, OL31,
OL32, OL33], GTEx [OL41, OL42], OL15). The majority of the sequences used in our
study (783,978) were designed to evaluate common human genetic variation associated
with heritable complex traits. The majority of sequences (706,054) consisted of testing
the reference and alternative allele, typically a single nucleotide substitution, centered
within 200 bp of flanking sequence. Additional sequences (77,924) evaluated the 4
pairwise combinations of two independent variants. Variants were selected based on
genetic fine-mapping with most variants being LD-partners of causal alleles and thus
likely to not have a meaningful impact on cellular or organismal traits. The remaining
sequences (14,086) originated from OL15 from which we selected the known DHS and
H3K27ac sequences.”

R1C4. Malinois is clearly a very odd architecture choice due to its inefficiency in processing 400 nts
of padding as opposed to the 200 variable sequences that are important. The authors should
highlight this oddity and explain the inefficiencies of this choice. The authors could have just
initialized the filters of a CNN that considers 200 nts; even with all filters from 3 conv layers of basset
with the same pooling is just outside the 200 nts, so the necessary padding would be much less and
handled within the backend using 'zero padding'. The lack of alternative model comparisons, beyond
a 2016-based model, such as LegNet and beyond, should also be highlighted as Malinois was used
just for the purposes of this study but is not likely to be close to state-of-the-art for CRE activity
prediction tasks (see random promoters DREAM challenge). I understand a comprehensive
comparison is beyond the scope of the manuscript -- any expectation and confusion can be remedied
by carefully wording that malinois is not a central part of the main thesis, which (I believe) is that
trained sequence-function DNNs can be used to design cell-type specific regulatory sequences as
they can act as a scoring function. The challenge is that sequence space is large and so navigating it
can be computationally prohibitive. CODA framework can help navigate this search space relatively
efficiently, compared to 0-order Markov model. More interestingly, the local search methods all work
relatively well (including single-nucleotide evolution (Ibrahim et al 2023, Vaishnav et al 2023), which
suggests that there are many modes within the local sequence space that generate valid functional
sequences.

We appreciate the reviewer’s question and take the opportunity to further describe here our choice of
architecture and input size. We recognize that it would have been possible to design Malinois in a way
that maintains the settings of Basset’s convolutional layers and reduces the input size to 216 nt.
However, during the development phase of Malinois, we found it more straightforward to explore
transfer learning from Basset by directly importing its weights from the convolutional layers and some of
the weights from the fully-connected layers, thus requiring 600 nt inputs to ensure the preservation of
hidden state shape after flattening the sequence length dimension. Although we acknowledge there are
other ways of pursuing this, designing Malinois to be the most lightweight model possible was not a
primary focus during our development process.
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We have not yet encountered any practical disadvantages of having Malinois’ input size requirements
mirror those of the model from which it inherits its weights, and envisioned potential advantages that
might be leveraged at latter stages. In addition, Malinois’ input size of 600 nt may facilitate
straightforward fine tuning on datasets with longer sequence lengths, a desirable feature for future
engineering goals. Also, padding with portions of the plasmid vector flanking sequences opens up the
possibility of capturing the potential difference in activity between an oligo and its reverse complement
without sacrificing the ability to reverse complement both the input and flanking sequence as a data
augmentation for training. Augmenting the training dataset by including the reverse complement of the
600 nt consisting of an oligo and the flanking sequences preserves the ability to predict the activity of
the reverse complement oligo as in MPRA with respect to its orientation to the transcription start site.
Otherwise, performing such an augmentation with no flanking sequences or with zero padding would be
to assume that an oligo and its reverse complement will always have the same MPRA activity when
inserted in the plasmid vector.

In order to ascertain inefficiencies in our choice, we would need to demonstrate that models with a
trimmed-down input size are noticeably faster and will perform just as well when doing transfer learning.
The reviewer’s expectation of inefficiency may be true, however, we hope the reviewers appreciate
such work would require careful and methodological analyses that are outside of the scope of this
manuscript, or required for our main findings. We make the following updates to the methods to better
explain the retention of the 600 nt input size requirement from Basset, acknowledge the impact on data
augmentation by reverse complementation, and highlight reasonable options to mitigate issues
surrounding variable input sizes.

Line 681:
“The final Malinois model is composed of three functional segments: (1) three
convolutional layers with batch normalization and maximum value pooling, (2) a
fully-connected linear layer to integrate positional and feature information from the
previous hidden state after flattening, and (3) a stack of branched linear layers such that
each output feature is a function of 4 independent transformations. As the first two
segments are replicated from the Basset architecture47, Malinois accepts batches of 4 x
600 arrays corresponding to one-hot encoded DNA sequences, so predictions for 200-nt
MPRA oligos are made by padding inputs on both sides with constant sequences from
the reporter vector backbone. This strict input sizing requirement ensures hidden states
are appropriately shaped when transitioning between segments (1) and (2) of the model.
Furthermore, this padding strategy enables us to use reverse complement data
augmentation with awareness of the orientation of the 200-nt MPRA inserts with respect
to the transcription start site in the reporter backbone. While not tested in this study,
replacing the final strict max pooling layer with adaptive pooling or padding would allow
flexibility in the input sizing requirements while maintaining all other components of the
architecture.”

We have gone through the manuscript and ensured that nowhere is Malinois referred to as
‘state-of-the-art’. It is not our intention to position Malinois as state-of-the-art, but rather as sufficient for
reliable CRE engineering, and we are open to changing any text in the manuscript that may suggest
otherwise. During the revision process we have altered language, thanks to concerns raised by the
reviewers, to inform the reader that other CNNs exist that could yield similar performance when used
within CODA. In addition, we have now added to the discussion that several advances in DNA
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modeling have been reported by other groups over the course of our study. We note in the manuscript
we did not test the efficacy of BP-net, LegNet or other novel architectures highlighting immediate
opportunities for improving efficacy of MPRA modeling (Linder et al. 2023; Penzar et al. 2023; Avsec et
al. 2021; Agarwal et al. 2023; Rafi et al. 2024). Overall, we hope these changes convey that Malinois is
not the central finding in the paper but instead an important component of a larger framework. If there
are additional locations the reviewer thinks we could further improve clarity, we would be open to
making changes.

Line 607:
“As the technology underlying sequence-to-function models continues to evolve, are
mechanistically interrogated through ablation studies, and are trained on high-quality
MPRA data sets, we expect synthetic element designs to become even more reliable
and reduce the experimental burden for in vitro and in vivo validation. Over the course of
this study, several advances in DNA modeling have been reported by other groups that
would likely yield such improvements9,21,32,92,93, but are not tested here.”
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Reviewer #2

I appreciate that the authors have done extensive work to revise their manuscript. These have
addressed many of my concerns, however, the way in which this data is presented still does not
accurately reflect the data and this main concern remains. The manuscript needs extensive rewriting
to accurately reflect the data and to tone down some of the conclusions. This would make the paper
far stronger. The main concerns relate to referring to cell type specificity or cell specificity when
referring to specific expression in a particular transformed cell line and how these transformed cell
lines relate to in vivo expression patterns. Another key issue is the use of syntax when looking at
combinations of TFs rather than syntax.

The data and findings in the manuscript are compelling and I’m disappointed to see how it is
presented. I do not feel my comments have been addressed sufficiently and to a reader the
conclusions are still misleading. The main one being that synthetic enhancers can be designed to
give more tissue specificity than genomic elements. This is true for the specific transformed cell lines
they have tested and may be true more globally but is not validated in this manuscript. This
manuscript shows that synthetic elements outperform genomic elements to drive expression
specifically in transformed cell lines which may be logical given that evolution has not selected for
elements that drive expression in a particular cancer cell line. It is impressive that these elements do
drive expression in related cell types in vivo, but they are related, and it is not the same
cell-specificity and this needs to be clarified. The data is good but there is no need to overstate and
inaccurately report the data. The focus on genomic vs synthetic to me is still a distraction for the main
point of this paper, which nicely demonstrates that you can design enhancers with desired specificity
using synthetic sequences and MPRA data and that using synthetic enhancers increases search
space and can find novel mechanisms of driving the desired specificity.

We thank the reviewer for their comments and appreciate their continued important and detailed
feedback as we refine the language in the manuscript. We are grateful that they can see the ‘extensive
work’ we have performed in revisions and that they think the results are ‘compelling’. We also
wholeheartedly agree with their perspective that being very measured in what we say we can do will
make the manuscript ‘far stronger’ and we hope we have achieved this in our latest revision.

Clarifying scope of in vitro described cell type-specificity
In drafting the manuscript, we believed the extensive focus early in the text highlighting data generation
in transformed cell lines K562, HepG2, and SK-N-SH would provide the appropriate context for readers
to later interpret comments about cell type-specificity. Based on this reviewer’s suggestions, we
appreciate this may not universally be the case.

We have now clarified the text early in the Main section and throughout the Results in accordance with
the reviewer’s specific comments below to delineate the scope of cell types used to design CREs and
the quantification of cell type-specificity. We also clarify the distinction between the cell lines and
analogous but distinct cells and tissues in vivo. Changes related to this concern can be found at lines
31, 87, 89, 94, 288, 304, 557, 562, 571, and 583 and are presented in detail in the point-by-point
responses below.

Refining terminology pertaining to motif analysis
Based on the reviewer’s comments, we realize that CRE “syntax” can be justifiably interpreted as the
quantitative measurement of spatial TF organization. We agree that our analysis of motif usage does
not account for ordering and have adjusted our language to make clear the focus of our model
interpretation is on TF content and combinations, and highlight the relevant changes in the
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responses to the specific comments below. In summary, we make changes at lines 34, 201, 345, and
578 as directed by the reviewer.

R2C1. “Through large-scale in vitro validation, we show that synthetic sequences are more
effective at driving cell type-specific expression compared to natural sequences from the
human genome and maintain specificity when tested in vivo.”

The synthetic sequences outperform natural sequences in the human genome in driving in
expression in transformed cell lines, there is not enough data to make this claim so sweepingly about
cell-type specific expression globally as the assay was done in cell lines in which the genome has not
evolved. The in vivo expression is within the same organ systems as the cell lines of the original
study, which is impressive and interesting, but it is not accurate to say maintain specificity when
tested in vivo here. This is still very misleading.

We have added details to the Abstract shown below to address the reviewer’s clarity concerns.

Line 31:
“Through large-scale in vitro validation, we show that synthetic sequences are more
effective at driving cell type-specific expression in three cell lines compared to natural
sequences from the human genome, and achieve specificity in analogous tissues when
tested in vivo.”

R2C2. “Synthetic sequences exhibit distinct sequence syntax associated with activity in the on-target
cell type and simultaneously reduce activity in off-target cells.”

There is no syntax shown in the manuscript, it would be more accurate to use the term different
combinations of TFs or TF vocabulary.

After careful consideration and literature searches, we speculate this comment arises due to a broad,
and sometimes loose definition of sequence syntax that currently exists in the field. We suspect the
reviewer interprets syntax as the spacing and ordering of TF motifs. We have used alternative terms in
statements previously containing the word syntax. Addressing this comment, we have made the
following edits to sentences describing syntax.

Line 34:
“Synthetic sequences exhibit distinct motif vocabulary associated with activity in the
on-target cell type and the simultaneous reduction of activity in off-target cells.”

Line 201:
“We observed successful reduction in initially enriched motifs and a simultaneous
increase in motifs underutilized in earlier rounds (Supplementary Figure 9b), diversifying
the motif content of CODA-proposed sequences for experimental evaluation.”

Line 345:
“Having found that synthetic CREs are more cell type-specific than both classes of natural
sequences, we sought to link sequence content to the responsible TF vocabulary.”
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Figure 3 has a new title removing the word syntax:
“Interpreting functional sequence content in engineered elements.”

Line 578:
“This suggests that our models have learned a component of the foundational rules
governing CREs, and possess the ability to extrapolate this knowledge to rarely observed
TF combinations.”

R2C3. “Here we present a method to engineer novel synthetic CREs capable of driving gene
expression with cell type specificity.”

It is cell specific within transformed cell lines. This should be clarified.

While this study is a proof-of-concept in cell lines, we note that the methodology to engineer CREs
based on MPRA data is applicable to any system where the assay can be applied. Several studies
have clearly demonstrated MPRA is not limited to transformed cell lines and can be applied to ex vivo
primary cell isolations (Bourges et al. 2020; Deng et al. 2023; Kim et al. 2021) and in vivo screens using
AAV delivery (Chan et al. 2023; Hrvatin et al. 2019; Lagunas et al. 2023; Brown et al. 2022). We
introduce a new sentence to clearly delineate the scope of data and experiments used to engineer
CREs and provide context for the remainder of the manuscript.

Line 87:
“Here we present a method to engineer novel synthetic CREs capable of driving gene
expression with cell type specificity which we deploy to design elements ab initio that
regulate transgene expression across three transformed cell lines.”

R2C4. “We leverage innovations in modeling regulatory grammar across cell types.”

What are the innovations in modeling regulatory grammar? Isn’t the innovation the use of MPRAs
and models that look at TFBS combinations and vocab?

We presume that the sentence as originally written might have given the impression that we are
referring to innovations proposed by our study and not innovations in the field. To more clearly
communicate the latter idea, we have explicitly noted prior work and added citations related to the
innovations which we combined in this study.

Line 89:
“We achieve this by integrating prior innovations in modeling regulatory grammar across
cell types33,47, efficient sequence space searching35,36,48, and the MPRA experimental
system that can validate thousands of CREs in parallel13,21.”

R2C5. “Coupled to sequence generation algorithms, we deploy our model to generate thousands of
cell type-specific, synthetic CREs, which we functionally validate using MPRAs and in vivo
using mouse and zebrafish.”
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It would be more accurate to say …. And we see the expression in related cell types within the same
organs in vivo using mouse and zebrafish.

We agree with the reviewer’s suggestion to more accurately summarize the in vivo studies. We have
modified the suggested sentence incorporating the reviewer’s suggestion.

Line 94:
“Coupled to sequence generation algorithms, we deploy our model to generate thousands
of synthetic CREs with programmed specificity across three cell lines, which we
functionally validate in vitro using MPRAs and in vivo by probing physiologically related
tissues in mouse and zebrafish.”

R2C6. “We were able to identify naturally occurring sequences with cell type specificity.”

Would be better and more accurate to state …With expression specifically in particular cell lines.

We agree with the reviewer’s suggestion to reinforce that the engineering effort was initially directed
towards expression in particular cell lines.

Line 288:
“We were able to identify naturally occurring sequences with expression specificity in particular
cell lines”

R2C7. “Synthetic sequences from all three algorithms outperformed both groups of natural
sequences as cell type-specific CREs in all three cell types.”

This needs to be rewritten to reduce the misleading nature of this statement to something like
synthetic sequences outperformed genomic sequences as cell line specific CREs in all three
transformed cell lines. Although this may be expected given the nature of these transformed cell lines
and the fact that the genome has not evolved to drive expression specifically in transformed cell lines.

We have added the following text to the sentence highlighted by the reviewer to further emphasize the
nature of the cell types of the study. Together with the edits presented in previous comments, we hope it
will now be clear to the reader we are operating in the context of three transformed cell lines.
Additionally, in our response to R2C16 we address the impact of the lack of evolutionary pressures on
the genome to create CREs that have specificity in transformed cell lines and the updates made to the
Discussion.

Line 304:
“Synthetic sequences from all three algorithms outperformed both groups of natural
sequences as cell type-specific CREs across all three cell lines.”

R2C8. “We sought to link sequence content to the responsible regulatory syntax.”

The manuscript as it stands only finds combinations of TFs and TF vocab, I cannot see any evidence
of regulatory syntax. Please do not refer to syntax when the syntax is not studied.
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Following the reviewer’s comment, we have modified the suggested text. Please refer to our above
responses to the summary of comments and R2C2.

Line 345:
“Having found that synthetic CREs are more cell type-specific than both classes of natural
sequences, we sought to link sequence content to the responsible TF vocabulary.”

R2C9. “suggesting that natural sequences are less likely to use repressive grammar in constructing
cell type-specific CREs.”

I find this misleading as it is at over-generalization about cell type specificity and the fact that
genomic sequences are less likely to use repressors, while this may be the case in the transformed
cell lines it does not mean that this is the case in general. It would be more accurate to say:

This suggests that genomic sequences that show specific expression within the transformed cell lines
are less likely to use repressive TFBs in constructing transformed cell line specific CREs.

We agree with the reviewer that the sentence as originally written could inaccurately suggest a global
lack of repressive grammar in natural sequences to achieve broad cell type specificity. Upon closer
inspection of the text, we realized the statement was unnecessary and elected to remove it in its
entirety. The deleted text was previously located at line 380.

R2C10. It is unclear to me what these “programs” identified by NMF are supposed to be. It is unclear
how these relate to more than just the combo of binding sites.

We add additional text to the Methods section to clarify terminology corresponding to NMF for the
general reader.

Line 1119:
“We used non-negative matrix factorization (NMF), a parts-based representation of
data84, to model semantic relationships between motifs in our sequence library
(scikit-learn version 1.2.2, initialized with NNDSVDAR, Frobenius loss). First we counted
motif matches in each sequence with the contribution score-based motif hit mapping
described above(Grant, Bailey, and Noble 2011) to generate where rows
represent sequences in the library and columns correspond to motifs. The sample matrix
X can then be decomposed into the coefficients and features matrices and

, respectively. These k-dimensional representations are referred to as “topics”
in natural language processing and “programs” in gene expression analysis100,101. These
programs capture the frequency of TF motifs appearing in semantically similar CREs, and
the CREs themselves are modeled as compositions of programs.”
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R2C11. “Using empirical MPRA results, Malinois contribution scores, in silico predictions of
tissue-specific epigenetic signals, and element syntax, we nominated three liver and three
neuronal-specific CREs for in vivo characterization in zebrafish embryos”

These are 3 liver transformed cell line and neuroblastoma cell lines CREs, that they decided to see if
they had liver, and neural activity in vivo. This should be stated. It is impressive that these do drive
expression in the organs from which the transformed cell line is derived, and this should be
discussed, rather than oversimplifying to suggest that the cell line and the location of expression are
demonstrating conserved cell-type specificity.

It is unclear how they used element syntax to select enhancers, it appears to me that they used
combination of TFBS. In the methods section they don’t mention anything about looking at binding
site arrangement. Thus is it really syntax or just combinations of TFs?

We agree with the reviewer that the sentence as originally written could have suggested a
straightforward connection between a cell line and the organ from where it is derived. We have edited
the sentence to better clarify our reasoning and expectations. We also note for the reviewer that further
details are provided in the Methods subsection “CRE prioritization for in vivo validation”.

Line 473:
“Using empirical MPRA results, Malinois contribution scores, in silico predictions of
tissue-specific epigenetic signals, and manual inspection of motif organization, we
nominated three HepG2- and three SK-N-SH-specific CREs which we anticipated to be
liver- and neuronal-specific, respectively, for in vivo characterization in zebrafish embryos
(Figure 4a, Methods, Supplementary Figure 32).”

R2C12. “Remarkably, we detected minimal off-target expression in non-targeted cell types”

Please expand in the main text. It looks like there is expression in non-liver and neural cells in the
zebrafish assays. This is fine but needs to be explained to the reader.

We have updated the main text to note that there is substantial signal due to autofluorescence in the
yolk sac. We have updated the legends in supplementary figures 33 and 34 as well to note the faint
autofluorescence signal in the yolk sac in the empty vector negative controls as well.

Line 486:
“Remarkably, we detected minimal off-target expression in non-targeted cell types outside
the autofluorescent yolk sac.”

R2C13. “We confirmed cortex specific expression with focal activity occurring in the neurons at
neocortical layer 6 and at subplate neurons (Figure 4e-g, Supplementary Figure 37a,b).”

Please explain the link between the cell line used for the MPRA assays (the neuroblastoma cell line)
and the cell types in which the enhancer is found beyond the fact that they are neural. Why would
one expect these CREs to be only expressed within neocortical layer 6?

We should clarify that we had no a priori expectation that these CREs would have specificity to any
anatomy (beyond neuronal identity of SK-N-SH). The confirmation was with respect to the observation
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that we had already observed expression in prenatal cerebral cortices and then continued to observe
expression in the brain postnatally, not with respect to an expectation that SK-N-SH would be related
specifically to neocortical layer 6. We agree that the original language could be misconstrued as
intentional targeting of layer 6 was achieved and hope the alternative wording conveys that the
sub-anatomical specificity was simply an observation.

Line 504:
“We observed cortex-specific expression is maintained in postnatal mice, with focal
activity occurring in the neurons at neocortical layer 6 and at subplate neurons (Figure
4e-g, Supplementary Figure 37a,b).”

R2C14. “Due to the intractability of fully searching sequence space, CODA cannot assuredly identify
global specificity maxima, but our exhaustive evaluation of natural sequences demonstrates the
design methods we used can identify synthetic sequences that regularly outperform natural ones with
1000-fold greater efficiency compared to previous methods using a zero-order Markov approach
(Supplementary Figure 38) 40,41 .”

Again the sequences outperform in designing enhancers that drive expression specifically in
transformed cell lines. I understand the use of outperform in different fields but this needs to be clear,
so it is not misleading.

We thank the reviewer for their careful examination of the text and their insightful suggestion for the
language used in our discussion. We have added text to both clarify our use of the term outperform and
restate context of the comparison between synthetic and natural sequences.

Line 562:
“Due to the intractability of fully searching sequence space, CODA cannot assuredly
identify global specificity maxima, but our exhaustive evaluation of natural sequences
demonstrates the design methods we used can identify synthetic sequences that
regularly outperform natural ones in achieving the specificity objectives of this study with
1000-fold greater efficiency compared to previous methods using a zero-order Markov
approach (Supplementary Figure 38)40,41.”

R2C15. “Synthetic sequences designed by CODA easily outperform natural sequences in driving cell
type-specific gene expression in a reporter system, which suggests that novel functions can be
programmed into CREs and interpreted by human cells.”

…. In driving cell line specific gene expression, which suggests that synthetic enhancer can be
programmed into CREs and interpreted by transformed human cell lines. Again this is likely to be the
case when you use a cancer cell line to do the assays and needs to be stated for the reader.

We have updated this sentence to be consistent with the above-discussed changes in language
specifying that large-scale comparisons of synthetic vs natural sequences are limited in scope to
transformed cell lines. We have split this sentence into two ideas to better reflect this finding is not
tested at scale in vivo. In doing so, we reframed the second point, focusing on the fact that in general
synthetic sequences can be interpreted by biological systems, and that programming functionality into
them is possible.
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Line 557:
“Synthetic sequences designed by CODA easily outperform natural sequences in driving
cell type-specific gene expression in a reporter system assayed across transformed cell
lines. We further found a selected subset of synthetic CREs could regulate transgene
expression in analogous tissues in mouse and zebrafish, uncovering the possibility that
novel functionalities can be programmed into CREs which are interpretable by cell lines in
vitro and related cells and tissues in vivo.”

R2C16. “The dearth of natural sequences capable of achieving exquisite specificity in a desired cell
type in our study highlights the difficulty of using human genomic sequences to achieve non-natural
objectives for which evolution may not have acted on.”

My comments relating to this have not been addressed sufficiently and this needs to be spelled out to
the reader. The synthetic elements will of course do better as the focus is on elements that are
driving expression in transformed cell lines which the genome has not evolved to do.

We now have a better understanding of the reviewer’s concern and hope the new edits address it. The
intended purpose of the sentence was to convey to the reader that our results could be an indication of
the potential difficulty of using only natural sequences to achieve other non-natural goals that also lie
outside evolutionary pressures, and encourage exploration of synthetically designed CREs for such
goals. We realize that the sentence as originally written could be misinterpreted as if, based on our
results in transformed cell lines, we were concluding that natural sequences will universally
underperform in achieving other non-natural objectives, which is not our belief. We have edited the
sentence to better convey our view that focusing solely on human genomic sequences may present
challenges when pursuing non-natural objectives, and that therapeutic applications could benefit from
the exploration of synthetic CREs, avoiding any definitive conclusion.

In that vein, it is most relevant to note that it was not assured that our synthetic sequences would work
at all in either cell lines or in vivo. There were no assurances from prior literature to suggest natural
sequences, especially those identified via highly specific DHS signals, achieve less cell type specificity
in K562, HepG2 and SK-N-SH than sequences designed by a given CNN in combination with
generative algorithms. There was substantial concern that the synthetic CREs would fall outside the
accurate predictive power of the model and their empirical activity would differ greatly from the
predictions. The expected quantitative levels of specificity of synthetic elements were extreme
compared to the training data. Prior to validating the sequences, we had substantial concern that the
synthetic CREs contained some pathology that would invalidate the predictions and result in no activity
or specificity. This is the reason we deployed multiple sequence design algorithms and tested >50k
synthetic elements. However, most worked for our specific objective, highlighting that the model had
learned useful features of CRE logic.

In the current version of the manuscript, we address evolution twice. Once early in the Main on
line 43 where we note that “sequences generated by evolution represent only a small subset of
possible genetic sequences”, and the second is this statement of issue in the reviewer’s
feedback. In it, we pose evolution’s contrasting role in shaping natural sequence function with the
myriad of artificial transgenic applications being deployed in medicine and biotechnology whose
goals are entirely distinct from natural selection. We have now made the following revision to
make the above points more clear and to hopefully address the reviewer’s concern.
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Line 571:
“The dearth of natural sequences capable of achieving exquisite specificity in the cell
lines studied here attests to the potential challenges of using human genomic sequences
to achieve goals for which evolution may not have optimized. Transgenic applications,
such as gene therapies that require tissue, cell type, or diseased cell state specificity, will
likely benefit from design and validation of synthetic CREs with programmable functions.
Without human input, CODA deploys unique combinations of strongly on-target activating
and off-target repressing TFs within a short sequence that are not commonly found in the
human genome, to yield highly specific synthetic CREs.”

R2C17. “This suggests that our models have learned a component of the foundational rules
governing CREs and possess the ability to extrapolate this knowledge to unobserved or rarely
observed syntax combinations.”

Replace syntax with TFs combinations.

In accordance with our manuscript-wide reconsideration of the term ‘syntax’, this statement has been
changed. We have included the change here again for completeness:

Line 578:
“This suggests that our models have learned a component of the foundational rules
governing CREs, and possess the ability to extrapolate this knowledge to rarely observed
TF combinations.”

R2C18. “we were able to identify natural sequences in the genome with moderate proficiency for
cell-specific activity, albeit to a lesser degree than synthetics.”

we were able to identify sequences in the genome with moderate proficiency for cell-specific activity,
albeit to a lesser degree than synthetics in the transformed cell lines.

We agree the proposed clarification is helpful and have made the change consistent with this reviewer's
concerns around cell line language.

Line 583:
“[...] we were able to identify natural sequences in the genome with moderate proficiency for
cell-specific activity, albeit to a lesser degree than synthetics across the transformed cell lines
studied here.”
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Reviewer #3

The authors do a very thorough job addressing my concerns and those of the other reviewers. In
particular, the comparisons to other methods (Enformer, MPRA-DragoNN) provide better
benchmarking. The new TF-MoDISco results improve the confidence that the models are learning the
relevant regulatory code. However, there are still two major concerns. First, there are still key details
missing in the transfer learning procedure, including whether potential circularity. Second, the
manuscript still relies heavily on MPRA experiments that have still not been adequately described.
The motivation behind Malinois and its role in the manuscript are made much more clear by the
additions to the text. However, it also raises new questions:

We appreciate the reviewer’s positive comments about our revised submission, and we are pleased to
have addressed their concerns thoroughly. We include new analyses and data in the responses below
that we hope will fully address the two remaining concerns raised by the reviewer, Specifically, we
provide extended methods on the transfer learning procedure and show it had minimal impact on model
performance. We have also cited the pre-printed manuscript on the underlying MPRA data which fully
describes their generation and quality control (Siraj et al. 2024). DOI:
https://doi.org/10.1101/2024.05.05.592437

R3C1. Given the improvement that transfer learning provides, how does Bassett on its own do in
predicting MPRA activity? This is critical because it gets to whether the neural network model
requires MPRA data or whether open chromatin is sufficient.

To address the reviewer’s question, we generated MPRA activity predictions from two additional model
types: 1) using only the parent Basset weights used for transfer learning and 2) a Malinois-like model
where all of its weights were randomly initialized (and thus did not use parent Basset weights). The
Basset-only model predictions for oligos in the test set had low correlation with empirical MPRA
measurements (Spearman’s ρ for K562: 0.28, HepG2: 0.30, SK-N-SH: 0.29; Reviewer Figure R3C1a).
This may be expected, as the Basset only-model is directly predicting DNase accessibility, which
empirically displays weak correlation to MPRA activity. Our standard Malinois model, which includes the
weights transferred from Basset, performed much better, (Spearman’s ρ for K562: 0.81, HepG2: 0.83,
SK-N-SH: 0.83; Reviewer Figure R3C1b). However, when we use a CNN similar to Malinois with
randomly initialized weights, rather than transfer learning, performance remains high (Spearman’s ρ for
K562: 0.81, HepG2: 0.83, SK-N-SH: 0.83; Reviewer Figure R3C1c).

Our results show that chromatin models are insufficient to predict MPRA alone. This highlights
the importance of using data directly from the reporter assays and the unimportance of pre-existing
knowledge of open chromatin when large MPRA datasets are available. In the subsequent reviewer
response below (R3C2), we describe that although transfer learning is not necessary for high model
performance, the improved stability of training is valuable for the model development process.
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Reviewer Figure R3C1. Comparison of predictions from Basset, Malinois, and another CNN trained
on MPRA data. (a) Chromatin accessibility predictions from Basset in K562, HepG2, and SK-N-SH (y-axis)
are more weakly correlated with empirical MPRA measurements (x-axis). Basset was trained as a binary
classifier using DNase peaks so predicted probabilities are plotted in the logit space so a comparable range
to MPRA activity is covered. This monotonic transformation will not impact Spearman’s ρ. (b) The
comparison of Malinois predictions with MPRA measurements in the test set from Figure 1d are reproduced
here. (c) Predictions from the best alternate MPRA model from our post-hoc experiment using Bayesian
Optimization for hyperparameter selection (Supplementary Figure 3, Methods: Model fitting), which did not
use transfer learning from Basset, were also compared to empirical MPRA measurements. This model
achieves comparable performance to Malinois without transfer learning.

R3C2. How much of Malinois’ performance boost relative to MPRA-DragoNN and Enformer are due
to transfer learning?

We thank the reviewer for raising this important question, and have data that can help resolve it in
Supplementary Figure 3b and Supplementary Table 3. There we compare the performance of
models with randomly initialized weights and models using transfer learning with Basset during the
Bayesian hyperparameter optimization search. Although the best performing model with randomly
initialized weights closely compares to Malinois (Reviewer Figure R3C1b-c), it seems that inheriting
the weights of the convolutional layers from Basset offers more robust model fitting, making the model
less sensitive to other hyperparameter choices. In practice, the robustness introduced by transfer
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learning markedly reduced the costs and time that needed to be dedicated to model development and
hyperparameter optimization. As a result, when benchmarking on synthetic elements, the top model
with randomly initialized parameters (Pearson’s r 0.81-0.91, Reviewer Figure R3C3c) performs similarly
to Malinois (Pearson’s r 0.81-0.92, Reviewer Figure R3C3b) and was more accurate than both
MPRA-DragoNN (max Pearson’s r 0.10-0.48) and Enformer (max Pearson’s r 0.38-0.74) in predicting
MPRA activity.

We now highlight in the main text that high-performance models can be trained by fitting directly
on MPRA data without chromatin accessibility-informed transfer learning in the main text:

Line 121:
“Malinois accurately models episomal CRE activity across cell types. For sequences
held out from training (62,582 elements on chromosomes 7 and 13), Malinois predictions
in K562, HepG2, and SK-N-SH correlate highly with empirical activity measurements
(Pearson’s r 0.88-0.89; Spearman’s ⍴ 0.81-0.83) (Figure 1d) and demonstrate cell
specificity on par with experimental results (Supplementary Figure 4). Randomly
initialized versions of Malinois that did not deploy transfer-learning from chromatin
accessibility also performed well in practice, though were not favored during Bayesian
Optimization of hyperparameters (Pearson’s r 0.88-0.89; Spearman’s ρ 0.81-0.83,
Supplementary Figure 8c, Supplementary Table 3, Methods).”

R3C3. The authors have addressed my original concerns of circularity, but new ones have been
introduced. It seems like the parameters from the Bassett architecture, which is trained on a global
library of open chromatin, have been used to initialize the models. This could be then be introducing
circularity across many of the loci.

We appreciate the reviewer’s attentive examination and appreciate their interest in ensuring our
methodology avoids circularity and is well described. We describe here and in our revised manuscript
how we aimed to avoid circularity.

We note that the data split method used to train and validate Basset upon its publication in 2016 was
purely random, irrespective of chromosome. Standard practices have moved towards splitting data
based on chromosomes. It would be an impractical undertaking to ensure there are no conflicts
between these two splits.

That said, the results above (R3C1, R3C2) showing similarly high performance Malinois models without
transfer learning, strongly suggest there is no significant leakage, or circularity, due to transfer learning.
If test set information leakage was propagating through the transfer learning process, we would expect
Malinois’ performance to be unachievable without transfer learning due to the unfair advantage.

Moreover, because the primary problem arising from information leakage would be unexpected poor
generalization to new data, the synthetic sequences designed in this study, which do not map to the
genome, provide a validation set devoid of any circularity due to data split choices and directly test
generalizability. If Malinois test set performance was inflated due to information leakage, we would
expect a randomly initialized model with comparable test set performance to Malinois to provide better
predictions for synthetic sequences. Instead, Malinois predicts synthetic sequences with comparable
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accuracy to a randomly initialized model, showing generalizability is not adversely impacted. We
provide detailed scatter plots of synthetic element testing for the reviewers in Reviewer Figure R3C3.

Reviewer Figure R3C3. Accuracy of Basset, Malinois, and a randomly initialized CNN trained on
MPRA data when modeling the activity of synthetic elements. (a) Chromatin accessibility predictions
from Basset in K562, HepG2, and SK-N-SH (y-axis) for synthetic oligos are only correlated with empirical
MPRA measurements (x-axis) for K562. (b) Malinois predictions (y-axis) for synthetic oligos are compared to
MPRA measurements (x-axis). (c) Predictions from the randomly initiated model referenced in Reviewer
Figure R3C1c (y-axis) for synthetic oligos show similar correlations to MPRA measurements (x-axis) as
Malinois.

We also now include this entirely new analysis in Supplementary Figure 8c showing Malinois
generalization to non-genomic synthetic elements is comparable to a randomly initiated MPRA model
with comparable test split performance, which we reproduce below.
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New Supplementary Figure 8c. Example sequence generation trajectories and assessment of impacts of
transfer learning on generalizability. (c) A scatter plot summarizing the predictive performance of the parent
Bassest model used for transfer learning, a randomly initialized model fitted to MPRA data without transfer learning,
and Malinois. Performance is measured using the test split (oligos derived from chr7 and chr13; x-axis) and synthetic
elements (y-axis) to calculate correlation with empirical MPRA measurements. Correlations are calculated separately
for cell type. Note, x-shaped markers are overlapping o-shaped markers for each cell type.

Lastly, we believe there are several theoretical factors that prevent indirect leakage from the Basset
training data from impacting Malinois performance:

1. Predicting chromatin accessibility is a divergent enough task from predicting MPRA activity that
the inherited weights will need to change to accommodate new information.

2. Inherited layers from Basset at the start of training only account for part of the model, and are
upstream of additional branched linear layers that were randomly initialized preventing the
model from providing meaningful prediction without fitting to new data.

3. The Basset training data was collected from the union of DNaseI peaks from 164 cell types,
while the MPRA oligos were collected based largely on genetic association studies with most
oligos residing outside DNaseI peaks. This would further reduce the overlap in the exact
sequences that are used in each of the two training sets.
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Reviewer Reports on the Second Revision: 

Referee #2 (Remarks to the author): 

This manuscript represents a huge amount of work and has some novel aspects, most notably the design 

of neural enhancers that are active in vertebrates. I appreciate the authors’ attempts to address my 

comments. The manuscript is very dense, and still oversells and stretches the findings and impacts. While 

there have been some changes to the tone of the statements, the manuscript still suggests that they can 

use this approach to design tissue specific enhancer for therapeutics. Yet the approach cannot target 

specific cell types such as a specific subpopulation of neurons, rather the approach can only target broad 

categories of cell types such as neural or liver. Thus for therapeutics there is a way to go, so the pitch 

oversells the significance of the data. If they did want to use this for therapeutic they’d need to be able to 

target a specific neural population such as glutamatergic neurons of a specific structure within the brain. 

Given that in zebrafish 2/3 of their CREs are active in a variety of neural subtypes and then in mouse 1/2 

of these CREs drives expression only within the cortex it doesn’t seem like there is a handle on how to get 

neural specificity with the precision needed to deliver therapeutics. It is great to see for the K562 optimized 

CREs that specificity remained even within the A569 and HCT116 cells, however the specificity of Hep and 

SK optimized CREs is less compelling as these CREs also show expression in the A549 and HCT116 cell lines. 

Comments:  

for each cell line we identified 4,000 ‘DHS-natural’ sequences with cell type-specific chromatin accessibility 

and overlapping H3K27ac signals (12,000 total) 

I would like to see how cell type specific these DHS peaks are, they say they take the top 4,000 but they 

don’t really justify how cell type specific those 4k are or why they chose 4k. There is a lot of data in many 

cell types that could be used in a supplementary figure to illustrate how tissue-specific these features 

are. 

We consistently observed that disrupting blocks of positive contribution led to a decrease in predicted 

activity, while disrupting blocks of negative contribution resulted in an increase (Supplementary Figure 21, 

Methods). 

This is very circular, they determined which bp the model thinks are important and mutated them. 

Mutating them makes predicted activity lower, this is expected. They need to validate this 

experimentally. 

The section: Complex semantic architectures are syntactically differentially deployed in natural and 

synthetic sequences

This section is very technical and dense. There is a lot of computational analysis that is not validated. I’m 

unclear what this section adds to the paper. 

They claim that synthetic enhancers have higher program content and higher program heterogeneity. This 

is shown in Fig S 28b, they need to do some stats on this section. This whole section is hard to understand, 

and they don’t really define what these metrics are. It would be helpful to choose a few, explain them 

well, and try to discuss their relevance. It is unclear to me what this finding adds to the paper or how this 

finding can inform our ability to design tissue specific enhancers. 



While for K562 optimized CREs there is clearly specificity for the cell line of choice, this is less true for the 

HEPG2 and SK optimized sequences, as these CREs also show expression in A549 and HCT116 cells. For SK-N-

SH optimized CREs there is the least specificity seen, the axis has a different scale in G and the activity of the 

SK-N-SH optimized CREs is only slightly higher in the SK cell line than in A549 and HCT116. Therefore, they do 

not attain the same levels of specificity as when they were only testing CREs in the k562, HepG2 and SK lines. 

But in the text they say they are successful. I think they should remark on the fact that when they extended 

their model these two additional cell lines they were successful for k562 optimized CREs, but Hep G2 and SK 

were less specific. This indicates that in some cases it may be difficult to generalize the model to other cell 

lines without further training. Also, they should do stats if they are going to make claims about this data 

supporting their model’s generalizability. 

Sequences designed for neuronal specificity showed similar success (2 of 3), driving expression in a subset 

of neuronal cell types. There needs to be some discussion of the limitations here. By this I mean, what 

specificity is actually achieved. I would have expected the CREs to be active in all neural cells or in specific 

subset of neural cell types most similar to the SK cell line. This is not what is seen, instead there is 

generalized neural expression that varies between embryos and the two enhancers.

We observed specific expression for neuronal #1 (N1) with localized expression in the developing cortex and no 

additional expression observed elsewhere (Supplementary Figure 36a,b). To localize the expression patterns 

further within the cortex, we repeated the reporter assay with the N1 CRE and performed in situ staining of 

the whole brain at 5 weeks postnatal (Figure 4d, Supplementary Figure 36c-h). We observed cortex-specific 

expression is maintained in postnatal mice, with focal activity occurring in the neurons at neocortical layer 6 

and at subplate neurons (Figure 4e-g, Supplementary Figure 37a,b). 

Of the two CREs active in the zebrafish, one is active in the mouse, but appears to be active in only a very 

specific and different region of the brain to what was seen in the zebrafish. Why would the expression be in 

cortex alone here, and why was only one of the two CREs active in mouse. Why would the expression be in 

the neocortical layer 6 and at subplate neurons, rather than in other neural cell types or 



populations of cells. There needs to be some discussion of this and the limitations of the approach, 
especially given the pitch highlighting the significance related to designing enhancers for therapeutics. 

Additionally, while I understand that this is a novel approach, I wonder if validation of 1 of two CREs is 

sufficient for the claims they are making. Ideally I’d like to see more CREs tested and validated, the del 

Almeida et al tests 8 enhancers per cell type in drosophila. While I understand that this is in mouse, they 

could test more than 2, and could test more in zebrafish. 

For the liver enhancers they tested in the zebrafish, these seem to have more uniform expression, 

although it is hard to know which liver cell type these enhancers are active within. I would like to know if 

these were inactive in mouse when tested or untested. If untested, I wonder why they did not choose to 

test these given that the liver is a less heterogenous cell type than neural cells found within the CNS and 

PNS. Liver CREs would have been an easier system to validate conservation of activity across species and 

the ability to design tissue-specific CREs than the neural enhancers and this omission concerns me. 

Our results suggest that CREs designed for tissue-specific targeting can work across species, even in the 

brain, which has been an ongoing challenge to target with viral-based delivery approaches. An integrated 

framework leveraging human cell lines in conjunction with whole organism models may thus be a viable 

approach to rapidly identify CREs to execute novel functions in humans. 

If the goal is to find tissue-specificity with certain neural cell types then the enhancers need to be active 

within a particular type of neural cells. Yet in the study, only neural is selected, and the particular neural 

cell types vary widely between embryos, enhancers and species in the 2 CREs validated. While this 

framework could work it has not been demonstrated by the data in this manuscript. 

We successfully deployed CODA for cell type specificity 

The ability to get specificity is lower for the SK and HEP optimized sequences when considering the A549 

and HCT116 cell lines suggesting that there are limitations in this approach to find CREs with specificity. I 

have also discussed this in terms of in vivo specificity above. 

Minor comments  

Fig S26 title needs some attention. 

type: token ratio – is very technical and it would be good to make this more understandable 

Figure S3. All y axes should be labelled. 

Stats should be shown in the main figures when claiming significant enrichments, for example: Figure 1d, 

could they please show the stats in the main figure. They mention they have done an MWU, but it would 

be good to see the stats in the main figure. 

Fig S27. I get that topics are technical terms, but the paper may be more understandable if they tried 

getting. Away from technical language. Instead of calling these topics, perhaps the authors could name 

these “TF vocabularies” or ”TF Vocab 1”, ”TF vocab 2”, ... 



Referee #3 (Remarks to the Author): 

The authors have address all of my comments. This study is really important for the broader scientific 

community and represents a substantial advance. 

Referee #3 (Remarks on code availability): 

The code is well documented. 



Author Rebuttals to Second Revision: 

Reviewer #2

This manuscript represents a huge amount of work and has some novel aspects, most notably the design of 
neural enhancers that are active in vertebrates. I appreciate the authors’ attempts to address my comments. 
The manuscript is very dense, and still oversells and stretches the findings and impacts. While there have been 
some changes to the tone of the statements, the manuscript still suggests that they can use this approach to 
design tissue specific enhancer for therapeutics. Yet the approach cannot target specific cell types such as a 
specific subpopulation of neurons, rather the approach can only target broad categories of cell types such as 
neural or liver. Thus for therapeutics there is a way to go, so the pitch oversells the significance of the data. If 
they did want to use this for therapeutic they’d need to be able to target a specific neural population such as 
glutamatergic neurons of a specific structure within the brain. Given that in zebrafish 2/3 of their CREs are 
active in a variety of neural subtypes and then in mouse 1/2 of these CREs drives expression only within the 
cortex it doesn’t seem like there is a handle on how to get neural specificity with the precision needed to 
deliver therapeutics. It is great to see for the K562 optimized CREs that specificity remained even within the 
A569 and HCT116 cells, however the specificity of Hep and SK optimized CREs is less compelling as these CREs 
also show expression in the A549 and HCT116 cell lines. 

We appreciate the reviewer’s acknowledgement of the significant effort and novel contribution of our 

work. We also recognize their concern about our claims of what the work has achieved.  

As we described in our previous revision and responses, we do not believe, or intend to convey, that this 

manuscript provides an out-of-the-box solution to shortcomings in existing gene therapy vectors. We 

simply aimed to provide context and motivation for the reader, that the methodology outlined here 

could be a generalizable blueprint that applies to diverse experimental disease models and, in those 

contexts, could eventually be used to develop therapeutic products. Accordingly, we aimed to provide 

background about the connection to therapeutics conveyed as forward looking statements that suggest 

possible future work.  

During revisions, we edited or removed all sentences that the reviewer suggested and further carefully 

revised the manuscript accordingly. In review of the current manuscript, we are not able to identify 

sentences where we claim that we can use our approach in its current state for therapeutics. However, 

in an abundance of caution against overinterpretation, we also removed the following rationale that 

motivated selection of our cell lines of choice: 



“These well-studied cell types are ideal for high-throughput method development and 

can provide useful insight for the growing body of experimental gene therapies that 

target blood cells50–53 and neurons54, but that can induce toxicity in the liver55–57.” 

If there are any sentences remaining that we have overlooked that imply the results here can be 

directly integrated into a therapeutic, we will be happy to address them. 

We also appreciate that, in retrospect, it may appear obvious that synthetic elements will drive patterns 

of expression mirroring a priori deep learning predictions; however, we want to highlight that this was 

far from a guaranteed outcome as the synthetic elements in this study are fundamentally different from 

natural CREs in their informational content. Much of our manuscript details the systematic differences in 

TF motif vocabulary (e.g., by lexical analysis) and semantic structures (i.e., by topic modeling) between 

synthetic and natural elements. Additionally, other groups have deployed large language models, which 

can parse the functional subregions of the genome with high accuracy, to demonstrate that our 

synthetic CREs resemble random sequences more closely than genomic elements (Lal et al., 2024; 

Nguyen et al., 2023). It was therefore highly possible that our sequence optimization processes may be 

adversarially exploiting pathologies in Malinois, leading us to expect a far lower success rate than we 

observed. We tested thousands of synthetic elements in our study to ensure we were well powered to 

make comparisons in the case of that outcome. We find it remarkable that despite these potential 

pitfalls, synthetic CREs reliably drive expression patterns over three cell lines with a tight correlation to 

their predicted function. While there is undoubtedly more work to be done throughout the field to 

refine synthetic CRE design for individual drugs, this work represents an important step towards that 

goal. 

R2C1. for each cell line we identified 4,000 ‘DHS-natural’ sequences with 

cell type-specific chromatin 

accessibility and overlapping H3K27ac signals (12,000 total)

I would like to see how cell type specific these DHS peaks are, they say they take the top 4,000 but they don’t 
really justify how cell type specific those 4k are or why they chose 4k. There is a lot of data in many cell types 
that could be used in a supplementary figure to illustrate how tissue-specific these features are. 

Analysis of DHS specificity 

https://paperpile.com/c/eTnp5I/bcpY+jbwd
https://paperpile.com/c/eTnp5I/bcpY+jbwd


We chose 4,000 CREs to test from each cell type (12,000 total) due to size constraints in the MPRA, but 

aimed to have enough to make well-powered comparisons across synthetic and natural categories. 

Using uniformly processed epigenetic datasets from the ENCODE project, we selected DHS sites that also 

overlapped H3K27ac, an orthogonal marker for active CREs, to ensure high-confidence CRE elements. 

Specifically, we took 159,277, 130,520, and 155,722 DHS peaks and overlapped with 51,343, 50,759, and 

69,317 H3k27ac peaks, resulting in 61,280, 49,093, 43,244 DHS+H3K27ac peaks in K562, HepG2, SK-N-

SH, respectively. To identify initially specific DHS peaks, for each cell type we identified DHS+H3K27ac 

peaks that had no DHS peak overlap in the other two cell types. For each cell type, using the DHS-

coordinates of the on-target cell type, we calculated the total DHS signal in each cell type. We then 

transformed the DHS signal into log2 space to mirror log2 scale MPRA data and selected the top 4,000 

peaks that maximize minGap. We have updated the Methods section describing our selection criteria, 

and describing in greater detail our rationale for selection and improving overall clarity. We also provide 

a visual representation of DHS score distributions for the reviewer below as the new Supplementary 

Figure 6.  

Line 906: 

“DHS-natural. To identify CREs broadly replicating across experimental approaches, 

using a uniformly processed dataset from ENCODE, we first selected DNAse peaks from 

each of the three cell lines (K562, HepG2, and SK-N-SH). To further select for active CREs  

we subsetted DHS peaks that intersect with H3K27ac peaks from the same cell type. For 

each cell type, we then identified cell-type specific peaks by requiring a DHS+ H3K27ac+ 

peak had no overlap with a DHS peak in the other two cell types. For these DHS-H3K27ac 

peaks, in each cell type, we scored the K562, HepG2, and SK-N-SH DHS signal in the peak 

coordinates of the target cell type. We then selected the top 4,000 peaks with the 

highest MinGap calculated using log2-space DHS signal, mirroring our efforts to 

maximize MinGap of log2-space MPRA activity with other CREs.”



Supplementary Figure 6: DHS specificity as measured by MinGap of log2 of DHS signal counts for 

specific peaks, and the selected 4,000 peaks for MPRA. Boxes demarcate the 25th, 50th, and 75th 

percentile values, while whiskers indicate maximum and minimum (left-to-right, top-to-bottom 

n=35,894; 4,000; 27,310; 4,000; 20,773; 4,000). 

Uniform analysis of transcriptional activity across 10 tissue types 

Similarly to the reviewer, we were also interested in leveraging the breadth of data across many cell 

types to understand how specificity of the elements we tested by MPRA would fare when considering 

additional tissue types. We simulated CRE activity using an orthogonal model after insertion upstream of 

a reporter gene inserted in the mouse H11 locus. This mimicked taking a natural CRE out of its native 

genomic context and in a specific, uniform reporter context, that also happened to match our in-vivo 

experiments. We then used Enformer, a state-of-the-art model for prediction of chromatin accessibility 

and other markers of transcriptional activation that has been accepted as sufficient to make claims 

about cell type specificity (Taskiran et al., 2024), to generate predictions across 10 tissues. We then 

quantified specificity of these predictions using MinGap for targeting spleen, liver, and brain for K562-, 

HepG2-, and SK-N-SH-targeting CREs, respectively. This analysis is summarized in Extended Data Figure 

8e and demonstrates significant differences in specificity between natural and synthetic CREs. 

https://paperpile.com/c/eTnp5I/zJRu


Extended Data Figure 8. Enformer based prioritization of oligos for in vivo tests. (e) Enformer-

based cell type matched tissue-specific transcriptional activation predictions (K562 matched to 

spleen, HepG2 matched to liver, SK-N-SH matched to adult brain). Stars indicate family-wise error 

rate corrected p-values < 1e-4 (In each trio of boxes, n=4,000; 4,000; 12,000 elements for the 

DHS, Malinois, and synthetic groups, respectively).

R2C2. We consistently observed that disrupting blocks of positive 

contribution led to a decrease in predicted activity, while disrupting blocks of 

negative contribution resulted in an increase (Supplementary Figure 21, 

Methods).

This is very circular, they determined which bp the model thinks are important and mutated them. Mutating 
them makes predicted activity lower, this is expected. They need to validate this experimentally. 

Contribution score methods are a mathematical tool used to provide a hypothesis of why a deep 

learning model generates a prediction, regardless of whether its prediction is accurate or not. In turn, 

the goal of the contribution-block ablation study was to build trust in sampled integrated gradients, the 

mathematical method we have developed to obtain contribution scores. This approach consistently 

identified sequence fragments that increase or decrease Malinois predictions of activity from an 

individual CRE in the various cell lines. We agree that an empirical validation via MPRA would 

additionally test how positive and negative contribution blocks affect sequence activity. However, 

comprehensively evaluating all blocks with the necessary power would require testing a number of 



oligos exceeding what has been investigated so far in this entire study. For example, our in silico analysis 

required testing 5M sequences which is unfeasible experimentally. Furthermore, this experiment could 

conflate assessment of model accuracy with technical validation of contribution scores requiring 

additional experimental and mathematical study to resolve. Ultimately, we deemed this outside the 

scope of this study and agreed with reviewer 1’s opinion that in silico methods would be suitable for 

subsequence functional characterization. We point out that our general approach using contribution 

scores from a well-benchmarked model to interpret subsequence function is standard in the field 

(Avsec, Agarwal, et al., 2021; Avsec, Weilert, et al., 2021; Linder et al., 2023), and to our knowledge a 

well-powered empirical validation as proposed here would be the first of its kind. 

We have edited the text to better reflect the views above and moved it to Supplementary Note 4: 

“In order to validate that our contribution score method accurately reflects how single 

nucleotides impact model predictions, we systematically disrupted sequence segment 

blocks of positive, negative, and neutral contributions (Methods). We consistently 

observed that disrupting blocks of positive contribution led to a decrease in predicted 

activity, while disrupting blocks of negative contribution resulted in an increase 

(Supplementary Note 4 - Figure 1, Methods). This alignment with expected effects 

supports the suitability of the contribution score method to interpret model predictions.”

https://paperpile.com/c/eTnp5I/M6MH+mqlG+mNv0


R2C3. The section: Complex semantic architectures are syntactically 

differentially deployed in natural and synthetic sequences

This section is very technical and dense. There is a lot of computational analysis that is not validated. I’m 
unclear what this section adds to the paper. 

They claim that synthetic enhancers have higher program content and higher 

program heterogeneity. This is shown in Fig S 28b, they need to do some stats 

on this section. This whole section is hard to understand, and they don’t 

really define what these metrics are. It would be helpful to choose a few, 

explain them well, and try to discuss their relevance. It is unclear to me what 

this finding adds to the paper or how this finding can inform our ability to 

design tissue specific enhancers.

This section uses topic modeling, a well-known language analysis methodology used to study word co-

occurrence, to distinguish how motifs are combined in different sequence groups. In this case, topic 

modeling identifies groups of co-occurring motifs and quantifies how these groups are distributed 

throughout sequences, allowing for more flexible detection of motif combinations beyond single motifs 

or pairs performed earlier in the manuscript. This provides our work a high level analysis of how 

patterns of motifs differ between element sets.  

We agree with the reviewer that Supplementary Figure 15b (previously Supplementary Figure 28b) was 

lacking crucial information to understand the plots. We appreciate the comment and have added the 

missing labels to the y axes and color bars, and included their descriptions in the figure legend. 



Supplementary Figure 15b. Distribution of individual program fraction, normalized by total 

program content for 12 programs assessed by NMF decomposition. Sequences are grouped by 

design methodology (x-axis) and intended target cell type (hue). Inset slider indicates aggregate 

program function over K562, HepG2, and SK-N-SH (average repressive function indicated by blue, 

averages clipped within +/-1 range). Boxes demarcate the 25th, 50th, and 75th percentile values, 

while whiskers indicate the outermost point within 1.5 times the interquartile range from the 

edges of the boxes.

Additionally, we have added label descriptions in the legend of Supplementary Figure 16a-d (previously 

Supplementary Figure 29a-d) as well. 

“Supplementary Figure 16. Overall program usage. (a) Distribution of total program coefficients 

for sequences in different design groups, indicating the total amount of information encoded in 

each element. (b) Heterogeneity of program coefficients for each sequence measured by entropy. 

Higher entropy suggests greater diversity of programs used in each CRE. (c) Aggregating 

activating program content corresponding to the correct target cell type. High values indicate a 



greater proportion of information encoded in the CREs is dedicated to enhancing transcription in 

the target cell. (d) Same as c, except repressing programs. Higher values indicate a greater 

proportion of information encoded in the CREs is dedicated to repressing transcription in off-

target cells.” 

We note that reviewer 1 had multiple suggestions during the first rounds of revisions about the 

importance of this section and suggestions to improve it. Due to the observational nature of NMF and in 

accordance with Reviewer 1’s concerns about overinterpretation, we removed our original detailed 

statistical analysis on the data in Supplementary Figure 15 and 16. These were present in lines 410-420 

of our original submission. 

We reproduce our explanation to reviewer 1 of the technical challenges to providing experimental 

validation of our NMF analysis, and our agreement that statistical analysis on these observational data 

could be overinterpreted. 

Submission 1: Reviewer 1 Comment 15: 

Constructing sequences from NMF programs and testing with Malinois 

Our original intention was for NMF to serve as observational analysis to show broad 

patterns of differences between groups of sequences. However, the reviewer raises an 

interesting question that we agree should be evaluated if we were using NMF programs 

to define cell specificity. We agree we lack the data to establish a causal relationship 

between program content and sequence function (e.g. cell type specificity). While it is 

clear how to embed individual motifs into sequences, as we have done in response to 

R1C10, we find embedding programs into sequences non-trivial. Our method of 

featurizing sequences and computing NMF programs is not end-to-end, making it 

difficult to generate sequences with well controlled program embeddings. One way to 

overcome this is similar to the approach applied by Taskiran et al. which used a model 

trained on program assignments as the oracle for designing synthetic CREs which can 

then be evaluated for specificity (Taskiran et al., 2024). There is no straightforward way 

to do that without training a new model to approximate our NMF results and applying 

sequence design techniques. We look forward to future studies attempting to develop 

methods that could directly assess how well program assignments reflect regulatory 

programs at-scale. 

https://paperpile.com/c/eTnp5I/zJRu


We have now updated the manuscript to clarify our NMF is intended only to provide a 

broad overview of relationships between sequences tested in our study. To limit 

overinterpretation, we have removed our detailed analysis of differences in the 

content of specific programs in different groups of sequences. We instead focus on 

higher level patterns of synthetic elements deploying activating and repressing 

programs to a higher degree than natural sequences, which is in agreement with the 

analysis of individual activators and repressors. 

R2C4. While for K562 optimized CREs there is clearly specificity for the cell line of choice, this is less true for 
the HEPG2 and SK optimized sequences, as these CREs also show expression in A549 and HCT116 cells. For SK-
N-SH optimized CREs there is the least specificity seen, the axis has a different scale in G and the activity of the 
SK-N-SH optimized CREs is only slightly higher in the SK cell line than in A549 and HCT116. Therefore, they do 
not attain the same levels of specificity as when they were only testing CREs in the k562, HepG2 and SK lines. 
But in the text they say they are successful. I think they should remark on the fact that when they extended 
their model these two additional cell lines they were successful for k562 optimized CREs, but Hep G2 and SK 
were less specific. This indicates that in some cases it may be difficult to generalize the model to other cell 
lines without further training. Also, they should do stats if they are going to make claims about this data 
supporting their model’s generalizability. 

We note that the cell lines A549 and HCT116 were not part of the initial experimental design, that is, the 

synthetic sequences were not explicitly optimized by CODA to be inactive in those cell lines. While we 

extended models to generate predictions in these cell lines retrospectively, the generative pipeline as a 

whole was not extended. The comparisons were performed due to a shared curiosity with the reviewer 

(round 1, R2C2) with respect to the generalizability of the models. We do not claim that training in the 

three cell lines used in our initial study is enough to generalize off-target repression to all cell types. As 

discussed in our initial response to the reviewer, new technologies are needed to extend generalizability 

to many cell types, especially in vivo, and is a focus of our current research program. Indeed, in the 

discussion, we point towards more data being needed to effectively target new cell types.  

Regarding interpretation of the results when adding new cell lines, while the intensity of cell type-

specific objective function goes down, we note that activity in the targeted cell line remains higher than 

the new cell lines. The insets of Supplementary Figure 17e-g quantify the percentage of sequences that 

have highest activity in the target cell types before and after the additional cell lines are considered. 

Sequences designed by Fast SeqProp and Simulated Annealing maintain maximum activity in the 

intended cell line even when considering additional cell types with high consistency, which we consider 

a successful outcome given CODA was unaware of the new cell types during the design stage. 

Furthermore, the synthetic elements maintain a significantly higher minGap than natural elements even 

when considering A549 and HCT116 in the calculations, which is now quantified in Supplementary 



Figure 17h. We do, however, appreciate the caveat the reviewer points out regarding reduced MinGap 

intensity and include it in a revised description of the result. 

Line 288: 

“To determine if specificity is maintained when adding new cell lines, we trained 

additional models for A549 (lung epithelial cancer) and HCT116 (colon epithelial cancer), 

observing that synthetic CREs retained maximum predicted activity in their target cell 

type over A549 and HCT116, especially those generated using Fast SeqProp, albeit with 

reduced MinGap (Supplementary Figure 17).” 

Supplementary Figure 17h legend: 

“...For each set of comparisons made using activity predictions for the same collection of 

cells, synthetic elements are predicted to maintain significantly higher average MinGap 

than any natural group both with and without A549 and HCT116 being considered in the 

calculations (p-adj<10-300 for all pairwise comparisons, Tukey's HSD test).” 

R2C5. Sequences designed for neuronal specificity showed similar success 

(2 of 3), driving expression in a subset of neuronal cell types. There needs to 

be some discussion of the limitations here. By this I mean, what specificity is 

actually achieved. I would have expected the CREs to be active in all neural 

cells or in specific subset of neural cell types most similar to the SK cell line. 

This is not what is seen, instead there is generalized neural expression that 

varies between embryos and the two enhancers.

We understand the reviewer’s perspective that without full context a reader may incorrectly assume 

synN1 was intentionally designed with neural subtype specificity, and overinterpret the capabilities of 

our existing CRE design capabilities. We have added context to the discussion conveying our surprise 

regarding that specific result, and clarify to the reader that more work is needed for precise sub-tissue 

targeting. We reproduce the text below, but first answer your questions.  



We expect that the neuronal in vivo CREs designed by CODA should have specificity driven by two 

features, an analogous neural cell type to the SK-N-SH line, and lack of activity in cell lines analogous to 

K562 and HEPG2. It is important to make the distinction that “analogous cell lines” is with respect to a 

shared regulatory program. As these are not primary cell lines or tissue samples, we don't expect perfect 

matching to cells in humans, let alone other species. However, we expect some sharing of regulatory 

programs resulting in overlap in the specific TFs driving transcriptional activity in these cell lines with TFs 

driving activity in the tissues these cell lines arose from. Our baseline expectation for success was 

overlap in expression with any neuronally related tissue, and lack of expression in liver or blood tissues. 

This prior hypothesis differs from the reviewer’s as our initial hypothesis did not bound the number of 

neural cells expression was expected in. We are unaware of the exact analogous neural cell type of the 

SK cell line, and as such are unsure that we can say definitively that CREs are seen to be active in a 

subset of neural cells most similar to SK cells. Furthermore, it is unsurprising that our CREs have 

incidental specificity to subtypes of neurons, given our cell lines likely do not capture the transcriptional 

diversity of all neurons, nor have we directed CODA to utilize regulatory programs ubiquitous across 

neurons.  

With regards to heterogeneity of expression patterns, zebrafish experiments were conducted without 

germline integration using a transposon system. Chimeric, non-uniform expression even between 

identical cell types is a common well known artifact of the assays. For all animal experiments, we have 

used standardized scoring approaches for these transgenics that are well established by leaders of the 

field (PMID: 27768887 and by the Vista Enhancer Browser (https://enhancer.lbl.gov/). Lastly, we think 

the idea of specifying cell subtypes is an interesting question that we are currently investigating, but one 

likely served best by work in primary cell, in vivo reporters, and advances in modeling. We have updated 

language to address these ideas.  

Line 385: 

“We were surprised that our neuronal synN1 CRE, designed from a single transformed 

SK-N-SH cell line, exhibited highly specific sub-cortical expression in mice. Further 

research is needed to develop optimal strategies to translate in vitro models to precise 

targeting in vivo.” 

https://enhancer.lbl.gov/
https://enhancer.lbl.gov/
https://enhancer.lbl.gov/
https://enhancer.lbl.gov/
https://enhancer.lbl.gov/
https://enhancer.lbl.gov/
https://enhancer.lbl.gov/


R2C6. We observed specific expression for neuronal #1 (N1) with localized 

expression in the developing cortex and no additional expression observed 

elsewhere (Supplementary Figure 36a,b). To localize the expression patterns 

further within the cortex, we repeated the reporter assay with the N1 CRE 

and performed in situ staining of the whole brain at 5 weeks postnatal (Figure 

4d, Supplementary Figure 36c h). We observed cortex-specific expression is 

maintained in postnatal mice, with focal activity occurring in the neurons at 

neocortical layer 6 and at subplate neurons (Figure 4e-g, Supplementary 

Figure 37a,b).

Of the two CREs active in the zebrafish, one is active in the mouse, but appears to be active in only a very 
specific and different region of the brain to what was seen in the zebrafish. Why would the expression be in 
cortex alone here, and why was only one of the two CREs active in mouse. Why would the expression be in 
the neocortical layer 6 and at subplate neurons, rather than in other neural cell types or populations of cells. 
There needs to be some discussion of this and the limitations of the approach, especially given the pitch 
highlighting the significance related to designing enhancers for therapeutics.  

Additionally, while I understand that this is a novel approach, I wonder if validation of 1 of two CREs is 
sufficient for the claims they are making. Ideally I’d like to see more CREs tested and validated, the del 
Almeida et al tests 8 enhancers per cell type in drosophila. While I understand that this is in mouse, they could 
test more than 2, and could test more in zebrafish.  

For the liver enhancers they tested in the zebrafish, these seem to have more uniform expression, although it 
is hard to know which liver cell type these enhancers are active within. I would like to know if these were 
inactive in mouse when tested or untested. If untested, I wonder why they did not choose to test these given 
that the liver is a less heterogenous cell type than neural cells found within the CNS and PNS. Liver CREs would 
have been an easier system to validate conservation of activity across species and the ability to design tissue-
specific CREs than the neural enhancers and this omission concerns me. 

While we agree with the reviewer that unraveling the causal factors underlying cortical specificity is 

interesting future work, this degree of specificity was incidental to the cell lines and in silico techniques 

used in the study and not a core result. For background, we expect that tissue specificity to be driven by 

the unique combination of activating and repressing factors, and that SK-N-SH cells, for which these 

neuronal enhancers were designed, will have a higher overlap in the expression of these TF to neuronal 

cells than to other cells. Differences across species, specific cell types, and developmental timing, will 



likely result in further divergence in TFs between those expressed in SK-N-SH cells and the tissues 

surveyed in our study. As SK-N-SH cells represent just one cell type compared to the complexity of an in 

vivo system, it is not unexpected that CREs functional in SK-N-SH may be specific to only a subset of cells 

in vivo, and different SK-N-SH-specific CREs designed by CODA may use different regulatory programs 

each having a different neuronal specificity in vivo. Our description of the specificity for N2 to layer 6 

neurons is evidence of succeeding in designing a CRE with function in mammals to any neuronal tissue, 

rather specifically to the cellular subtype of layer 6 neurons. We have attempted to clarify this in the 

updated manuscript.  

More broadly, as we noted in R2C1, it was not our intention for our manuscript to be a “pitch” with 

respect to therapeutics. Our discussions about therapeutic enhancers are forward-looking statements 

that we believe help contextualize our work for the reader. They are the long-term goals that motivate 

us. We are not making claims that we have designed therapeutic CREs or created a hardened approach 

for therapeutic development. Instead, the three manuscripts preprinted in 2023 demonstrated for the 

first time the success of synthetic CREs and our work is the first to do so at-scale in humans and 

evaluates the resulting sequences in a vertebrate system.  

As the reviewer noted themselves, mouse experiments are quite different from drosophila experiments, 

and we believe testing additional sequences is beyond the scope of this paper for multiple reasons. First, 

these tests are extremely costly, time-consuming, and would require a separate manuscript to properly 

communicate the results. In addition, the in vivo experiments are not intended to be experimental 

validation of the CODA pipeline; this was the purpose of the large-scale MPRA. The 6 sequences tested 

using our in vivo experiments were performed to provide supplementary insights into how some 

generated sequence might work within a whole organism. We thus did not derive any definitive claims 

from the mouse or zebrafish tests.  

Regarding the reviewer’s proposal that liver CREs would have been easier to validate, we want to clarify 

that this is not the case given our validation pipeline. We first took a conservative and efficient approach 

to validate a sequence in the mouse by performing embryonic lacZ reporter screens on F0 transgenic 

animals. This technique is not compatible with the testing of HepG2-specific CREs due to the 

pigmentation of the developing liver that prevents visualization of the X-gal substrate. This, combined 

with the general interest in reducing off-target transgenic effects in the liver, led us to test neuronal 

CREs, leaving the candidate liver-targeting elements untested. After receiving positive results at E14.5, 

we used the same targeting vectors to produce the immunohistochemistry images of 5-week old brains.    



R2C7. Our results suggest that CREs designed for tissue-specific targeting 

can work across species, even in the brain, which has been an ongoing 

challenge to target with viral-based delivery approaches. An integrated 

framework leveraging human cell lines in conjunction with whole organism 

models may thus be a viable approach to rapidly identify CREs to execute 

novel functions in humans.

If the goal is to find tissue-specificity with certain neural cell types then the enhancers need to be active within 
a particular type of neural cells. Yet in the study, only neural is selected, and the particular neural cell types 
vary widely between embryos, enhancers and species in the 2 CREs validated. While this framework could 
work it has not been demonstrated by the data in this manuscript. 

The text noted here is in the third to last paragraph in the discussion where we are contextualizing the 

results and providing a forward-looking hypothesis on what may be feasible (ex. “may thus be a viable 

approach”).  We fully agree that our experiments do not conclusively demonstrate that our current 

approach can be used as presented to overcome a specific and targeted gene delivery challenge which, 

to our knowledge, we do not state otherwise in the manuscript. We simply aimed to convey that our 

results, in combination with Taskiran et al. and de Almeida et al., can provide critical justification for 

future application of machine-guided engineering frameworks, including our own, to increasingly 

complex and resource intensive experimental systems that more comprehensively model the 

requirements of a specific goal. 

In order to ensure this is clear, we have re-written the statement in the discussion to further emphasize 

that additional work is required.  

Line 383: 

“These findings show it is feasible for CREs with novel functionalities developed in vitro 

to maintain specificity in analogous tissues in vivo. We were surprised that our neuronal 

synN1 CRE, designed from a single transformed SK-N-SH cell line, exhibited highly 

specific sub-cortical expression in mice. Further research is needed to develop optimal 

strategies to translate in vitro models to precise targeting in vivo. An integrated 

framework that combines human cell lines with whole organism experimental models 



may be an effective approach to rapidly identify CREs capable of accomplishing novel 

functions in humans.” 

R2C8. We successfully deployed CODA for cell type specificity

The ability to get specificity is lower for the SK and HEP optimized sequences when considering the A549 and 
HCT116 cell lines suggesting that there are limitations in this approach to find CREs with specificity. I have also 
discussed this in terms of in vivo specificity above. 

As we note in R2C4, we did not directly deploy CODA to design sequences with off-target expression in 

A549 and HCT116. We do however conclusively achieve specificity across the studied cell lines K562, 

HepG2, and SK-N-SH. Our work does not intend to imply that leveraging MPRA in these three cell lines is 

enough to induce off-target repression in all other cell types other than the target. A better assessment 

of the limits of our approach to additional cell lines would be to test by MPRA sequences that have been 

explicitly designed using models trained in these additional cell types, which would be an interesting and 

suitable research question, but unfortunately beyond the scope of the proposed work. Nonetheless, 

while the intensity of specificity went down in A549 and HCT116 for HepG2- and SK-N-SH-optimized 

sequences, the targeted cell line is still highest. We made the specificity objectives more clear 

throughout the paper in the previous response to this reviewer, relating to these three cell lines using 

reporter assays specifically.  

R2C9. Fig S26 title needs some attention. type: token ratio – is very technical 

and it would be good to make this more understandable

We apologize for not providing a suitable title for Supplementary Figure 26, we have updated it to read 

“Lexical analysis of motif content” (now Supplementary Note 2 - Figure 4). We have also moved this 

analysis to Supplementary Note 2 to allow further explanation of types and tokens which are commonly 

employed in language analysis. 



R2C10. Figure S3. All y axes should be labelled.

We thank the reviewer for bringing this to our attention. We have updated the y-labels accordingly. 

R2C11. Stats should be shown in the main figures when claiming significant 

enrichments, for example: Figure 1d, could they please show the stats in the 

main figure. They mention they have done an MWU, but it would be good to 

see the stats in the main figure.

Given the high number of data points used in this analysis (n = 62,582), any correlation coefficient above 

0.01 will be significant (i.e., p < 0.05) and above 0.31 will cause underflow when calculating p-values 

(i.e., p < 10-308) so we inadvertently omitted p-values for correlation analysis when n is very large (e.g., 

above 10,000 data points). We have included in the legend that p < 10-300 for Figure 1d. In accordance 

with this update, we also include the same p-value indication for Figure 1e in the legend. We note 

Figure 1f is a visual representation of signal tracks at DHS peaks to appreciate concordance in the data, 

but was not used directly to make a statistical comparison. However, a closely related statistical 

comparison is presented in Extended Data Figure 2c.

R2C12. Fig S27. I get that topics are technical terms, but the paper may be 

more understandable if they tried getting. Away from technical language. 

Instead of calling these topics, perhaps the authors could name these “TF 

vocabularies” or ”TF Vocab 1”, ”TF vocab 2”, …

We apologize for the oversight in the “Topic” labels in Supplementary Figure 14 (previously 

Supplementary Figure 27) and have corrected these to read “Program” which is in keeping with the rest 

of the terminology related to NMF in our manuscript. While we agree that diverging from the standard 

use of the term could help unfamiliar readers grasp the concepts more easily, we think that being 

consistent with the original terminology is important to connect readers to related literature. In our 

writing we try to achieve a balance of using established language with providing simple descriptions of 



the analysis/results. We believe this helps maintain a shared vocabulary within a field while making our 

work accessible to those outside the field. To be consistent with the terminology used in gene 

expression analyses referred to in the Methods, we have now ensured exclusive use of the term 

“programs” except for one the instance in the Methods used to explain the conceptual similarity in 

language topics and gene expression programs. To aid readers unfamiliar to these concepts we include a 

more detailed description when introducing the term.  

Line 267: 

“These programs describe co-occurring TF vocabularies found in the elements we 

tested.”
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