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Supplementary Materials:

Supplementary Figure 1: Consistent eQTL enrichment near the TSS of genes across
multiple datasets

eQTL enrichment near the transcription start site (TSS) of genes from various data sets: (a) Second
batch from ref. 1 (4,259 genes with significant SNPs), (b) First batch from ref. 1 (2,760 genes with
significant SNPs) (c) Ref. 2 (639 genes with significant SNPs), and (d) Ref. 3 (3,048 genes with
significant SNPs). SNPs linked to the expression of the same gene were normalized to ensure equal
contribution from each gene in the analysis. Weights were assigned either uniformly (red line), or
based on the posterior inclusion probability (PIP, blue line), which accounts for linkage disequilibrium
(LD) between SNPs. Incorporating LD using PIP consistently enhanced the enrichment in and
downstream of the TSS across datasets. Data smoothed with a 100 bp (data from ref. 1) or 200 bp
(otherwise) rolling window.
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Supplementary Figure 2: eQTL enrichment near the transcription end site of genes

eQTL enrichment is depicted near the transcript 3’ end site (TES) of genes from various datasets,
using the same methodology and details as described in Supplementary Fig. 1. The y-axis scaling is
the same as in the respective sub-plot in Supplementary Fig. 1 to enable comparisons between the
figures. The enrichment observed near the TSS is not found at the other end of genes, in the TES.
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Supplementary Figure 3: TSS-to-ATG distance influences histone H3 enrichment
near the TSS

Average enrichments of histones H3.1 (a, c) and H3.3 (b, d) near the TSS (a-b) or ATG (c-d) of genes
with varying TSS-to-ATG distances. Processed data for enrichment of the two histones along the
genome were retrieved from the plant chromatin state database (PCSD)4, and data from replicates
were averaged 5,6.
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Supplementary Figure 4: TFs bind bimodally both up- and downstream of the TSS
(DAP-Seq)

(a-b) Fraction of sites with a DAP-Seq peak center for TFs, as in Fig. 1c, separately plotted for TFs
binding purified genomic DNA (a) or to non-methylated genomic DNA (b); data smoothed using a 100
bp rolling window. TFs binding downstream to the TSS were more sensitive to DNA methylation. (c)
DAP-Seq peak enrichment, as in Fig. 1d, for each TF separately, maximum signal for each TF was
scaled to 100, enrichment patterns were clustered using k-means (k = 4).
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Supplementary Figure 5: In vivo evidence of TFs binding downstream of the TSS

Average enrichment of (a) the DNA-binding protein APETALA 2 (AP2), (b) the transcriptional
coactivator ANGUSTIFOLIA3 (AN3), and (c) the DNA-binding protein ETHYLENE INSENSITIVE3 (EIN3)
near the TSS of genes with varying TSS-to-ATG distances. Data were retrieved from PCSD, averaged
for replicates if available, and plotted as in Supplementary Figs. 3a,b 4,7–9.
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Supplementary Figure 6: Reproducibility of MPRA across four flowering plants

MPRA experiments were conducted in four (A. thaliana and N. benthamiana) or three (tomato and
maize) replicates, with both p35S- and pTRP1-based libraries. Pearson’s correlation coefficients were
calculated for comparison of all 24,000 constructs for all possible pairs within the 28 experiments. (a)
Selected scatter plots are presented for pairs of pTRP1-based replicates for each of the four species,
with the respective Pearson’s correlation coefficients indicated (r). (b) The full array of Pearson’s
correlation coefficients for replicates plotted separately for each species, and compared to correlation
values between pairs of non-replicates.
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Supplementary Figure 7: Comparison of MPRA results using two core promoters

(a) Shown is the gene expression induced by 35S enhancer fragments vs. constructs lacking
insertions in four species within the MPRA framework. Shown is the comparison of gene expression
between the two core promoters used in the MPRA: 35S (purple) and the TRP1 gene promoter
(orange). The effects are shown for insertion upstream of the TSS (top panel) and downstream of it
within an intron (bottom panel). (b-c) Shown is the correlation in gene expression across all
constructs, across the 12,000 inserted fragments, when comparing the use of the 35S core promoter
vs. the TRP1 promoter within the Arabidopsis MPRA. The correlation is shown for insertions upstream
(b) and downstream of the TSS within an intron (c). Pearson’s correlation (r) and number of
constructs compared (n) are indicated in b and c.
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Supplementary Figure 8: Comparative enhancement by upstream vs. downstream
originating sequences

(a) Same as Fig. 2f for pTRP1-based constructs. Expression from upstream- (blue, 3415 fragments)
and downstream-derived (red, 7843 fragments) fragments is compared against constructs lacking an
insertion, with sequences situated upstream (left) or downstream (right). (b) Relative expression from
identical enhancers due to enhancer position (upstream vs. downstream) separated by fragment
genomic origin: upstream (blue, 3,966 or 3,415 fragments for 35s- and pTRP1-based respectively) and
downstream (red, 7,928 or 7,843 fragments for 35s- and pTRP1-based respectively), in four different
species, for both p35S-based (left) and pTRP1-based (right) libraries. In both A and B, error bars
represent the mean and ± standard deviation.
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Supplementary Figure 9: Identifying 6-mers linked to downstream MPRA
expression

(a) Score of 6-mers based on their influence on gene expression in the TSS downstream-MPRA,
considering only sequences derived from downstream of the TSS in the Arabidopsis genome, as
shown in Fig. 3a. For each of the 2,080 unique 6-mers, including reverse complements,
downstream-derived sequences were divided into those containing or lacking the 6-mer. A
-log10(p-value) from a two-sided Mann-Whitney U test comparing these two groups is plotted on the
y-axis, versus the difference in average log2 expression between the groups containing and lacking the
6-mer on the x-axis. Bonferroni multiple testing 5% threshold (depicted by a horizontal dashed line) is
defined as -log10(0.05 / # tests), where the number of tests includes all eight experimental setups.
Points in red depict 6-mers containing the sequence GATC. The top row shows p35S-based
backbones and the bottom row pTRP1-based ones. Host species from left to right are: A. thaliana, N.
benthamiana, and maize, as indicated by icons. (b) Distributions of expression values for
downstream-derived fragments with (Y) or without (N) the indicated 6-mer in downstream MPRA, with
the number of fragments indicated below the x-axis. Effects of 22 6-mers for specific combinations of
backbone x species are shown, similar to Fig. 3b. All 6-mers presented have a p-value smaller than
10-12. The GATC-containing 6-mer with the strongest effect, and the top two GATC-lacking 6-mers for
each of the eight backbone-species combinations are displayed, comprising a set of 24 6-mers, which
includes the 2 6-mers presented in Fig. 3b. Error bars represent the mean ± standard deviation.
Species and backbone are indicated on the y-axis.
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Supplementary Figure 10: Comparison of 6-mers linked to downstream MPRA
expression between p35S- and pTRP1-based libraries

Comparison of (-log10) p-values from a two-sided Mann-Whitney U test for 6-mer associations with
gene expression, as in Supplementary Fig. 9a, between the p35S- and pTRP1-based libraries. The
p-values are shown for MPRA done in the different species: N. benthamiana (a), Arabidopsis (b),
tomato (c), and maize (d). A dashed line, as defined in Supplementary Fig. 9a, represents the
Bonferroni-corrected 5% significance threshold. Points highlighted in red represent 6-mers containing
the sequence GATC.

11



Supplementary Figure 11: Comparison of GATC motif association with gene
expression in the upstream and downstream MPRA

Relative activity of all fragments when inserted downstream (upper row) or upstream (bottom row), as
a function of the presence of YVGATCBR consensus motifs in the tested fragments. Group sizes:
10,214-10,675 (No GATC motif, red) and 1,281-1,303 (With GATC motif, blue). Backbone and species
are indicated. Error bars represent mean ± 1 standard deviation.
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Supplementary Figure 12: Examples of deep mutational scan of fragments in MPRA
in pTRP1-based libraries

Deep mutational scans of fragments as indicated in the x-axis using pTRP1-based libraries. All
examples presented as in Fig. 4b.
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Supplementary Figure 13: Examples of deep mutational scan of fragments in MPRA
in p35S-based libraries

Deep mutational scan of fragments as indicated in the x-axis using p35S-based libraries. All examples
presented as in Fig. 4b for six additional fragments.
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Supplementary Figure 14: The per-nucleotide contribution to transcriptional
regulation calculated from deep mutation scanning

The impact of mutating each position within the fragments is shown by plotting the average
log2 difference in gene expression between variants with the WT nucleotide and all four of
their mutated counterparts. For each 1-bp mutation analyzed, we calculate this difference
and plot the average change in expression as the height of the corresponding nucleotide in
the original fragment. The plots include the fragments shown in Figs. 4b and Supplementary

Figs. 12-13. Each plot is labeled with the fragment index and the library core promoter used.
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Supplementary Figure 15: Examples of differential gene expression associations
with alleles having or lacking a GATC motif in A. thaliana natural accessions

Two representative examples from the summary statistics in Fig. 4d, illustrating the association
between gene expression and the presence of a GATC motif 1,10. On the left, accessions with different
alleles of AT1G64150 are grouped based on the presence of the GATC motif 238 bp downstream of
the TSS or the complete absence of the 4 bp GATC sequence. Intermediate cases are omitted.
Expression values are shown relative to the mean in the population. On the right, a similar graph is
depicted for gene AT4G16800, with the motif 322 bp upstream of the TSS. Boxplots display the
median (center line), IQR (box bounds), whiskers (min and max within 1.5 IQR), and outliers (points
beyond whiskers). The number of accessions (n) in each box is shown below the variant type.
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Supplementary Figure 16: DAP-Seq data of GATA TFs from O'Malley et al.

Enrichment relative to the TSS of the binding peaks of each of the 13 GATA TFs examined in ref' 11.
Each GATA TF is plotted in a different subplot as indicated, the subfamily of the GATA is indicated in
brackets 12,13. The number of identified peaks (n) is given below the TF name, if the TF was also
assayed with non-methylated DNA (blue line), the number of binding peaks for this is also given in
blue. Finally, the DNA motif identified in 11 is plotted above the graph, a blue frame is added if it was
derived from the assay with non-methylated DNA. GATA20 is plotted twice, once with only the
methylated DNA, due to the large difference in dynamic range between them. Note that the DNA motif
associated with all of subfamily A is similar to the GATC motif identified in this work, while a few TFs
in subfamily B also bind a motif with a GATC sequence, it also has a different affinity for “GAT” not
inferred in the MPRA results of this work.
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Supplementary Figure 17: Genomic distribution of the GATC motif and its
association with GATA factor binding

(a) Distribution of GATC motifs in the 500 bp region downstream of the TSS in Arabidopsis genes. The
graph depicts the number of genes with different counts of GATC motifs within this window. (b)
Distribution of GATC motifs in different genomic contexts within the 500 bp region downstream of the
TSS, against the genomic background. (c) k-mer weights derived from an analysis of GATA12
ChIP-Seq in maize 14. A higher weight indicates stronger binding propensity of the transcription factor
GATA12 to sequences containing that specific k-mer. The weights of k-mers containing either GATC or
GATA are plotted along weights of all other k-mers. The weights serve as a measure of sequence
preferences when modeling GATA12 TF binding based on the machine-learning model applied by the
authors. The comparison to GATA-containing k-mers is highlighted due to the propensity of GATA
factors to bind GATA sequences in other species (Supplementary Note 1). Boxplots display the
median (center line), IQR (box bounds), whiskers (min and max within 1.5 IQR), and outliers (points
beyond whiskers), numbers of k-mers (n) are indicated.
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Supplementary Figure 18: Transient overexpression of GATA TFs affects genes
identified as GATA targets by DAP-Seq

(a) Shown is the log2-fold change in gene expression in response to GATA TFs OE (as indicated)
relative to GFP OE. Data are plotted for genes without GATC motifs in the 500 bp downstream of the
TSS, genes with GATC motifs only in coding regions, UTRs, introns, or those with motifs in more than
one genomic feature. Error bars represent the mean ± 1 standard deviation; numbers of genes per
category are indicated. (b) Enrichment analysis was performed to compare gene targets identified by
DAP-Seq for all TFs assayed in the 11 study with genes upregulated (as defined in Extended Data Fig.
7c) upon overexpression of the GATA TFs. Enrichment p-values were calculated using an upper-tail
hypergeometric test and are shown for each of the TFs samples previously assayed by DAP-Seq 11.
For the three GATA overexpression experiments, the genes with increased expression are most
enriched with the targets of GATA TFs in the DAP-Seq data.
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Supplementary Figure 19: Conservation of GATC-motif genes between Arabidopsis
and tomato

One-to-one orthologous genes between Arabidopsis and tomato were identified using OrthoFinder 15.
Out of 6,883 one-to-one pairs, 4,211 possessed a TSS upstream of the ATG in both species, forming
the basis for comparison. (a) The conservation of genes containing a GATC motif within the 500 bp
region downstream of the TSS is depicted. The Venn diagram illustrates orthologous genes and those
harboring the GATC motif in one or both species. The intersection of genes possessing the motif is
statistically significant (p-value < 10-49) according to an upper-tail hypergeometric enrichment test. (b)
Analysis of the distance between the TSS and the ATG demonstrates conservation between
Arabidopsis and tomato, with a Spearman correlation of 0.42 and a Pearson correlation of 0.26.
Notably, this level of correlation, though slightly stronger here, parallels findings from an earlier study
comparing the 5’ UTR length between Candida albicans and Saccharomyces cerevisiae 16.
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Supplementary Figure 20: Association between GATC-motifs presence and gene
expression across different genomic contexts

Gene expression levels are displayed for the aerial parts of Arabidopsis seedlings 17, as depicted in
Fig. 5a (a), and in seedling roots 18, corresponding to Fig. 5f (b). Genes are grouped according to the
GATC motifs located within the 500 bp region downstream of the TSS, categorized by specific
genomic features: no GATC motifs in this region (21,227 genes), motifs exclusively in the coding
region (4,003 genes), in UTR regions (1,395 genes), in introns (1,271 genes), and genes with GATC
motifs spanning more than one feature type, such as one motif in the coding region and another in a
UTR (600 genes). p-values are shown for comparison of gene expression levels for genes with GATC
motifs in any of the feature categories versus those without any GATC motif within the 500 bp region
downstream of the TSS. Boxplots display the median (center line), IQR (box bounds), whiskers (min
and max within 1.5 IQR), and outliers (points beyond whiskers). Statistical significance was assessed
using the Welch two-sample t-test.
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Supplementary Figure 21: Effect of GATC motif on expression throughout the
Arabidopsis vegetative shoot

GATC-motif effect sizes across different cell types within the Arabidopsis vegetative shoot, as
quantified in Fig. 5g. Gene expression was determined by averaging from scRNA-seq data,
categorized based on the 23 clusters defined in ref. 19. Clusters are annotated as presented in the
original study.
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Supplementary Figure 22: Downstream GATC motifs are associated with higher
gene expression when located in introns or UTRs across species

(a) Association between GATC-motif downstream of the TSS and gene expression across land plant
species is shown as in Fig. 6, counting only motifs found either in introns or UTRs in the 500 bp
downstream of the TSS. The effect of the GATC motif on expression (slope, left panel) and the
significance of the association (two-sided t-statistic p-value, right panel) are shown. Boxplots display
the median (center line), IQR (box bounds), whiskers (min and max within 1.5 IQR), and outliers (points
beyond whiskers). The right panel x-axis is square-root scaled. (b-c) Comparison of GATC motif effect
size (b) and significance of associations (c) considering GATC motifs found in all genomic contexts
(x-axis) vs. only ones in introns or UTRs (y-axis). Error bars represent one standard deviation around
the mean. Points are coloured according to their species, as described in the legend of b. Dashed
lines in b and cmark y=x. The number of transcriptomic datasets used for each species is indicated in
a (below the species name).
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Supplementary Note 1 - Indications of plant GATA factors binding to the GATC
Sequence

GATA transcription factors were first studied in erythrocytes 20,21. Despite their name,
derived from their ability to regulate transcription via G-A-T-A DNA sequences, some
of these factors often bind non-GATA sequences. Sometimes with even higher
affinity than their namesake sequences. Notably, a subset of GATA transcription
factors have repeatedly been found to bind the G-A-T-C sequences.

Evidence of this can be seen in various species. Vertebrate GATA-1, GATA-2, and
GATA-3 have demonstrated binding to GATC in addition to GATA sequences 22–24. In
C. elegans, the ELT-1 GATA transcription factor showed a significantly stronger
transcriptional activation effect on GATC sequences compared to GATA sequences
25. Similarly, in the mushroom Coprinopsis cinerea, the CcNsdD2 GATA TF showed a
preference for the GATC sequence 26. Also in the well studied budding yeast (S.
cerevisiae) four out of nine GATA TFs are associated with a GATC motif and not a
GATA one 27.

In 2000, a study by Lowry & Atchley analyzed GATA protein sequences across
multiple species 28. They found that GATA TFs from A. thaliana grouped separately
from vertebrate GATAs. Subsequent large-scale studies investigating TF-binding
motifs, both cross-kingdom and Arabidopsis-specific, profiled 19 GATA TFs from
Arabidopsis 11,29,30. Interestingly, in these studies, none of the Arabidopsis GATA TFs
showed binding to a GATA motif, but in most cases rather demonstrated a
preference for the GATC sequence (Supplementary Fig. 16).

Further support for the preference for the GATC sequence emerges from more
focused studies in plants. ChIP-Seq analysis of the GNC and CGA1 GATA TFs in
Arabidopsis, for instance, showed binding to the GATC motif 31. Similarly, ChIP-Seq in
maize identified a preference for GATC, rather than GATA sequences, for the GATA12
TF 14 (Supplementary Fig. 17c).

Evidence from other plant species also reflects this trend. In tobacco, the AGP1
GATA TF was found to induce expression by binding a GATC-containing motif 32. In
Catharanthus roseus, the CrGATA1 GATA TF activated five light-responsive vindoline
pathway genes via the GATC motif. Intriguingly, removing the GATA sequence did not
affect this induced expression 33.
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Taken together, these findings from both large-scale and gene-specific studies
suggest that, in a majority of instances, GATA TFs in plants primarily interact with
GATC motifs.

Supplementary Methods:

Processing gene expression data from the A. thaliana accessions
Raw RNA-Seq data from ref. 1 were downloaded from NCBI’s Sequence Read Archive
(SRA) database, accession SRP074107. The data were separated into two main
batches, done more than a year apart, as communicated by the authors of the
original study. To verify accession identity, SNPmatch (v5.0.1) was used34: briefly,
single nucleotide polymorphisms (SNPs) were called for each RNA-Seq sample
against the reference genome (TAIR10), and compared to the SNPs of the 1,001
Genomes Project10. In a few cases a mismatch between the indicated accession and
the identified accession was found. Most of these cases intersected with known
mix-ups in the 1001 Genomes Project10,34. These mix-ups were corrected, or in
ambiguous cases, data were not used. Reads were trimmed using Trim Galore with
default parameters35. Next, gene expression was quantified for all accessions which
are part of the 1,001 Genomes collection, leaving out 44 accessions unique only to
the gene-expression dataset. To quantify gene expression, a pseudo-genome was
created for each accession by incorporating SNPs from the 1,001 Genomes vcf file,
using bcftools (v1.16) consensus option on the reference genome (TAIR10)36. Gene
expression per sample was quantified using STAR (v2.7.9) against the accession’s
pseudo-genome using the Araport11 annotations37,38. 72 samples with fewer than
4*106 sequencing reads were omitted from further analysis. After discarding the
chloroplast and mitochondria genes, gene expression was calculated by dividing the
read count by gene length and normalizing to a total signal of 106. Then, genes with
signal less than 2 were discarded, and gene expression was log2 transformed.

In a subset of the RNA-Seq libraries, a gene length bias was identified, where
coverage was reduced at the 5' end of the genes. To address potential biases
associated with gene length, a normalization strategy using a custom R script was
implemented. Each batch was processed individually and the difference in gene
expression between all possible sample pairs was calculated and correlated to the
log2-transformed lengths of genes. Subsequently, for each sample, the average
absolute correlation across all pairs involving that sample was computed. The 10%
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of samples with the lowest average correlation were designated as the background
group, as they were least affected by the gene length bias. These samples were left
unchanged. For each non-background sample, the linear fit for the differences
relative to the log2-transformed gene lengths were determined when compared with
each background sample. The average slope from these linear fits served as the
correction factor. By subtracting the product of the correction factor and the
log2-transformed gene lengths to the respective samples, the gene length bias was
corrected. Lastly, the total gene expression per sample was adjusted to be 106 after
the correction.

Raw RNA-Seq data from ref. 2 were downloaded from NCBI’s SRA, accession
SRP036643. Data of 12 samples (6 accessions x 2 conditions) were not part of the
SNPs 1,001 Genomes dataset, and were omitted, as well as 46 samples with less
than 106 reads. Gene expression was quantified as above, first by trimming the
sequence reads using Trim Galore and then quantifying using STAR against the
pseudo-genomes, calculating TPMs per gene.

eQTLs analysis
The 1,001 Genomes vcf file was filtered for minor allele count >=5 using vcftools
(--min-alleles 2 --mac 5) and converted to Plink binary format39 using plink (v1.9). The
Kinship matrix was calculated according to EMMA, using the k-mers-GWAS
implementation with default parameters40,41. For running the eQTL analysis on data
from ref. 1, the analysis was conducted on the two batches separately. Only genes
with values for at least 200 accessions were used. Gene expression (log2

transformed, as described above) was normalized by subtracting the average signal
of the gene in the batch, averaged over repeats if present, and transforming using a
Box-Cox transformation by the MASS R library42. Transformed values were used to
run Genome-wide associations (GWA) with linear-mixed-models using the kinship
matrix by GEMMA (v0.98.5, -lmm 2, -maf 0.05). Only SNPs up to 10 Kb downstream
or upstream of the gene were used.

The eQTL analysis for data from ref. 2 was done for the two conditions (10°C and
16°C) separately. For each one, a gene was used if it had values for at least 120
accessions. Normalization of gene expression and following GWA was done as for
the dataset from ref. 1. data. For each of the 4 eQTL analyses done, a threshold for
significant SNPs was defined as 0.05 divided by the total number of SNPs used in
the analysis, on all genes. These thresholds varied between 1.59 * 10-8 to 1.16 * 10-8,
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or 7.80 to 7.93 in -log10, between the four analyses. 2760, 4259, 335, and 304 genes
had at least one SNP that passed the threshold for batch1, batch2 of the data from
ref. 1 and 10°C and 16°C conditions for data from ref. 2, respectively. Analysis
presented in the main text (Fig. 1a,b) are from the second batch of ref. 1 as well as
eQTL enrichment for different groups of genes (TSS-to-ATG distances or exonic
fraction in 500 bp downstream of TSS), results from the other eQTL analysis is
presented in the Extended Data Fig. 1 and Supplementary Figs. 1,2.

For plotting the average enrichment of eQTLs relative to the TSS or the transcription
end site (TES), each gene with significant associations had the same total
contribution to the analysis, regardless of the number of associated SNPs. Two
methods to weight the different associated SNPs per gene were used. First, each
significant SNP got equal weight. Second, significant associated SNPs were scored
according to the posterior inclusion probabilities (PIP), which take into account the
linkage disequilibrium (LD) between them. To calculate the PIP, fine map analysis
was conducted using the SusieR (v0.12.35) library43. For the fine-map analysis a
previously calculated imputed matrix of the 1,001 Genomes SNP matrix was used44.
For each GWA run, imputed genotypic information for the significant SNPs were
extracted and PIP were calculated using the phenotype as used for the GWA.

For eQTL analysis of data from ref. 3 the eQTL analysis results from the original study
were used. The p-values from the common effect were used with the same threshold
used (10-7). Significant SNPs per gene were weighted equally.

Metaplots of genomic profiles around the TSS of genes
To create a plot for genomic data around the TSS of genes, the following strategy
was employed to account for overlapping and nearby genes. First, each genomic
position was used at most once. For tail-to-tail genes, every upstream position was
assigned to the nearest TSS. If a position was both upstream of a gene and within
another gene, it was allocated to the gene it was part of, and therefore considered
downstream of the TSS. If a position was located inside multiple genes, it was
assigned to the TSS that was closest. The relationship between genomic positions
and their corresponding TSS was stored and subsequently used to generate an
average signal plot surrounding the TSS for a selected group of genes. Genomic
annotations were taken from TAIR10. Analysis and plotting of genomic information
was done using ‘misha’ and ‘tidyverse’ R packages45. Plotting genomic data around
the start codon (ATG) of genes was done using the same procedure.
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Nucleotide diversity (pi) per position in the genome was calculated using vcftools
(v0.1.16) with --site-pi parameter on all the SNPs table of the 1,001 Genomes
project46.

ChIP-Seq data from the plant chromatin state database (PCSD) was downloaded in
bigwig format and imported into a misha database in R4.

ChIP-Seq data for CGA1 was obtained in two independent repeats from the SRA
database31. Using Bowtie2, these reads were aligned to the TAIR10 reference
genome with standard parameters47. Subsequent peak calling was performed with
MACS2 (v2.2.7.1), employing the 'callpeak' option and parameters set to '-B -q 0.01',
allowing for the generation of a genomic profile48. For downstream analyses, these
genomic profiles were loaded into the misha database.

In the analysis of DNA Affinity Purification and Sequencing (DAP-Seq) data,
narrowPeak files were used to identify the genomic positions of TF-binding peaks.
These files were from the NCBI’s GEO database, accession number GSE6014311.
Using this data, various genomic tracks were constructed, each capturing the central
points of the respective peaks. Distinct tracks were generated for each Transcription
Factor (TF), done separately for each type of DNA source - genomic DNA and
genomic DNA without DNA methylation. In addition, tracks were created that
encompassed all peaks associated with a given TF family. This method was only
applied to TF families with a minimum of 10 members. Furthermore, tracks that
included all peaks linked to any TF were assembled, separate tracks were prepared
for each DNA source, and one for the full dataset combining both DNA sources.

A genomic track for the GATC-motif (YVGATCBR) was constructed within a misha
database. In this track, all central positions of the motif were assigned a value of 1,
while all other positions were set to 0. This genomic track was used to generate the
meta-plot surrounding the TSS and to define genes with a GATC motif within the
initial 500 bp downstream of the TSS.

Design of oligonucleotide pools
Every fragment in oligonucleotide pool 1 or 2 (OP1 / OP2) was designed to have a
core sequence, not longer than 160 bp surrounded by AGTTCAAACGGTCTCCACTC
and AGGACGAGACCAATGTGAAC in the 5’ and 3’ ends, respectively.

Oligonucleotide pool 1 (OP1) was designed to incorporate fragments near the TSS of
specific genes, along with control fragments. The upstream control fragments were
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based on the 35S, AB80, and RbcS_E9 enhancers; the fragments were taken from ref.
49. The downstream control fragment was designed according to the intron of the
UBQ10 gene, from 3 base pairs (bp) past the donor site to 3 bp before the acceptor
site. Fifty oligonucleotides of 160 bp each were designed to cover each control
fragment, with an overlap of 150 bp between every two consecutive oligos (for
instance, 1-160, 11-170, 21-180, and so on).

The oligos drawn from near the TSS of genes were designed in the following way:
Genes of Arabidopsis thaliana were selected according to the TAIR10 annotation50

under certain criteria: (1) excluding genes on the mitochondria or chloroplast
genomes, (2) ensuring the closest upstream gene is at least 50 bp away from the
gene's TSS, (3) only considering genes with a single TSS, (4) focusing on genes of at
least 500 bp in length, (5) only including protein-coding genes, and (6) selecting
highly expressed genes with expression in Col-0 of at least 10 in log2(TPM) in ref. 1.

Three fragments were obtained from the genome for each of the 7,775 genes that
passed this filtering process: 200 bp to 41 bp upstream of the TSS, 41 bp to 200 bp
and 201 bp to 360 bp downstream the TSS. If any of these fragments contained a
donor or an acceptor splicing site, the sequences surrounding it, 5 bp (-1 to +3) for
donor sites and 3 bp (-1 to +1) for acceptor sites, were removed. Any genes with a
BsmbI or BsaI recognition site within the three TSS-proximate sequences were then
removed, reducing the gene count to 4,884. Finally, 3,991 genes with the highest
expression were chosen, and the three fragments around each of these genes' TSS
were included in the oligonucleotide pool.

Oligonucleotide pool 2 (OP2) was constructed to contain altered versions of
fragments from OP1, which were split into three distinct sets. The goal of Set 1 was
to mutate the GATC motifs. 823 fragments originating downstream of the TSS in
OP1 were chosen, each with at least one GATC motif, adding up to a total of 917
GATC elements. New fragments were created for each of these fragments by either
of the following: (1) removing the GATC motif, resulting in shorter fragments, (2)
rearranging / shuffling the 8 bp of the GATC element to ensure disruption of the
original GATC sequence, and (3) changing the 6th nucleotide in the element, from "C",
to an "A".

If a single fragment contained more than one GATC motif, each of these
modifications was applied to every possible subset of elements. For instance, if a
fragment had three GATC motifs, it would yield seven subsets (23-1), and each of the
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three transformations would be applied to each of these, resulting in 21 mutated
fragments. In total, 3,216 fragments were created for Set 1.

Set 2 was designed with the objective of introducing GATC motifs into the
fragments. For this purpose, 221 fragments which can be detected consistently in
our MPRA libraries were arbitrarily selected from OP1, with 75% originating
downstream and 25% originating upstream of the TSS. For each chosen fragment, an
incremental series of 8 fragments was created, with each successive fragment
incorporating an additional CAGATCTG sequence. There was a minimum of 2 bp
between two adjacent GATC motifs. As a result, a total of 1,768 fragments (221 * 8)
were designed for Set 2.

Set 3 was designed for a deep mutational screening of a small subset of fragments.
To this end, 20 fragments from OP1, all originating from downstream of the TSS,
were selected. The chosen fragments were among the top 100 enhancing fragments
from the six libraries of tomato, A. thaliana, and N. benthamiana, in each of the two
backbones when positioned downstream the TSS. Among these 20 fragments, seven
were devoid of any GATC elements, from which two fragments lacked any GATC
sequences (only the 4 bp). Out of the 13 fragments that did have a GATC element,
two of them had two such elements. In the scope of this paper, only these 13 are
analyzed, while all data can be found in the Supplementary Tables.

Two series of modifications were created for each of these fragments. First, every
alternating 10 bp sequence, that is positions 1-10, 3-12, 5-14,..., and 151-160, was
removed, leading to 76 fragments each of 150 base pairs in length. Second, each
single bp in the fragment was substituted with one of the other three potential
nucleotides, or it was completely removed to yield a 159 base pair fragment. This
second set of alterations resulted in 640 fragments (160 * 4) from each original
fragment.

Duplicate fragments in the OP2 design were subsequently identified and removed.
These duplicates could have been the result of the removal of a single bp within a
region composed of the same nucleotides in Set 3, or they could have been due to
overlaps between Set 1 and Set 3.

Connecting barcode to enhancer fragment and plasmid backbone
Paired-end sequence reads were used to connect barcodes to inserted fragments. In
all 8 constructed libraries, the barcode was in R2 read and the inserted fragment
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(except in the two *_rmBsaI backbones) in R1. The sequence of R2, for example, in
pPSup_iGFP_v2 based library begins with:
{BBD}AGCTCCTCGCCCTTGCTCACNNBNNBNNBNNBNNBCATGGT, where {BBD} can
be either BBD, BD, D, or nothing. The underlined sequences are constant and the
NNBx5 is the barcode. In all libraries, R2 starts with the same form, with different
constant sequences and different degenerative nucleotides. R1 starts, for example,
with the following form in pPSup_iGFP_v2-based library:
{BBH}CTTGATATCGAATTCCACTCNNNNNNN…. also here the {BBH} represent up to 3
degenerative bp and the constant sequences is underlined. The NNN… represent the
sequence of the inserted fragment. R1 sequences from all libraries have a similar
form, with the exception of the two *_rmBsaI-based libraries, where there is no
cloned sequence and thus the constant sequence is longer. For pPSint_v2 and
pPSint_v2_pTRP1 cloned with OP1+OP2, R1 sequences were of length 210 bp and
the read ended with more constant sequences after the up to 160 bp of the
synthesized-inserted fragments.

Paired-end reads were filtered to ones that have a maximum of 1 bp mutation in each
of the three constant sequences: preceding the inserted fragments in R1, prior to the
barcode in R2, or within the 10 bp following the barcode in R2. This means that a
read can have 1 bp mutation in all three sequences and still be used. Following the
filtering steps the barcode and beginning of the enhancer fragment are extracted.
Barcodes that do not fit the VNNx5 pattern are filtered out.

The subsequent processing was carried out independently for OP1+OP2-based
libraries and all other libraries. For the latter group containing enhancer fragments,
the extracted enhancer fragments were aligned to the 12,000 synthesized oligos
using Bowtie (with parameters -v 1 -a --best --strata)51. Barcodes associated with
more than one enhancer fragment were flagged, and were not used in following
analysis. Due to varying sequence coverage and library complexities (particularly
between the *_rmBsaI libraries and others), the libraries were downsampled,
targeting for 135 appearances of the 50th most frequent barcode.

In the case of OP1+OP2-based libraries, the full 160 bp of the inserted fragment had
to be utilized, as OP2 contained sets of all 1 bp mutations derived from specific
fragments. Subsequently, paired-reads that passed the initial filtering (i.e., <= 1 bp
mutation in constant regions) underwent further filtering to detect the presence of
the expected constant sequence ("GAGTAATTGC") after the enhancer, eliminating
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less than 5% of reads. All enhancer fragments flanked by constant sequences
connected to the same barcode were processed together, to get a mapping of each
barcode. To link barcodes to a unique enhancer fragment, the following criteria were
applied: (i) The barcode appeared at least in two reads, (ii) The most abundant
connected sequence matched one of the synthesized fragments (OP1+OP2) exactly,
(iii) None of the other connected sequences with more than 2 bp mismatches to the
most abundant sequence were found in the list of synthesized-fragment enhancers
(OP1+OP2), (iv) The total number of sequences with up to 2 bp mutations from the
most abundant sequence, including the most abundant sequence itself, constituted
at least 80% of all sequences connected to the barcode. If a barcode appeared at
least twice but couldn’t be linked to a single enhancer it was flagged, and was not
used in the following analysis.

For the MPRA experiment, groups of libraries were mixed and assayed together.
Barcodes from these libraries have to be linked back both to the enhancer and the
original library, and if the same barcode appeared in multiple such libraries it cannot
be used. To this end, the barcodes to enhancer-fragment dictionaries from each mix
of libraries were combined, and barcodes appearing in multiple libraries were
marked. Finally, for each of the two mixes of libraries employed in the MPRA
experiment, a Tn5-derived DNA sequencing library was generated and sequenced.
Barcodes were extracted from the reads based on the following patterns:
ACCATG(VNNx5)GTGAGC or GTGATG(VNNx5)GTGAGC. The extracted barcodes
were subsequently traced back to their original libraries by searching the
corresponding barcode-to-enhancer-fragment dictionaries for each mix, allowing for
the inference of actual library-mix ratios.

This procedure produced (1) a dictionary between enhancer X position to barcodes,
(2) the normalization weights of how many times each barcode and enhancer
appeared in the transformed mix.

MPRA quantification of gene expression
Paired-end reads from the MPRA RNA-Seq libraries were used. The R1 structure from
both p35S- and pTRP1-based libraries shared the same structure:
{DDHHBDBDHDV}GAACTTGTGGCCGTTTACG. In this sequence, the underlined
sections represent constant regions, while the degenerate sequence is a unique
molecular identifier (UMI), of length 8 bp up to 11 bp, incorporated during the RT
step52. In the case of R2, the p35S-based library started with:
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{HBB}TTCTAGTATACTAAACCATGVNNVNNVNNVNNVNNGTGAGCAAGG whereas the
pTRP1-based library started with:
{HHV}TGAGCAATCGAGTGATGVNNVNNVNNVNNVNNGTGAGCAAGG. As described
in the previous section, the underlined sequences are constant regions, {HBB} and
{HHV} indicate a possible shift of 0-3 bp comprising a random sequence, and VNNx5
represents the barcode sequence. Subsequently, the read-pairs were filtered to
include only those exhibiting a maximum of 2-bp mismatch in each of the constant
sequences, and having the barcode and UMI in the right lengths. Following this,
barcodes and UMIs were extracted from the filtered reads.

The Barcode-UMI pairs were processed in several stages. Firstly, these pairs were
collapsed to retain only unique combinations, and the frequency of each unique pair
was recorded.

Both the barcode and the UMI contained variable sequences, where specific
positions could take on one of three or all four possible nucleotides. This variability
allows the estimation of the total sequencing errors in the barcodes or UMIs. With
the UMIs used for quantifying expression levels, sequencing errors could potentially
lead to inaccurate gene expression estimates.

Given that the MPRA RNA-Seq libraries were sequenced to high effective coverage
(sometimes exceeding 20X), it was plausible that a UMI could occasionally be read
with a sequencing error. Consequently, the percentage of pairs with a UMI that did
not adhere to the variable sequence constraints and a barcode that did was
calculated. This calculation was performed at different thresholds of the minimal
frequency of barcode-UMI pairs.

The expectation was that setting a higher threshold for the frequency of
barcode-UMI pair appearance would also reduce the number of UMIs with
sequencing errors. Owing to the degenerate sequence's structure, only one out of
three possible errors could be detected for a single base mutation. Therefore, the
actual number of UMI sequence errors was assumed to be three times the
percentage of detected errors for each frequency threshold.

However, since UMIs with sequences that did not fit the variable sequence could be
removed, the real error in estimation was up to double the percentage of detected
error sequences. A threshold of less than 0.75% error UMI sequences was set,
leading to the potential of up to 1.5% of UMIs being incorrect. It was, however,
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expected to be lower due to the RT primers initially containing a UMI that didn't fit the
pattern due to errors in the synthesis.

The outcome threshold for appearances from this procedure ranged from 2 to 4 in
the various experiments. This approach enabled the minimization of errors while still
retaining a significant portion of the data for analysis.

Subsequently, only the barcodes included in the associated mix dictionary were
retained. The RNA count for each enhancer X position was determined by the total
number of unique barcode-UMI pairs linked to it. To obtain the gene expression level
for each construct, this RNA count was normalized by the corresponding normalized
weight for the enhancer X position in the mix. Lastly, the total signal for each
experiment was normalized to a value of one million, providing a measure parallel to
the Transcripts Per Million (TPM) score.

In the majority of the analyses presented in this study, the mean expression of the
enhancer, derived from the three or four experimental replicates, is used. For Fig. 2c,
the expression of each control enhancer or iUBQ10 was calculated by taking the
average gene expression from all its constituent fragments.

Determining overrepresented k-mers in downstream enhancers
To uncover overrepresented 6-mers (k-mers composed of 6 base pairs) in active
downstream enhancers, each species and backbone combination was evaluated
separately. Only fragments derived downstream of the TSS were taken into account,
and expression levels from downstream positioning were used. For each unique
6-mer (considering reverse complement as well), the enhancers were classified into
two groups: those that contained the 6-mer or its complement, and those that did
not. A 6-mer was considered in the analysis only if it was present in more than 20
fragments across both groups. The expression levels of the constructs in the MPRA
setup were compared between the groups using the Mann-Whitney U test, yielding a
p-value. Moreover, the average log2 expression for each group was determined, and
the difference between the groups was assessed. A significance threshold was
established at -log10(0.05/#tests), where #tests signifies the total number of tests
executed for all 6-mers across the eight combinations. This threshold is
demonstrated in Fig. 3a and Supplementary Figs. 9,10.
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Associations of GATC variation to gene expression in the 1,001G
To detect variations in GATC motifs across the 1,001 Genomes data set, genomic
coordinates having a GATC 4-bp sequence within the 1,001 Genomes
pseudo-genomes were assembled. The list was filtered down to coordinates within 1
kb of the TSS of genes used in the eQTLs analysis of ref. 1 dataset. For each relevant
position, an 8-bp motif-allele was extracted, which includes an extra 2 bp flanking the
GATC 4-bp sequence from all pseudo-genomes. Alleles at each site were designated
as GATC+ if they aligned with the YVGATCBR motif, and as GATC- if devoid of the
GATC sequence. Alleles with a GATC not matching the YVGATCBR motif were
excluded. Subsequently, for each identified position, expression values from the two
batches from ref. 1 were compared between the GATC+ and GATC- accessions. A
statistical analysis was conducted using the Mann-Whitney U test in R for positions
with at least 10 elements in both comparison groups. Positions were considered
significant if they had a p-value less than 0.05 divided by the total number of tests
and showed an average log2(expression) difference of at least 0.5. Such significant
positions were then grouped based on their proximity to the TSS and whether the
GATC motif amplified the expression. In total, 111 associations meeting the
established criteria were identified. Of the 111 associations identified, distributions
for GATC- and GATC+ were: 13 each for -1000 to -500 from the TSS; 17 GATC- and 11
GATC+ for -500 to TSS; 7 GATC- and 18 GATC+ for TSS to +500; and 20 GATC-
against 12 GATC+ for +500 to +1000.

Gene ontology enrichment
Gene ontology enrichment (Supplemental Table 7) was performed using DAVID53,
comparing Arabidopsis genes with a GATC motif in the 500 bp downstream of the
TSS to all genes.

Evaluation of effect sizes of the GATC motif or other 6-mers
The influence of the GATC motif or 6-mers (as depicted in Fig. 5b) on gene
expression and other genomic datasets was determined by analyzing the slope of a
linear relationship (defined as the effect size) and the accompanying p-value from
the fit. A linear regression, using R’s 'lm' function, was performed to relate the
frequency of motif occurrences to the genomic database.
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Analysis of gene expression and other genomic measurements from published A. thaliana
studies
Meta analysis of different tissue expression in Arabidopsis was done with data from
ref. 18, processed as described above, and on a compendium of tissue-specific gene
expression data from AtGenExpress, produced with the Affymetrix ATH1 microarray
platform, from the Bio-Analytic Resource for Plant Biology (BAR)17,54. Due to concerns
raised regarding contamination of embryo samples in gene expression datasets55,
the embryo related samples from the latter dataset were replaced with the full
compendium of gene expression data collected in a newer dataset56. These data
also included data from refs. 57,58 which were used in Fig. 5e. In all cases, values of
replicates from the same experiment were averaged.

Root expression data at the single-cell level was downloaded from NCBI’s GEO
database using the accession number GSE15276659. Additionally, single-cell data for
the vegetative shoot apex was obtained directly via personal correspondence19. Both
datasets, retaining their initial cell annotations, were processed using Seurat
(v4.3.0)60.

mRNA synthesis rate and mRNA half-lives per gene were used as reported 61.

Data on H3K4me3 and H3K36me3 were from ref. 4. Using the misha R package, the
average signal per gene was calculated and averaged over repeats. RNA polymerase
binding information was taken from ref. 62, specifically from the control dataset (NS),
which was downloaded from the NCBI’s GEO database under the accession number
GSE12280462.

Evolutionary analysis of land plant genomes and transcriptomes
For the evolutionary examination of the GATC motif's impact on genome-wide gene
expression, genomes and annotations from the following sources were employed:
Arabidopsis - TAIR1050; S. lycopersicum - ITAG4.063; O. sativa - v764; Z. mays - B73
NAM-5.0.5565; P. tabuliformis - v1.066; C. richardii - v2.167; S. moellendorffii - v1.068

annotations from NCBI Annotation Release 100; M. polymorpha - v369; P. patens -
v3.370.

Gene expression data were sourced and processed as described below. For A.
thaliana, raw data were obtained from the SRA database under the accession
PRJNA31407618. These 138 samples underwent processing through the Nextflow
(v22.10.7.5854) tool using the nf-core RNA-Seq pipeline (v3.6) set to default
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parameters71,72. In the case of tomato, maize, rice, and P. patens, processed data
were directly downloaded from respective studies73–76. For C. richardii, the processed
dataset was from ref. 77 under the NCBI’s GEO database accession GSE212819.

For P. tabuliformis, raw RNA-Seq data were accessed from SRA under accession
PRJNA17345766. Due to the large size of chromosomes (>2*109 bp), chromosomes
were segmented into pseudo-chromosomes no longer than 108 bp. Any intersecting
features between two consecutive pseudo-chromosomes were discarded. Using
GffRead (v0.11.8)78, a fasta file comprising transcripts was generated from the
modified chromosome and annotations. Subsequent quantification of gene
expression across the 136 samples employed Salmon (v1.10)79.

For S. moellendorffii and M. polymorpha, RNA-Seq datasets were accessed from ref.
80 (SRR1740446 - SRR1740451) and ref. 81 (DRR130762 - DRR130768) in the SRA,
respectively. These samples were processed using the nf-core RNA-Seq pipeline
similarly to the Arabidopsis samples.

For every gene across each species, a 500 bp sequence downstream of the TSS was
extracted, followed by counting the occurrences of the YVGATCBR motif. The effect
size and the p-value were calculated using a linear fit as explained above.

Comparing orthologs between Arabidopsis and tomato
Protein sequences from Arabidopsis (TAIR10)50 and Solanum lycopersicum
(ITAG4.0)63 were utilized to conduct orthology analysis using OrthoFinder (version
2.5.4)15. Prior to analysis, one variant per gene was selected using the
primary_transcript.py tool provided by OrthoFinder. The identification of one-to-one
orthologous genes was carried out using the Phylogenetic Hierarchical Orthogroups
generated by OrthoFinder, and these orthologs were subsequently employed for
further analysis.

Processing of RNA-Seq
RNA-Seq libraries were prepared using the Smart-seq3 protocol82 , which generates
two types of sequence fragments. The first type consists of reads derived from the 5'
end of mRNAs, starting with an 11 bp constant sequence (ATTGCGCAATG) followed
by a UMI and "GGG". These reads, which represent more than 80% of our library, were
used for analysis. The second type, originating from the middle of the mRNAs, lacks
a UMI and is thus more susceptible to PCR amplification bias. For UMI processing,
UMIs were extracted, and reads (following the “GGG” in R1) that shared identical
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UMIs and had up to 2 bp mismatches in read R1 were collapsed using the
clumpify.sh script from the BBMap suite83. The collapsed reads were then trimmed
using Trim Galore with default settings35. Gene expression quantification was
performed using Salmon (v1.5.2) with the parameters --validateMappings -l
A79against transcripts from TAIR10 with manual addition of the GFP gene.

For the MPRA libraries of Arabidopsis with MIX1, the same collapsed and trimmed
reads were used to assess splicing efficiency.

Assessing splicing efficiency and pTRP1- vs p35S-based total RNA levels
The 5' reads of the Smart-Seq3 library from the full RNA-Seq of the Arabidopsis
MPRA experiment with MIX1 were used to assess splicing efficiency. After removing
the constant sequence and the UMIs, the reads were filtered to those containing a
portion of the sequence between the barcode and the start of the intron (see
Extended Data Fig. 2). This was done by taking all 15 bp k-mers from this sequence
and filtering out all 5' clean reads from the RNA-Seq that had at least one of these
k-mers, resulting in a total of 20,972 sequences across all four repeats, ranging from
2,735 to 7,092 across the four repeats. When these sequences were further filtered
to include sequences from the region upstream of the barcode that differed between
the pTRP1 and 35S-based libraries, 90.7% of the reads were uniquely assigned to one
of the two libraries. Using the ratio between the number of reads assigned to each
library, we estimated the ratio between the backbone without insert of the 35S-based
library to be higher than the pTRP1-based by log2 of 3.13, 1.77, 2.3, 2.25 respectively
in the four repeats.

The 20,972 5'-end cleaned sequence reads were used to assess splicing efficiency
within the MPRA setup. Among these reads, 7,789 R2 sequences contained the
sequence "CTTCGCCCTC", which is located just upstream of the splice site and at
least 6 bp downstream of this sequence. Of these sequences, 7,405 represented
exon-exon junctions and 100 represented exon-intron junctions. Therefore, the
estimated splicing efficiency is 98.7% for the four libraries, or 99.39%, 98.91%,
98.55%, and 98.34% for the four repeats, respectively.
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