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Supplementary Notes 

1 Study cohorts 

1.1 Study cohorts (BBJ and NCGG) 

We included three different datasets constructed from the contemporary Japanese population [Biobank 

Japan (BBJ) 1st cohort, BBJ 2nd cohort, and National Center for Geriatrics and Gerontology (NCGG) cohort] 
and meta-analyzed the results. BBJ is a nationwide hospital-based biobank with 12 collaborating medical 

institutions. The first cohort targeted 47 diseases and recruited 200,000 people between 2003 and 2013, 
and the second cohort targeted 38 diseases and recruited 67,000 people between 2013 and 2018 

(https://biobankjp.org/en/index.html). This study included 12,098 people with available genotypes from BBJ 

2nd cohort. The NCGG Biobank is a hospital-based biobank maintained by NCGG since 2012. The 
participants were recruited from NCGG hospital, Obu City, Aichi prefecture, and nearby medical institutes 

(https://www.ncgg.go.jp/english). Written informed consent was obtained from all the participants. Trait 

information, the number of participants, and its distributions are summarized in Supplementary Tables 1, 2 

and 16. 

1.2 Study cohort (ToMMo) 

We additionally analyzed quantitative trait data of 53,365 subjects from the Tohoku Medical Megabank 
Organization (ToMMo)’s Community-based Cohort study (TMM-CommCohort 67K)1. These subjects were 

recruited from the health checkups conducted in two prefectures of Northeastern Japan: Miyagi (N = 32,459) 
and Iwate (N = 20,906). The data of a total of 26 phenotypes was obtained which includes alanine 

transaminase (ALT), aspartate transaminase (AST), basophil count (BASO), body mass index (BMI), blood 
sugar (BS), blood urea nitrogen (BUN), diastolic blood pressure (DBP), estimated glomerular filtration rate 
(EGFR), eosinophil count (EOSINO), gamma glutamyl transpeptidase (GTP), hemoglobin (HB), hemoglobin 

A1c (HBA1C), high-density lipoprotein cholesterol (HDLC), hematocrit (HT), low-density lipoprotein 
cholesterol (LDL), lymphocyte count (LYMPH), monocyte count (MONO), neutrophil (NEUTRO), platelet 

count (PLT), red blood cell count (RBC), systolic blood pressure (SBP), serum creatinine (SCR), total 
cholesterol (TC), triglyceride (TG), uric acid (UA), and white blood cell count (WBC). The number of 

participants available for each phenotype is shown in Supplementary Table 1. The study was approved by 
the Ethics Committee of RIKEN (17-17-16(16)) and the ToMMo (2019-0075-1).  

1.3 Genotyping and imputation in ToMMo  

The array dataset in PLINK binary format (659,326 SNPs) and the imputed genotype dataset in the Oxford 

BGEN format (54,041,917 variants) for 53,365 subjects was obtained from ToMMo. The procedures of 
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genotyping and imputation have been described elsewhere2. All samples were genotyped by the Affymetrix 
Axiom Japonica array. After quality control, autosomal variants were phased using SHAPEIT2 (v2. R837) 

and subsequently imputed using the ToMMo 3.5KJPNv2 reference panel3 by IMPUTE2 (ver. 2.3.2). We 
conducted further quality control and excluded samples with (i) array call rate <97%; (ii) non-Japanese 

identified by principal component analysis (PCA) with all samples from the 1000 Genomes Phase III dataset. 
For variants, we excluded variants with an imputation INFO score < 0.3 from the downstream analysis. The 

final dataset consisted of 37,167,587 variants for 53,083 subjects.  

 

2 Association studies  

2.1 Association study methods 

The linear mixed model analysis was performed using BOLT-LMM v2.3.956. The raw phenotypes were 

regressed and residualized by age, sex, and PC1-10 used as covariates. Additionally, we introduced 47 

target disease statuses for BBJ 1st cohort, 38 target disease statuses for BBJ 2nd cohort, and prefecture of 

enrollment for the ToMMo cohort into the model. Then, the residuals were rank-based inverse normalized 

and used as quantitative phenotypes. After normalization, we conducted association analysis by BOLT-LMM 
without covariates. 

2.2 Replication rates in ToMMo 

We assessed the reproducibility of our primary meta-analysis (BBJ 1st, BBJ 2nd, and NCGG) using the 

ToMMo study as a replication cohort for 26 traits available in both studies. We observed highly concordant 
allelic effect sizes between primary meta-analysis and the ToMMo study. 1,505 (98.5%) of 1,528 lead 
variants (P < 5 × 10-8 in the primary meta-analysis) and 1304 (99.9%) of 1305 variants associated with 

nominal significance in ToMMo study (P < 5 × 10-8 in the primary meta-analysis and P < 0.05 in the ToMMo 
study) showed concordant allelic effect direction in these studies (SI 2.2 and Supplementary Table 17). 

To assess the consistency of other variants not restricted to those with strong associations, we evaluated 
genetic correlations between the additional data set and meta-analysis of the three data sets by linkage 

disequilibrium (LD) score regression (LDSC). As a result, we found strong genetic correlations between the 
two results (mean rg:0.957, SD 0.046). To note, these are consistent results of variants showing strong 

associations and entire common variants represented by variants in Hapmap3 [since LDSC regression only 
uses variants in Hapmap3 or 1000 genomes project (1KG)]. However, these results did not ensure the same 

genetic architecture between the two data sets, especially for rare variants. Thus, we did not include the 
additional data set (the ToMMo data) for statistical finemapping (see below) since the major aim of statistical 
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finemapping is to find convincing causal variants, including rare variants in the association results generated 
by the harmonized data processing. 

 

SI 2.2 | Replication rate in ToMMo dataset 

The points represent the lead variant in the primary meta-analysis (BBJ 1st, BBJ 2nd, and NCGG). The 
horizontal axes show beta coefficient in primary meta-analysis and the vertical axes show beta coefficient in 
ToMMo study. The blue and red points show the variants with concordant and discordant directions of 

effects in primary meta-analysis and ToMMo study. 

2.3 Significant associations 

We found a total of 4,423 significant associations, among which 601 were novel with P-values less than 5 x 
10-8. When we applied more strict thresholds to the results, 3,349 associations and 283 novels with P < 3.1 

× 10-9 = 0.05/15,907,072; 2,462 associations and 110 novels with P < 5.0 × 10-11 = 0.05/(15,907,072 × 63). 
We compared the minor allele frequencies (MAF) of the lead variants driving the novel associations between 

the Japanese population and the European population, using the frequencies in the East Asian (EAS) and 
Non-Finnish European (NFE) of gnomAD. We found that 12.0% of the lead variants in the novel loci were 

not found in NFE and were either EAS- or Japanese-specific (not found in gnomAD EAS data either). 
Additionally, 18.1% were very rare (MAF<1%), and 10.0% were rare [1%≤ MAF <5%] and more frequent in 

EAS (median 47.5 times and 5.7 times, respectively). The remaining 60.0% of the novel lead variants with 
MAF ≥ 5% in NFE tended to be more frequent in EAS (median 1.46 times and median allele frequency 

difference 9.8%). These results support that the current study taking advantage of large-scale Japanese 
data could identify EAS-specific or EAS-frequent associations. 

 

3 Statistical finemapping  

3.1 Rationale of statistical finemapping 
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Genome-wide association studies (GWAS) are increasing in their study size and resolution. High-dense 
genotyping based on the combination of high-performance microarray genotyping and genotype imputation 

with a large-scale, high-depth imputation reference panel enabled us to directly observe significant causal 
associations in a genome-wide fashion. However, pinpointing such putative causal variants within the 

extensive list of variants with statistical significance is challenging due to the nature of the linkage between 
germline variants and multiple signals in the loci. To tackle these challenges, LD-informed Bayesian 

statistical finemapping (after this statistical finemapping) has actively been developed4. Taking advantage of 
the densely imputed genotypes and their LD information, we applied statistical finemapping in this study. We 

summarized the advantages of statistical finemapping and our approaches below. 
Historically, statistically significant signals detected by GWAS were annotated by the variants with the 

highest statistical significance (lead variants). However, such variants are not always functional but often are 
tagging another/other causal variants; therefore, we cannot fully interpret the GWAS associations only by 

functional annotations of lead variants. To interpret the association signals in GWAS more flexibly, the 
previous studies have applied either of two approaches: the credible set estimation assuming a single 
causal variant5, and the conditional analysis assuming multiple causal variants6,7. 

The credible set approach provides a small set of variants that could be causal in the locus assuming a 
single association. The credible set approach increases the sensitivity of detection of candidates of causal 

variant allowing fluctuations in test statistics. However, the traditional credible set approach could not handle 
multiple, independent causal variants in a single locus. 

On the other hand, conditional analysis provides a set of variants with independent associations in the locus. 
While traditional conditional analysis is still a popular approach, the variant prioritization focusing on the 

strongest conditional P-values in each iteration would have a high chance of missing true causal variants 
due to the fluctuation of the statistics arising from various reasons including polygenic architecture 

(described below). Here, statistical finemapping integrates the strengths of these two powerful approaches. 
Considering the existence of multiple signals, statistical finemapping estimates a tractable measure of 

causality – the posterior probability of inclusion (PPI) for each variant in the locus. PPI is particularly 
important when we want to detect more interpretable, functional associations such as coding variants with 
low frequency under the selection in the population. Lower frequencies are detrimental in achieving strong 

nominal/conditional P-values than common variants. Moreover, due to the polygenic nature of complex 
traits, common variants have the advantage over rare variants in obtaining strong P-values. Even under 

such condition, statistical finemapping capture the independent, causal associations driven by rare variants. 

3.2 Selection of statistical model 

To conduct statistical finemapping, we applied FINEMAP software which takes the Bayesian approach to 
estimate variants’ posterior probability of being causal. FINEMAP used a shotgun stochastic search 

algorithm to test various configurations (combinations of causal variants). This approach can reduce the 
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computational burden of testing possible scenarios with an expanded number of causal variants in a single 
locus. Since this approach prioritizes configurations maximizing variance explained by variants in the 

configurations and is conservative for rare variants, which often explain small variance despite large effect 
sizes, most of the configurations are composed of common variants. Thus, we used this procedure not to 

overestimate possible rare causal associations. We also compared results between FINEMAP and other 
finemapping methods (see 3.12 below) and obtained comparable results of enrichment. 

3.3 Sample size and finemapping resolution 

To empirically estimate the impact of sample size in the finemapping resolution, we performed a down-

sampling analysis for height as a representative trait. We randomly took 50k, 100k, and 150k subjects in the 
BBJ 1st cohort whose height data was available and conducted association analysis followed by statistical 

finemapping. We restricted the analysis to the significant regions found in the 50k analysis. We compared 
credible set sizes and the number of variants in the bins of PPI. As a result, we observed that the more 

samples, the smaller credible set sizes, and the more variants with high PPI. 

 

SI 3.3 | Increased sample size resulting in small credible sets and more variants with high PPI in 
statistical finemapping  

a. Credible set (CS) size and sample size in the down sample analysis (height). Each dot shows CS and the 

Y axis shows number of variants in each CS. Box plots show median and interquartile ranges of CS size. b. 
CS size categories and sample size. P-value was calculated by Wilcoxon rank-sum test. c. Number of 

variants with high PPI. CS, credible set; PPI, posterior probability of inclusion. 

3.4 Harmonized approach for statistical finemapping 
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To maximize the power of statistical finemapping, we compiled large Japanese dataset under the 
harmonized data processing (quality control, imputation, and association analysis) and meta-analyzed. 

However, finemapping in the meta-analyzed data is recently suggested to result in the bias8. To confirm the 
feasibility of our strategy, we conducted sensitivity analysis to confirm concordance and performance of the 

finemapping in in-sample approach and meta-analysis approach in our data. As in-sample approach, we 
explicitly used BBJ 1st cohort for association analysis and generation of LD matrices. As meta-analysis 

approach, we used meta-analyzed summary statistics (BBJ 1st, BBJ 2nd and NCGG), and generated LD 
matrices from the BBJ 1st cohort. We observed better resolution in meta-analysis approach, high replication 

rate of high PPI variants and equivalent functional enrichment. From these results, we decided to use meta-
analysis approach in this study (SI 3.4a-d). 

In addition, we confirmed that the use of external LD structure in the statistical finemapping resulted in 
unstable and noisy results. This is often the case in the efforts of meta-analysis where summary statistics 

are available, and researchers take LD structure of external data such as 1KG which is not used for 
imputation. When we applied FINEMAP to the summary statistics of UK Biobank (UKB, imputed by 
Haplotype Reference Consortium panel) with the use of 1KG European (EUR) LD structure, we failed to 

resolve associations in most of the regions. On the contrary, when we applied FINEMAP to the summary 
statistics with the use of LD structure of UKB (inferred by imputation data), we could resolve most of the 

regions. 

These results highlighted importance of the careful harmonization of the input data in the statistical 

finemapping. Thus, we processed the three data sets (BBJ 1st, BBJ 2nd and NCGG) using harmonized data 
process, namely, the same quality control, the same imputation reference panel with the same imputation 

protocol. These efforts resulted in stable and clean results of finemapping (see SI 3.4e) despite meta-
analysis. The additional data set (ToMMo cohort) was based on different imputation panel and we did not 

include the additional data set for statistical finemapping (we applied FINEMAP to the summary statistics of 
meta-analysis of the three data sets). 
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SI 3.4 | Sensitivity analysis for finemapping strategy 

a. The number of credible sets identified by in-sample approach and meta-analysis approach. The colors 
show the credible set size (the number of variants included in each credible set). b. The number of variants 

with high PPI (> 0.9). The colors show the PPI in the replication dataset. c. The functional enrichment by 
PPI. The points show odds ratio and error bars show 95% credible sets estimated by Fisher's exact test. d. 
The number of variants with high PPI. PPI, posterior probability of inclusion; OR, odds ratio. e. The 
distributions of inferred number of causal variants in UKB dataset using different LD data sources. The X-

axes show the number of inferred causal variants and Y-axes show the number of loci. 

3.5 Quality control of finemapping results 
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We applied the following approach to confirm the causality inferred by statistical finemapping. First, we 
extract the genotype dosage of the k variants, which were estimated to be causal by FINEMAP. Using the 

dosages extracted, we conducted multivariate linear regression analysis against the normalized phenotype, 
excluding related individuals in the BBJ 1st cohort. 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	~	𝛽!𝑑𝑜𝑠𝑎𝑔𝑒! +	𝛽"𝑑𝑜𝑠𝑎𝑔𝑒" +	𝛽#𝑑𝑜𝑠𝑎𝑔𝑒# +	…	+	𝛽$𝑑𝑜𝑠𝑎𝑔𝑒$ 

Then, we evaluated the independence of associations of these putative causal variants by the significance 
of beta coefficients of these dosage terms. For the loci in the X chromosome, we conducted this regression 

in males and females separately, then meta-analyzed using a fixed-effect model to obtain test statistics. We 
noted that a small part of putative causal variants did not attain conditionally significant associations. To 

control the quality of the result of finemapping, we excluded such unsolved loci (16 loci, 0.48%) harboring 
even one putative causal variant with conditioned P-value < 1 × 10-4 from downstream analysis. 

3.6 Threshold of PPI to regard variants as causal 

In this study, we used marginal PPI as a uniform index of causality of variants, which is a continuous value 

from 0 to 1 assigned to each phenotype-variant association. PPI represents the overall probability at which 
the variant of interest is causal in the locus. To determine a threshold of PPI with which we regarded 

variants tested as causal, we assessed distributions of functional annotations in variants with different 
thresholds of PPI. Not surprisingly, the distribution of functional annotations in variants randomly selected 
regardless of PPI was quite different from that of lead variants (as shown below). Lead variants contained 

more coding variants (~ 10 times), cryptic splice variants9 (~ 3 times) and variants in consensus footprints 
(CFP, ~ 2 times)7 and DNase I hypersensitivity sites (DHS, ~ 1.25 times)8. Thus, we put a reference 

distribution of functional annotations in lead variants. We found that variants with PPI > 0.1 showed almost 
the same distribution of functional annotations as lead variants (as shown below). We confirmed that 

variants with PPI > 0.9 showed enhanced enrichment in the functional annotations of coding variants, cryptic 
splice variants, and variants in CFP and DHS, in line with the theory of Bayesian inference that the higher 

the PPI, the more convincingly causal the variants are. Based on these results and findings, we adopted PPI 
> 0.9 and PPI > 0.1 as the main thresholds to include variants in the current study. 
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SI 3.6 | Distributions of variants in functional annotations based on different thresholds of PPI 

The bar charts show the composition of the variant annotation of lead association that attained the strongest 
association in the locus (n = 3,309), randomly selected associations (n = 9,406, same as associations with 

PPI > 0.1), associations with designated PPI bins. DHS, DNase I hypersensitivity site; CFP, consensus 
footprint. PPI, posterior probability of inclusion. 

3.7 The inference of putative causal variants 

To determine the putative causal variants in these associated loci in an unbiased manner, we applied an LD-

informed Bayesian statistical finemapping using FINEMAP4, taking advantage of the fine LD structure 
derived from the dense reference panel. We computed a marginal PPI, the probability that the variant of 
interest is causal, for each variant as a scalar value ranging from 0 to 1. Applying the algorithm to the 3,309 

significant loci excluding major histocompatibility complex region (MHC), We identified 5,673 credible sets 
and 72.4% of them were solved with ≤ 50 variants in their 95% credible sets. Among them, we identified 826 

phenotype-variant pairs (associations) with PPI > 0.9 and 9,406 with PPI > 0.1, a threshold we found 
comparable to lead associations that attained the smallest P-value in the loci. 25.1% (2,358/9,406) of 

associations with PPI > 0.1, and 52.8% (436/826) of associations with PPI > 0.9 were lead associations. 
Conversely, 71.3% (2,358/3,309) of lead associations attained PPI > 0.1, and 13.2% of lead associations 

(436/3,309) attained PPI > 0.9. We observed multiple independent associations at hundreds of loci. 40.1% 
(1,352/3,309) of loci contain ≥ 2 credible sets, and 3.5% of loci (116/3,309) contain ≥ 2 associations with PPI 

> 0.9. These results indicate that a single genome-wide significant locus often contains independent-, 
multiple causal signals and that densely imputed and well-powered GWAS can efficiently detect these 

multiple causal variants in each locus. 
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3.8 Statistical finemapping in the rare variants 

First, we assessed the number of variants in LD by MAF bins (SI 3.8.1). We calculated R2 value for imputed 
genotypes in study samples for all variants on the chromosome 1 with minor allele frequency ≥ 0.001. We 

observed around half of rare variants (0.001 ≤ MAF < 0.01) have at least one LD variants (0.8 < R2 ≤ 1.0) 
which suggest the utility of statistical finemapping approach for the variants in this range of MAF. However, 
the number of variants in LD (0.2 < R2 ≤ 1.0) for rare variants (median 7 variants) are limited compared to 

low frequency (34 for 0.01 ≤ MAF < 0.05) or common variants (134 for 0.05 ≤ MAF < 0.5). 

 

SI 3.8.1 | LD patterns for 1,109,632 variants on Chromosome 1 in 169,020 unrelated Japanese 
Each bars indicates the fraction of the variants (Left Y-axes) with at least one, three, and 10 LD variants 
(Right Y-axes) with designated R2 values (X-axes). R2 was calculated for all the variants in 1MB window (the 

mean number of variants in each window was 10,206). We stratified the results by MAF of the variant of 
interest (Top row). 

 

From the observation above, we recognized significantly different LD patterns in rare, low-frequency, and 

common variants. To confirm the validity of the statistical finemapping for the rare variants, we performed 
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finemapping study in the simulated causal variants and phenotypes using study genotypes. We randomly 
picked the I causal variants (I = 1, 3, 5) in the randomly chosen 1MB loci in the chromosome 1. For each 

causal variant i, we set effect size βi to attain 80% power at its minor allele frequency and sample size (n = 
169,020). We generated quantitative phenotypes Yj by multiplying genotype dosage (Gij) by corresponding 

effect size βi for all the causal variants. We added error term ej that follows normal distribution with mean 0 
and standard deviation 1 - h2 (h2 as trait heritability). 

𝑌% 	= 	4𝛽&𝐺&% 	+ 	𝑒%

'

&

 

𝑒	 = 	𝑛𝑜𝑟𝑚	(0, 1 − ℎ") 

We evaluated the effectiveness of statistical finemapping for identifying causal variants across different MAF 

bins by using simulated phenotype data. To accomplish this, we conducted an association analysis in the 
locus using a generalized linear model by PLINK2, excluding related samples, and then performed 

FINEMAP, assuming ten causal variants. We used imputed genotypes from 169,020 unrelated individuals 
and ran 1,000 simulations for I = 1, 3, 5, and h2 = 0.1. To measure performance, for each PPI bin, we 
calculated Positive Predictive Value (PPVFinemapping) and False Negative Rate (FNRFinemapping). We selected 

these metrics due to the overwhelming number of variants in the true negative. For comparison, we also 
calculated lead variants' PPV (PPVLead-variant) and FNR (FNR Lead-variant). 

 

𝑃𝑃𝑉(&)*+,--&). 	= 	
𝑁/&.0122'	,)4	567*18,79,:

𝑁/&.0122'	,)4	567*18,79,: 	+ 	𝑁/&.0122'	,)4	;<)18,79,:
 

𝐹𝑁𝑅(&)*+,--&). 	= 	
𝑁=<>122'	,)4	567*18,79,:

𝑁=<>122'	,)4	567*18,79,: 	+ 	𝑁/&.0122'	,)4	567*18,79,:
 

𝑃𝑃𝑉=*,4?,6&,)@ 	= 	
𝑁=*,4	,)4	567*18,79,:

𝑁=*,4	,)4	567*18,79,: 	+ 	𝑁=*,4	,)4	;<)18,79,:
 

𝐹𝑁𝑅=*,4?,6&,)@ 	= 	
𝑁;<)1:*,4	,)4	567*18,79,:

𝑁;<)1:*,4	,)4	567*18,79,: 	+ 	𝑁=*,4	,)4	567*18,79,:
 

 

We observed comparable and slightly superior finemapping performance in rare variants (MAF [0.1%, 1%]), 

indicating that the current statistical finemapping approach is reliable for variants within this allele frequency 
range (SI 3.8.2). Our simulation showed that lead variants exhibited similar PPV to variants with PPI = 0.155 
in the case of NCausal = 1, PPI = 0.025 in the case of NCausal = 3, and PPI =0.010 in the case of NCausal = 5. 

Considering that we detected multiple credible sets (NCausal > 1) in 28.8% of the loci analyzed in this study, 
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these results align with our finding that PPI = 0.1 serves as a threshold equivalent to lead variants in terms 
of causal variant detection. 

 

SI 3.8.2 | Performance of statistical finemapping in rare and common variants 

We display the performance of statistical finemapping in rare and common variants. The dots on the graph 
represent the outcomes of statistical finemapping using simulated data. We randomly selected causal 
variants and generated simulated phenotypes based on these variants. PPV and FNR were calculated 

based on the true causal variant assignment and the corresponding PPI estimated by statistical 
finemapping. The dotted lines indicate the PPV/FNR by lead variants in the loci. We conducted 1,000 

simulations on 1MB loci in chromosome 1 for each situation (N causal 1, 3, and 5). PPV, positive predictive 
value; FNR, false negative rate; PPI, posterior probability of inclusion. 

3.9 Prioritize associated variants by posterior probability 

Statistical finemapping can solve the complex LD structure and identify putatively causal variants or narrow 

down candidates of causal variants in the loci.  
One example was found at the NT5C2 locus on chromosome 10 associated with sodium levels. rs35525740 

was the lead variant in this locus and tagged by numerous variants. Accordingly, the PPI of rs35525740 was 
0.04 and the size of the credible set containing rs35525740 was 144. Statistical finemapping suggested an 
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additional signal in this locus. rs146884102, not in LD with rs35525740, showed high PPI of 0.90 and its 
credible set only contained 4 variants (SI 3.9a). As shown by this example, even in loci where the lead 

variants are in LD with a large number of variants, LD-informed statistical finemapping identify independent 
putative causal variants. 

We also show the region where many variants are in strong LD with a lead variant and statistical 
finemapping successfully resolved the association and narrowed down candidates of a causal variant 

depending on sample sizes. Finemapping showed one causal variant in the CHMP1A region on 
chromosome 16 associated with height. While the lead variant tags many variants in strong LD and the 

down-sampling analysis of 50k samples resulted in the credible set of the 50 variants, the current study 
could narrow down the credible set of the 6 variants (SI 3.9b). 

 

  

SI 3.9 | Usefulness of statistical finemapping to identify an additional causal variant or to narrow 
down candidates of causal variants in regions with different LD structure 

X-axes show the genomic coordinate. Y-axis in the top panel shows -log10 P-value. The bottom panel shows 
genes located in the loci. a.rs35525740 is the lead variant in this locus. rs146884102 is the variant with high 
PPI. The color of points indicates linkage disequilibrium R2 to a.rs146884102 and b.rs71374191.  

PPI, posterior probability of inclusion; CS, credible set. 

3.10 PPI of lead variants and multiple independent signals in associations 

We found 71.3% (2,358/3,309) of lead associations (used for the finemapping) attained PPI > 0.1, and 
13.2% of lead associations (436/3,309) attained PPI > 0.9. We observed multiple independent associations 

at hundreds of loci. 28.8% (954/3,309) of loci contain ≥ 2 credible sets, and 3.5% of loci (116/3,309) contain 
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≥ 2 associations with PPI > 0.9. These results indicate that a single genome-wide significant locus often 
contains independent, multiple causal signals and that densely imputed and well-powered GWAS can 

efficiently detect these multiple causal variants in each locus. 

3.11 Associations where lead variants do not show PPI>0.1 

In the current study, we found that about 951 (28.7%) of 3,309 lead variants did not show PPI more than 0.1, 
which is the threshold we found to obtain comparable functional enrichment to lead variants (discussed in 

3.6 Threshold of PPI to regard variants as causal).  

Among the 951 loci, we found that we did not find any variants with PPI more than 0.1 in the 653 loci 

(68.7%). This indicates that lead variants in the 653 loci are in strong LD with many other variants, 
suggesting that still 200k subjects are underpowered to resolve the associations (if these variants are not in 

complete LD with each other - when many variants are in complete LD, we cannot resolve these 
associations regardless of sample sizes). For the remaining 298 loci (31.3% of the 951 loci) where lead 

variants do not have PPI more than 0.1, the other variants have PPI more than 0.1. Among the 298 loci, we 
noticed that majority of regions, 273 loci (91.6%), have multiple causal variants (expected number of causal 

variants more than 1). There might be several possibilities for these loci, including the presence of strong LD 
and independent signals with lead variants at the same locus (as exemplified in SI 3.9a) and lead variants 

tagging the multiple causal variants (and tagging multiple causal variants would result in the strongest 
associations), but these possibilities remain to be further explored in a more powered study. 

 

SI 3.11 | Distribution of variants with high PPI 
a. The overlap of lead variants, variants with PPI > 0.1, and PPI > 0.9. b. The bar charts show the number of 

loci including putative causal variants shown in the X-axis. c. The bar charts show the number of loci 
including credible sets shown in the X-axis. 

3.12 Non-lead variants with PPI >0.9 
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We found a total of 390 non-lead variants with PPI more than 0.9 in the 221 associations (phenotype-region 
pairs). All of the 221 associations have multiple causal variants. Regarding MAF, many of these variants are 

rare. Among them, 53.6 and 34.9% have MAF less than 0.05 and 0.01, respectively, in contrast to 9.1 and 
3.4% in the lead variants. Supplementary Table 12 summarizes non-lead variants with PPI > 0.9 while lead 

variants in these regions show PPI < 0.1. 

3.13 Applying other finemapping methods 

We confirmed that our finemapping strategy was not dependent on a program we used. We applied SuSiE, 
another finemapping method, to our summary statistics and compared results between the two methods. We 

used R package “susieR” (version 0.12.19) and conducted finemapping using the same summary statistics 
and LD matrix as FINEMAP. As a result, we found that SuSiE also showed comparable results with those in 

the FINEMAP under the viewpoint of PPI and enrichment for functional annotations (Supplementary Table 
19 and SI 3.13a). 

Since we observed tissue-specific enrichment of putative causal variants, we ran another finemapping 
method, PAINTOR (v3.0), leveraging functional annotations. Again, we used the same summary statistics 

and LD matrix as FINEMAP. We put functional annotations defined by VEP (Supplementary Table 15) and 
Disease impact score into the model to assess enrichment for functional annotations.  As a result, we found 

that PAINTOR showed reasonable slight increase in variants with high PPI (0.1 < PPI, due to taking 
advantage of functional annotations) and almost comparable (slightly increased) enrichment of annotations 
analyzed. This slight increased enrichment in PAINTOR is reasonable since PAINTOR prioritizes variants in 

functional annotations (unlike FINEMAP) for which we found enrichment of causal variants (SI 3.13b). These 
results support enrichment of functional annotations in our results and indicate that FINEMAP could 

successfully prioritize causal variants. 

The annotation agnostic finemapping methods, including FINEMAP, have several advantages. One is that 

these approaches only require summary statistics and LD information, and the quality of functional 
annotation does not affect the results. The second is that the list of finemapped variants or its PPI could be 

used as unbiased barometer of pathogenicity of variants. For example, we found strong enrichment of high 
PPI in cryptic splice variants or variants with high disease impact scores in this study. This observation could 

provide the evidence of the functionality of these variants. 
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SI 3.13 | Comparable enrichment of causal variants for functional annotations by SuSiE, PAINTOR, 
and FINEMAP 
The X axes show PPI bins in BBJ GWAS, and the Y axis shows odds ratio in reference to the lowest PPI 

bins. Error bars show 95% confidence intervals estimated by the Fisher's exact test. 

3.14 Finemapping results in the UK Biobank data 

We compared finemapping results from BBJ with the results from UKB. We found 49% of variants with high 
PPI (> 0.9) in BBJ showed PPI more than 0.1 in UKB. We also found 27% of high PPI (> 0.9) variants in 

UKB showed PPI more than 0.1 in BBJ. As recently suggested10, we found limited replication rate of high 

PPI variant – indicating that even using biobank-scale, we failed to identify concordance of causal genetic 
variants (variant-level concordance). However, we found similar patterns of enrichment of causal variants in 

functional annotations between Japanese and Europeans, including frameshift, 3'UTR, 5'UTR, and other 
non-coding regions (this is also discussed in SI 6.2). 

These indicate that even using biobank-scale GWAS which could maximize significant hits, GWAS 
significant regions are not frequently driven by causal variants common across populations. Since we found 

genetic correlations of associations with the same phenotypes between populations, similar regions 
(including polygenetic architectures not reaching GWAS significant levels), the same genes can globally 

explain the associations with the phenotypes, but locally causal variants are not the same in many cases. 
Especially, high PPI variants tend to be population specific and less frequent in the other population. These 

results suggest the importance of further causal variant inference in the various populations. 

3.15 Potential extension of the analyses to binary traits 
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While it would be an option to extend the current analyses to binary traits, in the power analyses described 
in Supplementary Note 3.3, we noticed that statistical finemapping requires enough statistical power 

supported by large sample sizes. The additional data of 53k subjects are from a population cohort in which 
sample sizes of binary traits are limited due to the nature of the population cohort and the data was imputed 

by different imputation panel. Since the remaining 200K samples are not a very large number of subjects, 
we decided to focus on quantitative traits for which we could maximize statistical power. 

3.16 Improved transferability of polygenic risk score by statistical 
finemapping  

Previous studies have suggested that statistical finemapping can improve the performance of polygenic risk 
prediction. To evaluate the effectiveness of statistical finemapping in our framework, we generated PRS 

models based on putatively causal variants (highest PPI in each credible set) and LD-independent lead 
variants selected using the conventional pruning and thresholding (PT) method. We then tested these 

models in the white-British population in UKBB and in the BBJ dataset. The PT was performed on the 1KG 
EAS (n=504), EUR (n=503) samples. We scored individuals in the testing dataset using the selected 

variants. We optimized the parameters for PT method using 25% of randomly selected individuals and 
subsequently scored the remaining 75% of individuals using the best performing PT-PRS and finemapped 

PRS. For this testing population, we calculated the rank-based Spearman's correlation between PRS and 
normalized phenotypes (linearly regressed on age, sex, and genetic principal components. In BBJ disease 

status at enrollment was also included) in unrelated samples. We tested the significance of the relative 
improvement in correlation coefficients using the paired Wilcoxon rank-sum test. 

As demonstrated in SI 3.16, both experiments (PRS models derived in BBJ and tested in UKB, or derived in 
UKB and tested in BBJ) resulted in a significant improvement in prediction accuracy. The finemapping-
based PRS achieved better performance with significantly fewer variants than the conventional PT method 

(Supplementary Table 19, 20). We also observed better directional concordance of variant associations 
between BBJ and UKB GWAS (Supplementary Table 21) in the finemapping-based PRS. Based on these 

observations, we hypothesize that statistical finemapping can capture causal variants that share effect 
direction across different ancestries, resulting in improved prediction performance of genetic risk. 

We additionally compared the performance of PRS between the conventional (1KG) and new (1KG + 3,256 
Japanese) reference panels and observed modest improvement in the novel reference panel 

(Supplementary Table 22).  
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SI 3.16 | Improved transferability of PRS by statistical finemapping 

a, The ranked correlation coefficients (ρ values) between PRS and phenotypes were compared in PT-

PRS and Finemapped PRS. The performances were normalized to PT-PRS, and the relative 

improvements by Finemapped-PRS are shown as color dots. The performance of PRS was evaluated 

by Spearman's rank correlation between PRS and quantitative phenotypes after adjusting for 

covariates (age, sex and first ten genetic principal components). b, The dots and error bars represent 

the ranked correlation coefficients (ρ) and their 95% CI, respectively. The X-axes display the 

performance of PT-PRS and the Y-axes display Finemapped-PRS. c, The dots indicate the number of 

variants in the best performing PT-PRS and Finemapped-PRS for each phenotype. PRS, polygenic risk 

score; BBJ, BioBank Japan; UKB, UK-Biobank; PT, pruning and thresholding. 

 

4 Novel associations 

We listed examples of novel associations between phenotypes and genes in the current study which draw 
our attention. We distinguish novel associations between novel gene-phenotype pairs and variant-phenotype 

pairs (unreported variants in known gene-phenotype pairs). Since the full table and summary statistics will 
be released, these results offer examples and further opportunities to expand analyses based on the current 

findings (focusing on the phenotype-genes, phenotype-variants, and gene-variants not restricted to the pairs 
below). We noticed that novel associations include not only variants that are rare and specific to Japanese 

or EAS, but variants that are globally common (such as those with MAF of more than 5% in the other 
populations) and more prevalent in EAS or Japanese (also discussed in 2.3 Significant associations). 

We also found that novel associations include variants that are rare, specifically in Europeans. This is 
consistent with the current situation of Europeans as major sources of genetic association studies and 
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underscores the importance of extending genetic association studies to non-European populations to 
understand the genetics-supported biology that underlies complex traits. 

4.1 Novel associations between phenotypes and genes 

Associations described below are shown in Supplementary Tables 4-11. 

BMA-BAFF interaction 
We found novel associations of a rare missense variant (rs150352299) in TNFRSF17 which encodes BMA. 

This rare variant is highly Japanese-specific (AAFBBJ = 0.38%, AAFgnomAD EAS = 0.0642%, AAF gnomAD FIN = 
0.0288% not observed in other populations). This Japanese-specific missense variant was significantly 
associated with a higher albumin-goblin (AG) ratio (βAG = 0.306, PAG = 3.9×10-22), lower non-albumin protein 

(NAP, βNAP = -0.327, PNAP = 3.3×10-25), and lower total protein (TP, βTP = -0.183, PNAP = 6.5×10-10). 
TNFRSF17 encodes B-cell maturation antigen (BMA) which is specifically expressed in mature B-cell and 

responsible for antibody production (Extended Fig. 2a). BMA is known to interact with B-cell activating factor 
(BAFF) encoded by TNFRSF13B in which we also identified a rare loss of function variant (rs769165409) 

associated with AG ratio with high PPI (AAFBBJ = 0.1%, βAG = 0.353, PAG = 3.9×10-7, Supplementary Table 
7) in addition to the known common missense variant (rs34562254, AAFBBJ = 36%, Supplementary Table 6). 

This rare missense was also Japanese-specific and not observed in gnomAD. These findings genetically 
support BMA-BAFF interaction in B-cells since rare missense variants in both genes converge into the same 

phenotype (AG) with high PPI and both higher AG and lower NAP suggest decreased levels of 
immunoglobulin. 

USP47 
We observed a significant association between a missense variant in USP47 and glucose levels 
(rs138329346). This variant is a Japanese-specific (3% in Japanese, and 0.8% in Korean) rare deleterious 

missense variant (SIFT deleterious; PolyPhen probably damaging), and the variant allele associated with 
increased glucose levels. We found two supporting evidence of our finding. First, rare genetic aggregating 
testing in the European population (accessed via https://app.genebass.org) showed a strong association 

between increased glucose levels and the burden of protein-truncating variants in the USP47 gene (P = 7.3 
× 10-7). Second, the murine knockout model of Usp47 showed increased glucose levels [data was obtained 

from International Mouse Phenotyping Consortium database]. 

MLLT10 
We found an EAS-specific variant in the MLLT10 (Mixed lineage leukemia T10) gene associated with serum 

creatinine level and eGFR. This region was identified for these phenotypes for the first time. While MLLT10 
is known for its function in fusion genes and hematopoietic malignancy11, this association suggests an 
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unknown mechanism between AP10 and kidney function. In line with this association, MLLT10 is expressed 
in the kidney based on the GTEx data. 

ETV6 
We found a novel association between an intronic variant in ETV6 and eosinophil count. ETV6 is known to 
be associated with hematopoietic malignancy, and the fusion gene of ETV6-RUNX1 is frequently found in 

childhood B- cell acute lymphocytic leukemia12. Fusion gene ETV6-PDGFRB is also known to be associated 
with chronic myeloid malignancies with eosinophilia and this fusion gene stimulates hematopoietic 

progenitors to differentiate into eosinophils13. This association may provide a direct link between eosinophils 
and ETV6 function (without fusion with other genes). 

DMXL1 
We found a novel association between BUN and DMXL1 region (an upstream variant). Interestingly, while 
DMXL1 expresses in various tissues and has many regulatory functions, this gene encodes a protein one of 

which functions is a regulator of the V-ATPase proton pump14. Thus, this association may provide the first 
evidence of a connection between renal function and a genetic variant in the DMXL1 region, possibly 

through affecting the regulation of the V-ATPase proton pump. 

EVC 
EVC encodes a protein whose dysfunction leads to Ellis-van Creveld syndrome15. We found a missense 

variant in EVC associated with the eGFR level. Since patients with Ellis-van Creveld syndrome were not 
reported to have renal dysfunction15, this association may provide novel evidence of the broader function of 

EVC. 

STAB2 

We found a novel association between STAB2 missense variant rs185968359 and APTT. By in-silico 

functional prediction, rs185968359 is predicted to be deleterious (SIFT deleterious; Polyphen probably 
damaging). This likely causal variant (PPI = 0.93) was an East Asian specific rare variant (MAF = 0.48%), 
and this variant was associated with shortened APTT (Beta -0.252) – indicating enhanced coagulation. 

Consistent with our observation, other deleterious missense variants in STAB2 were associated with an 
increased risk of venous thromboembolism in the European population16. STAB2 is reported to be a 

clearance receptor for von Willebrand factor (vWF), and functional loss of STAB2 was associated with 
increased vWF levels and enhanced coagulation. Our study linked a blood biomarker and the 

pathophysiology of VTE through genetic variants. 

EGLN1 

We found novel associations between EAS-specific missense variant rs186996510 in EGLN1 and EGFR. 

EGLN1 encodes PHD2 and regulates hypoxia inducing factor (HIF) pathways. rs186996510 is known to be 
under strong selection in the Tibetan population17 (AAFTibetan = 70.9%, AAFBBJ = 5.2%, AAFgnomAD NFE = 
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0.025%) suggesting high altitude adaptation. EGLN1 locus is an established hemoglobin/hematocrit-
associated locus and EGLN1 has been attracting attention in erythropoiesis. Recently, however, the effects 

of the HIF pathway in the progression of chronic kidney disease have received increased attention, and this 
genetic association may have implications for the impact of EGLN1 on renal function. 

PAX4 

We found a novel association between glucose level and rs3757787 an upstream variant of PAX4. This 
variant is highly EAS-specific (AAFEAS = 11%, AAF < 0.1% in other populations in gnomAD). Since PAX4 is 

a master regulator of beta cell development in the pancreas, the direction of the effect suggests this variant 
decreases the development of beta cells via dysfunction of PAX4, resulting in increased glucose levels even 

in non-diabetic subjects. 

LINC01094 
We found an association of the LINC01094 region with TC and HDLC (Supplementary Table 4). This variant 

is highly specific to EAS. LINC01094 is reported to be related to various cancers18,19 including pancreatic 
cancer and breast cancer, in which cholesterol levels play important roles in cancer development. While a 

direct link between LINC01094 and cholesterol was not previously reported, the current findings might 
provide human genetic evidence between them for the first time. 

IL20RA 
We found an association between an intronic variant in IL20RA and BUN. IL20RA encodes IL20 receptor 
alpha subunit. IL20 is a proinflammatory cytokine associated with renal fibrosis, and an increased level of 

IL20 is observed in acute and chronic kidney diseases20. The previous study reported that IL20 treatment 
induced apoptosis of tubular epithelial cells via caspase-3 activation in rats21, suggesting a mechanism by 
which IL20 is associated with renal diseases. Thus, our finding genetically connects this gene with kidney 

function in humans for the first time. 

GOLM1 
We found novel associations between intronic variants in the GOLM1 and neutrophil counts and basophil 

counts. GOLM1 encodes Golgi membrane protein GP73. GP73 is known to be associated with cell growth 
and cancers especially hepatocellular carcinoma, but never known for QTL associations with blood cells. A 

previous report showed that this locus was associated with QTL of IL6 production and was modulated in 
response to the stimulus of multiple pathogens22 which might suggest a context-dependent effect of this 

region on blood cell counts. 

MYCT1 
A deleterious missense variant highly specific to EAS in MYCT1 showed an association with RBC. MYCT1 

is a myc-related gene and is known as a possible tumor suppressor gene23. Since MYC is deeply involved 
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with cell expansion, this association seems reasonable and provides a possible novel biological mechanism 
of erythropoiesis supported by genetic findings. 

JAZF1 
We found an intronic variant in JAZF1 was associated with RBC count. JAZF1 is known to be associated 
with T2D, but its functional role in erythrocytes had not been reported at all. A recent paper suggested 

JAZF1 as a potential transcriptional repressor of γ-globin in adult erythroid cells24. The current study is the 
first study to provide human genetic evidence for the link between them. 

ALDOB 

We found a novel association between the missense deleterious variant in ALDOB and platelet count. The 
variant is highly specific to EAS. Since ALDOB encodes Fructose-bisphosphate aldolase B; this association 

might suggest an unknown link between platelet and fructose. 

CD163 

Macrophage marker CD163 scavenger receptor for the hemoglobin-haptoglobin complex. An intronic 

variant, much more prevalent in EAS than in EUR, showed an association with AST for the first time. This 
genetic association would directly connect macrophage and liver function. 

PGM2L1 

Intronic variants in the PGM2L1 gene, showing large differences in allele frequency between EAS and EUR, 
showed associations with eGFR, sCr and BUN. PGM2L1 is associated with glucose metabolism, but 

detailed function is not known. 

CYP19A1 

An intronic variant in the CYP19A1 is associated with HDLC. CYP19A1 is a member of the cytochrome 

P450 superfamily. P450 is known to be associated with cholesterol synthesis25, but this is the first time to 
identify the association between CYP19A1 and HDLC. This novel association may provide genetic evidence 

of the function of CYP19A1 on cholesterol production, while how a causal variant shows its effect on 

CYP19A1 should be further addressed. 

SIRT1 

An intronic variant in SIRT1 was shown to be associated with hemoglobin levels for the first time. This 
variant showed quite a different allele frequency between EAS and EUR. Previous studies have shown an 

association between SIRT1 and hematopoiesis. Activation of SIRT1 is shown to result in increased 
expression of fetal hemoglobin level26. 

ATM 

An intronic variant in ATM showed an association with hematocrit and hemoglobin. While ATM is well known 
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for its function on hematopoiesis via stabilizing p53 and contributing to the survival of hematopoietic stem 
cell27, this is the first time to show genetic evidence between ATM and hematocrit or hemoglobin. 

DOCK5 

We found a novel association between an intron variant in DOCK5 and hemoglobin. DOCK5, known as the 
dedicator of cytokine 5, is an atypical guanine nucleotide exchange factor (GEF) known for its function on B 

cells via regulating BCR signaling and acting reorganization28. Since the link between DOCK5 and 
erythrocytes is not known, the current finding may suggest DOCK5’s role in the hematopoietic lineage. 

DOCK3 

We found associations of the DOCK3 region with hemoglobin and HT (hematocrit). DOCK3 is well known for 
its role in immune surveillance. Since DOCK3 is also a member of the dedicator of cytokines (DOCK) like 

DOCK5, the association between DOCK3 and hemoglobin and hematocrit might be interpreted in the same 
context as the association between DOCK5 and hemoglobin. Interestingly, this gene is found under 

selection pressure in Japanese (Liu et al. manuscript submitted). 

ARHGAP36 

A very rare missense variant in ARHGAP36 showed an association with sodium level. ARHGAP36 encodes 

Rho GTPase-activating protein 36. The functions of this protein in the electrolyte are almost not known. 
Since ARHGAP36 expresses mainly in the adrenal gland, the association might suggest its function on 

sodium level via humoral regulation. 

RRAS2 

A rare intronic variant in the RRAS2 gene was associated with platelet count. This gene encodes Ras-

related protein. While the involvement of the RAS pathway in platelet is reported29, detailed analyses were 
not conducted so far. The current finding for the first time provides human genetic evidence to link RRAS2 

and platelet count. 

S1PR4 

A rare missense variant, rs3746072, showed an association with the segmented neutrophil count. S1PR4 

encodes sphingosine-1-phosphate receptor 4 and sphingosine-1-phosphate signaling is involved with 
leukocyte trafficking. A previous study (not containing the Japanese population) showed an association of 
this rare missense variant in S1PR4 with white blood cells or neutrophil count (but not segmented neutrophil 

count). Furthermore, finemapping results supported this variant as causal (PPISEG = 0.733). Our finding for 
the first time provides the association of S1PR4 with segmented neutrophil count (rather than band 

neutrophil count) and further reinforces the link between this variant in S1PR4 and white blood cells, 
especially segmented neutrophils30. 



26 
 

PDE10A 

PDE10A encodes an enzyme that hydrolyzes cAMP/cGMP, the second messenger in cells. We found an 

association between chloride levels and a variant in PDE10A. Since chloride and second messengers are 
functionally tightly linked, this association seems reasonable. Since PDE10A is a potential drug target such 
as schizophrenia31, this association would also raise the possibility of potential side effects of a drug to be 

monitored. 

SLC12A3 
We found multiple rare (0.27% - 1.35%) missense variants in SLC12A3 are associated with chloride levels 

(rs146158333, rs369344478, rs185927948). Among them, rs146158333 was previously reported as a 
causal variant for Familial hypokalemia hypomagnesemia. All these variants are not found or are very rare in 

other populations (< 0.1% in the gnomAD database). SLC12A3 encodes renal thiazide-sensitive sodium-
chloride cotransporter. These variants are putatively causal (PPI 0.38 - 1.00) and functional follow-up 

especially conformational analyses warrant a further functional understanding of this transporter. 

STAT3 

STAT3 region is associated with CK. STAT3 is a critical transcription factor with various functions on a wide 

variety of cells. STAT3 is also known to play a role on muscles such as skeletal muscle in the context of 
response to mechanical overload32, hypertrophy in cardiac muscle33 and vascular smooth muscle34. 

Interestingly, recent studies suggest that induction of STAT3 phosphorylation (activation of STAT3) is 
associated with muscle wasting and that suppression of STAT3 phosphorylation via treatment or resistant 

training might be an option to prevent sarcopenia35,36. 

SMAD3 

SMAD3 region is associated with CK. SMAD3 transduces TGF-beta signaling in various cells. TGF-

beta/SMAD3 pathway has been shown to play roles in the proliferation of smooth muscle, cardiac muscle 
and skeletal muscle37,38. A recent study shows that a specific inhibitor of p-Smad3 canceled out induced 
suppression of myogenesis in vitro, suggesting that phosphorylation of SMAD3 is associated with 

myogenesis39. GDF11 is shown to induce muscle atrophy in human iPSC via activation of SMAD340. These 
support the association found in the current study. 

ZNF365 

An intronic variant in ZNF365 showed an association with HDLC. This variant was much more frequent in 
EAS than in EUR. Another intronic variant in ZNF365 showed an association with basophil count. This 

variant also showed a large difference in allele frequencies. The ZNF365 region is associated with metabolic 
and immune-related diseases including type 2 diabetes41, inflammatory bowel diseases42 and breast 

cancer43, the current findings would provide clues of biological mechanisms underlying the associations 
between this region and the diseases. 
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ZNF468 

An intronic variant in ZNF468 and highly prevalent in EAS is associated with eGFR and BUN. ZNF468 is a 

zinc finger protein expressed in a wide variety of cells except for the brain and heart. This gene’s function is 
not explored at all. 

PTGER1 

We found an association between eGFR or UA and an intronic variant of PTGER1 which encodes the 
Prostaglandin E receptor (EP1). EP1 is known for its important role in kidney function in which antagonist of 
EP1 resulted in anti-renal fibrosis via decreased fibronectin alpha-smooth muscle actin44 and deletion of this 

gene led to attenuation of renal injury in diabetic model45. Thus, our finding provides human genetic 
evidence between kidney function and EP1 for the first time. 

RFWD2 

We found an association between basophil counts and a rare missense variant of RFWD2, also known as 
COP1, which is specific to EAS. RFWD2 encodes E3 ubiquitin-protein ligase which interacts with c-Jun and 

has many immunological functions. While previous studies reported a biological link between RFWD2 and 
monocytes, microglia or B-cells46, this is the first genetic evidence to show RFWD2 and basophil. 

SPRED2 

We found an association between BUN and a rare intronic variant in SPRED2 highly specific to EAS. We 
also found an association between eGFR and an upstream variant. Since SPRED2 is known as an immune-

mediator and a link between SPRED2 and kidney function is not reported, this association suggests 
immunological involvement of SPRED2 in kidney function. 

STK3 

We found a novel association between the intron variant in STK3 and total bilirubin level. This variant is 
highly specific to EAS. While direct involvement of STK3 with lipid metabolism is not shown, STK3 (also 

known as MST2) is a protein kinase in the Hippo pathway, which cooperates with p53 to fine-tune the sterol 
regulatory element-binding protein activity and regulate lipid levels47. These suggest a link between Serine-

threonine kinase and total bilirubin to be further elucidated. 

AQP1 

We found a novel association between the intronic variant in AQP1 and eGFR and serum creatinine level. 

AQP1 is a widely expressed water channel in the kidney. AQP1 facilitates fast water exchange across cell 
membranes. The carriers of the AQP1 gene in humans and the Aqp1 knockout murine model consistently 
showed the impaired formation of concentrated urine. Recently, another common variant in the AQP1 

promoter region was reported to be associated with decreased ultrafiltration and with a risk of death or 

transfer to hemodialysis due to technical failure in patients with peritoneal dialysis48. Although its 
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involvement in renal function has also been suggested, this study is the first study to find these genetic 
associations. 

4.2 Novel variants in known associations between phenotypes and genes 

PCSK9 

The PCSK9 locus, a very well-known locus for low-density lipoprotein cholesterol (LDLC) levels, showed 
multiple associations with high PPI including novel associations (novel variant-level associations, Extended 

Data Fig 7). We identified seven variants with PPI > 0.1 in this locus and as expected these variants are 
mutually LD-independent. Among them, 3 are missense variants and 4 are non-coding variants. All the 
missense variants are rare and exhibited large effect sizes (rs564427867, PCSK9 p.E32K, MAF 1.13%, 

βLDLC = 0.51 ± 0.022, PLDLC = 4.2 × 10-117, PPILDLC = 1.00; rs151193009, PCSK9 p.R93C, MAF 0.93%, βLDLC 
= -0.48 ± 0.022, PLDLC = 1.3 × 10-105, PPILDLC = 1.00; rs759250273, PCSK9 p.I424V, MAF 0.8%, βLDLC = -

0.23 ± 0.029, PLDLC = 4.6 × 10-15, PPILDLC = 0.79); three out of the four non-coding variants are common 
[MAF > 0.1]; three non-coding variants are in candidate cis-regulatory region determined by active chromatin 

mark7 supporting the functionality of these variants. Among them, rs188211891 is very rare and associated 
with serum LDLC levels with a larger effect size than missense variants in PCSK9 (MAF 0.001, βLDLC = -0.70 

± 0.082, PLDLC = 1.5 × 10-17, PPILDLC = 1.00). Also, we noted these four rare coding- or non-coding putative 
causal variants are either not found or are, at most, rare in other populations49, indicating that these variants 

are specific to the Japanese population. A total of these four rare and Japanese or EAS-specific variants 
(three missense and one non-coding) are novel associations. 

FLT3 

A rare intronic variant rs76080105 (ENST00000241453.12:c.2208-14A>G, MAF = 0.76%), specific to 
individuals of Asian ancestry and predicted to cause an acceptor loss of FLT3, was significantly and highly 

confidently associated with various immunological traits including leukocyte counts and clinical indicators of 
immunoglobulin levels (PWhite blood cell count (WBC) = 1.9 × 10-14, PPIWBC = 1.00, PMonocyte percentage (MONO) = 2.0 × 10-

50, PPIMONO = 1.00, PNAP = 7.4 × 10-11, PPINAP = 1.00). FLT3 encodes a tyrosine kinase critical for the 

expansion and proliferation of hematopoietic stem cells and was recently reported as a causal gene for 
autoimmune thyroid disease in Europeans through a distinct cryptic splicing variant. We also identified that 

rs76080105 was also associated with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in 
the Japanese population43 [ORRA = 1.63 (1.26 - 2.08), PRA = 1.5 × 10-4, ORSLE = 2.16 (1.58 - 2.96), PSLE = 

1.6 × 10-6]. We conducted a minigene assay to validate this predicted cryptic splice alteration (Fig. 3b). We 
confirmed that the alternate allele at rs76080105 significantly decreased the proportion of normal splicing in 

this junction (Fig. 3c), compared to the reference allele (P = 1.26 × 10-6, Fisher’s Exact test). Because of the 
Asian specificity of this allele, we were not able to find rs76080105 in the GTEx database. 
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MMP2 

A rare missense variant in MMP2 [ENST00000219070:c.1453A>T(I485F), MAF = 0.63%], specific to 

Japanese and associated with height (P = 6.9 × 10-9, PPI= 0.15). This missense variant is predicted to 
introduce donor gain, which resulted in 25 base-pair frameshift deletion. This predicted abnormal splicing 
was also experimentally validated (Fig. 3e). The alternate allele at rs141440582 significantly induced this 

aberrant splicing by 66-fold (P = 2.9 × 10-11, Fisher’s Exact test). As a result, more than half of spliced 
transcripts from the alternate construct were affected by abnormal splicing. 

G6PC2 

We found novel (variant level) associations between blood glucose levels and three deleterious variants with 
high PPI in the G6PC2 gene which is a very known gene and catalyzes Glucose-6-Phosphatase into 

glucose. We found that all the variants are rare (2.2% or lower in the current data set) and show high 
specificity in EAS. Since all the missense variants showed decreased levels in glucose levels, the results are 

reasonable (altered amino acids resulted in decreased enzymatic activity) and help us to understand G6PC2 
topological functions (amino acid positions at which variants alter amino acid sequences are strongly 

suggested to have fundamental effects on enzymatic activity). 

LDHB 

We found novel associations between LDH and variants absent in EUR in LDHB which encodes Lactate 

Dehydrogenase B. rs542962114, a rare variant (MAF 1.13%) upstream of LDHB, showed a strong 
decreasing association with LDH level (βLDH = 32% of SD, PPILDH = 1.0). Previously, the pathogenicity of this 

mutation has been discussed but inconclusive in ClinVar. Additionally, we found another rare variant 
(rs185436061, MAF 0.11%) in the CTCF region in this locus showed a strong decreasing association with 
LDH (βLDH = 36% of SD, PPILDH = 0.998). 

 

5 Analyses of High PPI variants 

5.1 High PPI and strong effect sizes 

We derived machine learning-based pathogenicity estimation for non-coding variants (Disease Impact 
Score). We found a significant positive association between PPI and Disease Impact Score (SI 5.1) after 

controlling local LD structure and minor allele frequency. This suggests that variants with high PPI have a 
high possibility of having biological impacts (supported by Disease Impact Score). This is also supported by 

the enrichment of ClinVar coding variants for high PPI (as discussed in section 5.3). 
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SI 5.1 | Non-coding variants with high PPI showing high Disease Impact Score 

The association between PPI bins and Disease Impact Score. The disease impact score was estimated by 
machine learning model50. To avoid overestimation by linkage, we restricted the analysis to the variants with 

the highest PPI in each locus. The boxplots show median and interquartile range. 

5.2 Non-coding variants with high PPI 

If we consider the absolute effect size 0.261 (median absolute effect size of 15 protein-truncating 
associations with PPI > 0.9, 0.2% of all protein-truncating associations) as a threshold for the high-impact 

association, we identified 45 protein-altering high-impact associations (22% of protein-altering associations 
with PPI > 0.9, 0.018% of all protein-altering associations) and more than twice as many non-coding high-

impact associations (99 associations, 16% of non-coding associations with PPI > 0.9, 0.00043% of all non-
coding associations). These indicate that reflecting the majority of associations are in non-coding regions, 
more than two third of variants with high PPI are non-coding. 

5.3 Enrichment for pathogenic variants in ClinVar 

F7 

rs387906507, the missense variant on F7 (factor seven), which we found associated with prothrombin time 
(PT, MAF 0.12%, βPT = 0.569 ± 0.089, PPT = 1.3 × 10-10, PPIPT = 1.0), a common clinical indicator of blood 
coagulation. This variant is known as a causal variant for Factor VII deficiency. 

ALPL 

Another sample is rs387906525, a frameshift deletion of the ALPL (alkaline phosphatase) gene. 
rs387906525 is very rare with the second largest effect size in this study on the serum alkaline phosphatase 

(ALP, MAF 0.26%, βALP = -1.65 ± 0.050, PALP = 8.7 × 10-239, PPIALP = 1.00). This variant is a causal variant of 
infantile hypophosphatasia, which is manifested by rickets due to hypomineralization51,52. 

CD36 

We identified rs75326924, a missense variant in the CD36 gene, as a putative causal variant for multiple 
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quantitative traits including platelet counts (PLT, MAF = 4.6% βPLT = -0.102 ± 0.0081, PPLT = 4.8 × 10-36, 
PPIPLT = 1.0, Fig. 3d). This variant is known to be causal for CD36 deficiency53, a disease of genetic platelet 

glycoprotein IV deficiency and relatively common in Asians. CD36 deficiency is also known as a cause of 
dilated cardiomyopathy through dysregulated fatty acid metabolism54. In concordance with these clinical 

findings, we also found that the carriers with this variant showed lower cardiac contractile function [ejection 
fraction (EF)] and an increased risk of heart failure [βEF = -0.059 ± 0.021, PEF = 4.9 × 10-3, OR Heart Failure = 

1.14 (1.05 - 1.23), PHeart Failure = 1.0 × 10-3]. 

 

6 Functional enrichment of non-coding variants 

6.1 Enrichment for causal eQTL variants in the GTEx 

We addressed the overlap of variants with high PPI between our results and GTEx to show putative causal 

variants in our study may be partly explained by altering gene expression. 

We observed the significant overlap of finemapped variants by our study and GTEx (PPI > 0.1, by CAVIAR 

or DAPG, available in the GTEx portal), indicating the contribution of eQTL variants in the causal variants 
associated with quantitative traits. This enrichment was consistent between CAVIAR and DAPG (SI 6.1a). 

As an example, we showed that the causal variant in the F12 gene at 5'UTR associated with APTT (PPI: 
0.9999 and effect size of -0.26 SD, SI 6.1b) is also a causal eQTL variant of this gene in the liver (SI 6.1b, 

Supplementary Table 23). Since this variant (G allele) is associated with decreased APTT (indicating over 
coagulation) and increases expression of F12, one of the coagulation factors which facilitate blood 

coagulation, this overlap can explain the variant-phenotype association via altered expression of F12. 

 

SI 6.1 | Enrichment of causal variants in eQTL for finemapped variants 
a. Enrichment of causal variants in eQTL for finemapped variants The X axes show PPI bins in BBJ GWAS. 
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The Y axes show odds ratio and error bars show 95% confidence interval estimated by Fisher's exact test. 
b. X-axes show the genomic coordinate. Y-axis in the top panel shows -log10 P-value. The bottom panel 

shows genes located in the loci. 

6.2 Functional enrichment using the UKB data 

Since we obtained enrichment of putative causal variants for functional annotations in the Japanese data, 
we performed finemapping in the UKB dataset to test generalizability of the enrichments. We took summary 

statistics of UKB for a total of 30 traits available in both populations (http://www.nealelab.is/uk-biobank). We 
took advantages of LD structure of imputed UKB genotypes. We applied the same methods to UKB 

finemapped variants as the Japanese results. As a result, we found comparable enrichment of causal 
variants for the functional annotations (Extended Data Fig. 9c). 

6.3 Functional consequences of rs13306436 at 3'UTR in IL6 

We observed a significant increase in luciferase activity in rs13306436 alternative allele in comparison with 

the reference allele (P < 0.05), suggesting more stable mRNA in rs13306436 (since only the difference in 
mRNA between the two conditions is the presence of this variant in 3'UTR sequences). Since IL6 is a known 

target of Regnase-1 which interacts with 3'UTR of mRNA and degrades mRNA, we hypothesized that 
rs13306436 would alter the stability of mRNA and lead to resistance to Regnase-1-mediated degradation. 

We experimentally observed increased resistance to mRNA degradation measured by luciferase activity in 
rs13306436 alternative allele in the condition of overexpression of Regnase-1 (Fig 4c). In line with these 

findings, the RNAfold (version 2.4.18)55,56 predicted the altered structure of stem-loop in mRNA of IL6 in 
rs13306436 (SI 6.3). 
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SI 6.3 | Altered stem-loop structure of IL6 mRNA in rs13306436 

We computed RNA secondary structure of 3'UTR of IL6 by RNAfold software55,56. 

6.4 Enrichment for target genes of Regnase-1 

Since we observed the causal non-coding variant at 3'UTR in IL6 showed the decreased effect of Regnase-
1, we analyzed whether other genes targeted by Regnase-1 are present in our finemapping results. We 
found a total of 136 genes where causal variants are present in 3'UTR. Experimental results validated a total 

of 56 target genes of Regnase-1 among 18.8k genes in multiple cell lines57. We found a significant 
enrichment of the 136 genes for the Regnase-1 target genes (OR = 10.6, P = 5.2x10-5, hypergeometric test).  
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Supplementary Tables 

(Supplementary Tables 1-15 are provided in a excel file) 

Supplementary Table 16 | Summary of the three data sets using the same imputation reference 
panel in the current study. 

Cohort Gender N Mean age SD age 

BBJ 1st 
Male 94,304 63.58 13.37 

Female 82,590 62.60 14.95 

BBJ 2nd 
Male 7,647 70.45 9.18 

Female 4,451 65.22 12.36 

NCGG 
Male 6,296 69.17 14.15 

Female 7,928 71.96 12.86 

BBJ, Biobank Japan; NCGG, National Center for Geriatrics and Gerontology 

 

Supplementary Table 17 | Consistent associations between the three data sets and the ToMMo. 

Lead variants in the BBJ 1st + BBJ 2nd + NCGG Count Beta consistent 

ToMMo P ≤ 1 1,528 
(100%) 

1,505 
(98.5%) 

ToMMo P < 5 ×10-2 1,305 
(85.4%) 

1,304 
(99.9%) 

ToMMo P < 5 × 10-4 941 
(64.7%) 

941 
(100%) 

ToMMo P < 5 × 10-6 647 
(42.3%) 

674 
(100%) 

ToMMo P < 5 × 10-8 464 
(30.4%) 

464 
(100%) 

 

Supplementary Table 18 | The comparison of the PPI inferred by FINEMAP and SuSiE. 

 
PPI by FINEMAP 

[0, 0.1] (0.1,0.9] (0.9,1.0] 

PPI by SuSiE 
[0, 0.1] 22,255,416 1,049 56 

(0.1,0.9] 1,224 7,238 66 
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(0.9,1.0] 51 57 649 

 

Supplementary Table 19 | Improved performance of transancestral PRS by statistical 
finemapping 

 
Median Rho [1st - 3rd quantile] 

P 
PT PRS Finemapped PRS 

Derived from BBJ1st tested in BBJ2nd 0.191[0.142 - 0.278] 0.209[0.151 - 0.278] 3.7×10-7 
Derived from BBJmeta, tested in UKB 0.120[0.095 - 0.171] 0.128[0.100 - 0.199] 1.4×10-5 
Derived from UKB, tested in BBJ1st 0.144[0.108 - 0.175] 0.161[0.125 - 0.212] 5.9×10-6 

PRS performances as median Rho and its interquartile ranges in 34 (intra Japanese analysis) and 35 
(trans ancestry analysis) quantitative phenotypes are shown. P values were calculated by Paired 
Wilcoxon rank sum test. PRS, polygenic risk score; PT, pruning and thresholding; BBJ, Biobank Japan; 
UKB, UK-Biobank. 

 

Supplementary Table 20 | The trans ancestral performance of PT-PRS and finemapped PRS 

Phenotype Derived 
from 

Tested 
in 

Pruning and thresholding PRS Finemapped PRS 
N variants P;R2 Rho[95%CI] N variants Rho[95%CI] 

ALB 
BBJ UKB 478 5e-4;0.7 0.079[0.073-0.086] 33 0.079[0.073-0.086] 

UKB BBJ 631 5e-8;0.2 0.088[0.082-0.095] 356 0.109[0.103-0.116] 

ALP 
BBJ UKB 1325 5e-5;0.8 0.127[0.121-0.133] 75 0.154[0.148-0.160] 

UKB BBJ 2608 5e-7;0.3 0.173[0.166-0.179] 547 0.287[0.281-0.293] 

ALT 
BBJ UKB 897 5e-4;0.5 0.093[0.087-0.099] 67 0.108[0.102-0.114] 

UKB BBJ 782 5e-6;0.1 0.103[0.097-0.108] 352 0.129[0.123-0.135] 

AST 
BBJ UKB 691 5e-5;0.5 0.073[0.067-0.079] 71 0.097[0.091-0.103] 

UKB BBJ 8365 5e-3;0.3 0.098[0.092-0.104] 408 0.129[0.123-0.135] 

BASO 
BBJ UKB 87 5e-8;0.1 0.029[0.023-0.035] 79 0.029[0.022-0.035] 

UKB BBJ 203 5e-8;0.7 0.074[0.067-0.082] 43 0.062[0.054-0.070] 

BMI 
BBJ UKB 1197 5e-5;0.7 0.097[0.091-0.102] 117 0.091[0.085-0.097] 

UKB BBJ 2263 5e-5;0.1 0.119[0.114-0.125] 697 0.118[0.113-0.124] 

BS 
BBJ UKB 47 5e-8;0.1 0.111[0.104-0.117] 35 0.095[0.089-0.102] 

UKB BBJ 1063 5e-6;0.6 0.112[0.105-0.120] 143 0.121[0.114-0.128] 

BUN 
BBJ UKB 338 5e-7;0.4 0.090[0.084-0.096] 99 0.098[0.092-0.104] 

UKB BBJ 518 5e-8;0.2 0.127[0.121-0.133] 271 0.143[0.137-0.149] 

CA 
BBJ UKB 30 5e-8;0.1 0.111[0.105-0.118] 27 0.113[0.107-0.119] 

UKB BBJ 1689 5e-6;0.4 0.103[0.096-0.111] 322 0.117[0.109-0.124] 

CRP BBJ UKB 227 5e-7;0.9 0.179[0.173-0.185] 15 0.188[0.182-0.194] 
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UKB BBJ 1376 5e-6;0.2 0.082[0.074-0.089] 327 0.109[0.102-0.117] 

DBP 
BBJ UKB 262 5e-5;0.7 0.034[0.028-0.041] 24 0.046[0.040-0.052] 

UKB BBJ 2258 5e-4;0.2 0.058[0.052-0.064] 307 0.069[0.063-0.075] 

EOSINO 
BBJ UKB 4029 5e-3;0.9 0.130[0.124-0.136] 97 0.151[0.145-0.157] 

UKB BBJ 2904 5e-5;0.2 0.174[0.167-0.181] 575 0.191[0.183-0.198] 

GTP 
BBJ UKB 5513 5e-3;0.9 0.113[0.107-0.119] 93 0.173[0.167-0.179] 

UKB BBJ 2110 5e-6;0.2 0.175[0.169-0.181] 523 0.241[0.235-0.247] 

HBA1C 
BBJ UKB 74 5e-8;0.2 0.134[0.128-0.140] 56 0.142[0.136-0.148] 

UKB BBJ 1047 5e-8;0.1 0.170[0.160-0.181] 616 0.186[0.175-0.196] 

HB 
BBJ UKB 324 5e-6;0.4 0.125[0.119-0.131] 91 0.123[0.117-0.129] 

UKB BBJ 1317 5e-7;0.2 0.125[0.119-0.131] 554 0.141[0.135-0.146] 

HDLC 
BBJ UKB 1962 5e-5;0.7 0.222[0.216-0.228] 105 0.264[0.258-0.270] 

UKB BBJ 4269 5e-5;0.4 0.218[0.212-0.225] 488 0.257[0.251-0.264] 

HEIGHT 
BBJ UKB 25800 5e-3;0.8 0.271[0.265-0.276] 724 0.269[0.263-0.274] 

UKB BBJ 13979 5e-5;0.3 0.288[0.283-0.293] 1909 0.310[0.305-0.315] 

HT 
BBJ UKB 505 5e-5;0.4 0.125[0.119-0.131] 101 0.123[0.117-0.129] 

UKB BBJ 23290 5e-3;0.8 0.127[0.121-0.133] 497 0.146[0.140-0.152] 

LDL 
BBJ UKB 976 5e-7;0.9 0.132[0.126-0.138] 63 0.207[0.201-0.212] 

UKB BBJ 2343 5e-5;0.4 0.116[0.109-0.124] 234 0.161[0.154-0.168] 

LYMPH 
BBJ UKB 1570 5e-4;0.9 0.116[0.110-0.122] 63 0.126[0.119-0.132] 

UKB BBJ 8168 5e-4;0.4 0.145[0.138-0.152] 651 0.165[0.157-0.172] 

MCHC 
BBJ UKB 450 5e-7;0.3 0.090[0.084-0.096] 114 0.103[0.097-0.109] 

UKB BBJ 274 5e-7;0.1 0.147[0.141-0.152] 139 0.152[0.146-0.158] 

MCH 
BBJ UKB 1899 5e-5;0.4 0.268[0.263-0.274] 239 0.304[0.298-0.309] 

UKB BBJ 2844 5e-7;0.3 0.283[0.277-0.288] 631 0.306[0.300-0.311] 

MCV 
BBJ UKB 3134 5e-5;0.6 0.261[0.256-0.267] 284 0.299[0.294-0.305] 

UKB BBJ 3874 5e-6;0.3 0.287[0.282-0.293] 696 0.304[0.299-0.310] 

MONO 
BBJ UKB 133 5e-8;0.1 0.194[0.188-0.199] 99 0.192[0.186-0.198] 

UKB BBJ 2420 5e-7;0.3 0.176[0.169-0.183] 660 0.205[0.198-0.212] 

NEUTRO 
BBJ UKB 112 5e-7;0.2 0.101[0.095-0.107] 44 0.122[0.116-0.128] 

UKB BBJ 1686 5e-6;0.2 0.159[0.151-0.167] 533 0.167[0.159-0.175] 

P 
BBJ UKB 24 5e-8;0.5 0.092[0.086-0.098] 12 0.097[0.090-0.103] 

UKB BBJ 598 5e-6;0.1 0.098[0.088-0.109] 252 0.115[0.105-0.126] 

PLT 
BBJ UKB 1456 5e-5;0.3 0.174[0.169-0.180] 270 0.237[0.232-0.243] 

UKB BBJ 10217 5e-4;0.3 0.228[0.222-0.234] 928 0.254[0.249-0.260] 

RBC 
BBJ UKB 832 5e-7;0.5 0.195[0.189-0.200] 183 0.213[0.207-0.219] 

UKB BBJ 2001 5e-7;0.2 0.204[0.198-0.209] 738 0.220[0.214-0.225] 

SBP 
BBJ UKB 577 5e-6;0.9 0.061[0.055-0.067] 38 0.067[0.061-0.074] 

UKB BBJ 78953 5e-1;0.4 0.062[0.056-0.068] 381 0.092[0.086-0.098] 
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SCR 
BBJ UKB 292 5e-7;0.3 0.118[0.113-0.124] 131 0.140[0.134-0.146] 

UKB BBJ 1646 5e-6;0.1 0.140[0.135-0.146] 648 0.160[0.154-0.166] 

TBIL 
BBJ UKB 338 5e-8;0.6 0.380[0.375-0.385] 29 0.399[0.394-0.404] 

UKB BBJ 12054 5e-3;0.9 0.224[0.218-0.230] 178 0.185[0.178-0.191] 

TC 
BBJ UKB 230 5e-7;0.1 0.167[0.161-0.173] 99 0.212[0.206-0.218] 

UKB BBJ 5997 5e-5;0.8 0.143[0.138-0.149] 267 0.182[0.176-0.188] 

TG 
BBJ UKB 495 5e-5;0.2 0.168[0.162-0.174] 78 0.189[0.182-0.194] 

UKB BBJ 1419 5e-8;0.3 0.195[0.189-0.201] 414 0.255[0.248-0.261] 

TP 
BBJ UKB 3299 5e-3;0.8 0.110[0.104-0.117] 94 0.127[0.121-0.133] 

UKB BBJ 613 5e-8;0.1 0.135[0.129-0.141] 457 0.156[0.150-0.162] 

WBC 
BBJ UKB 234 5e-7;0.1 0.120[0.114-0.126] 168 0.128[0.122-0.134] 

UKB BBJ 876 5e-8;0.1 0.164[0.158-0.169] 648 0.185[0.180-0.191] 

N variants show the number of variants in PRS. P/R2 shows the optimized threshold for PT-PRS in 
validation dataset (25% of dataset). We tested a range of P-value and R2 threshold (P = 0.5, 0.05, 5e-3, 5e-
4, 5e-5, 5e-6, 5e-7, 5e-8, and R2 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Rho[95%CI] show Spearman's 
rank correlation coefficients and 95% confidence intervals in the testing dataset (75% withheld dataset). 
PRS, polygenic risk score; PT, pruning and thresholding; BBJ, Biobank Japan; UKB, UK-Biobank. 

 

Supplementary Table 21 | Concordant allelic effect of putatively causal variants between BBJ 
and UKB 

Derived Tested 
Median sign concordance [1st - 3rd quantile] 

P 
Pruning and thresholding PRS Finemapped PRS 

BBJ UKB 0.858[0.805-0.884] 0.899[0.884-0.924] 8.7×10-5 
UKB BBJ 0.784[0.756-0.797] 0.821[0.790-0.848] 5.0×10-6 

For 35 studied traits, the median [1st-3rd quantile] sign concordances were shown. The sign concordances 
of effects of variants included in each PRS were calculated by the comparison of effect direction between 
BBJ and UKB summary statistics. For PT-PRS, we used the best concordant PRS irrespective to prediction 
performance. The differences were tested by the paired Wilcoxon rank sum test. 

 

Supplementary Table 22 | Improved PRS transferability in the new reference panel 

Derived Tested 
Median Rho [1st - 3rd quantile] 

P 
1KG reference panel BBJ reference panel 

BBJ UKB 0.123[0.093-0.196] 0.132[0.102-0.204] 0.0014 

We conducted GWAS, Finemapping, and PRS construction from the different imputation reference panel. 
1KG reference panel indicates panel generated from 1KG entire population (n = 2,504). BBJ reference panel 
indicates panel generated in this study (n = 3,256 Japanese + 2,504 1KG participants). For 35 traits 
validated in UKB, the median [1st-3rd quantile] correlation coefficients are shown. The difference was tested 
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by the paired Wilcoxon rank sum test. GWAS, genome wide association study; 1KG, 1000 genomes project; 
BBJ, BioBank Japan; UKB, UK-Biobank. 

 

Supplementary Table 23 | The causal variant of F12 gene expression in the liver is causal for the 
APTT association 

 PPI Effect size P 

APTT GWAS 99.99% -0.26 3.4 x 10-442 

F12 Liver eQTL 98.40% 0.74 8.60 x 10-37 

 
Supplementary Table 24 | Oligonucleotide sequence used for splicing assay 

FLT3 Ref TTACGCCAAGTTATTTAGGTGACACCAATTTACTTGATTTTTGAATACTGTTGCTATGGTGATC
TTCTCAACTATCTAAGAAGTAAAAGAGAAAAATTTCACAGGACTTGGACAGAGATTTTCAAGGA
ACACAATTTCAGTTTTTACCCCACTTTCCAATCACATCCAAATTCCAGGTAAGAGGCTGGGTCA
GGGTTTCGTAATTACACATCATAGAACGTAGGCATACACAAAAAATGGACAAATGGATGGTGTG
CTTTTAATTTAAAAGTCAATTTATAACTGGAATCCATTTATTTGATGAATTACATTTTTAAAAT
AAAATGTCTGCTGAGAAGAATAATGTAAATAATGAAAAAACAAAATTTTTTAATAGCATGCCTG
GTTCAAGAGAAGTTCAGATACACCCGGACTCGGATCAAATCTCAGGGCTTCATGGGAATTCATT
TCACTCTGAAGAAATCTAGATAACTGATCATAATCAGCCATACCACATTTGT 

ALT TTACGCCAAGTTATTTAGGTGACACCAATTTACTTGATTTTTGAATACTGTTGCTATGGTGATC
TTCTCAACTATCTAAGAAGTAAAAGAGAAAAATTTCACAGGACTTGGACAGAGATTTTCAAGGA
ACACAATTTCAGTTTTTACCCCACTTTCCAATCACATCCAAATTCCAGGTAAGAGGCTGGGTCA
GGGTTTCGTAATTACACATCATAGAACGTAGGCATACACAAAAAATGGACAAATGGATGGTGTG
CTTTTAATTTAAAAGTCAATTTATAACTGGAATCCATTTATTTGATGAATTACATTTTTAAAAT
AAAATGTCTGCTGAGAAGAATAATGTAAATAATGAAAAAACAGAATTTTTTAATAGCATGCCTG
GTTCAAGAGAAGTTCAGATACACCCGGACTCGGATCAAATCTCAGGGCTTCATGGGAATTCATT
TCACTCTGAAGGCATCTAGATAACTGATCATAATCAGCCATACCACATTTGT 

MMP2 REF TTACGCCAAGTTATTTAGGTGACAGGGCCTCTCCTGACATTGACCTTGGCACCGGCCCCACCCC
CACGCTGGGCCCTGTCACTCCTGAGATCTGCAAACAGGACATTGTATTTGATGGCATCGCTCAG
ATCCGTGGTGAGATCTTCTTCTTCAAGGACCGGTGAGTGCAGGAGCTTGCTTCTTGTCCTCCTT
GTCTCCTGTCCTCTGCTCTTATACCATTATTCTTTTCCCTCACTCTTCGCTGAAGACTCCGCCA
AATGCTTCCCAGAGGTGGGTTTGGGGGTGTGTGTGGTTCGAGCTGCAGGGTGACTGAAGATGTG
GTTTCCTGTGCCCCCTTGCCTCCTGCCAGGTTCATTTGGCGGACTGTGACGCCACGTGACAAGC
CCATGGGGCCCCTGCTGGTGGCCACATTCTGTATCTAGATAACTGATCATAATCAGCCATACCA
CATTTGT 

ALT TTACGCCAAGTTATTTAGGTGACAGGGCCTCTCCTGACATTGACCTTGGCACCGGCCCCACCCC
CACGCTGGGCCCTGTCACTCCTGAGATCTGCAAACAGGACATTGTATTTGATGGCATCGCTCAG
ATCCGTGGTGAGTTCTTCTTCTTCAAGGACCGGTGAGTGCAGGAGCTTGCTTCTTGTCCTCCTT
GTCTCCTGTCCTCTGCTCTTATACCATTATTCTTTTCCCTCACTCTTCGCTGAAGACTCCGCCA
AATGCTTCCCAGAGGTGGGTTTGGGGGTGTGTGTGGTTCGAGCTGCAGGGTGACTGAAGATGTG
GTTTCCTGTGCCCCCTTGCCTCCTGCCAGGTTCATTTGGCGGACTGTGACGCCACGTGACAAGC
CCATGGGGCCCCTGCTGGTGGCCACATTCTCGATCTAGATAACTGATCATAATCAGCCATACCA
CATTTGT 
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