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Supplementary Case Studies 

TP008 

 
 
Supplementary Figure 1. a: Schematic of the clinical course of patient TP008. b: Variant allele 
frequencies from FoundationOne Heme for genomic alterations detected in at least one patient sample. 
c: Pharmacoscopy (PCY) ex vivo response (1-relative blast fraction, RBF) for different concentrations 
of cytarabine. Dots correspond to individual replicate wells (n = 3 per drug concentration, n = 16 for 
DMSO control). P values from Tukey’s HSD test. Box plots indicate the median (horizontal line) and 
25% and 75% ranges (box) and whiskers indicate the 1.5x interquartile range above or below the box. 
d: t-SNE calculated on the batch-corrected expression values of all cells measured by scRNA-seq (visit 
1: 960 cells, visit 2: 2343 cells). Regions in the t-SNE are annotated with the most abundant cell type, 
small plots on the side show cell type specific marker gene expression (darker color = higher 
expression). 
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Patient TP008 was diagnosed with AML, NOS one month prior to the first study visit. A 
pathogenic IDH1 R132C mutation was detected at this point with a variant allele frequency of 
around 20%. The patient then received one cycle of induction chemotherapy with daunorubicin 
+ cytarabine, which led to a reduction in AML blasts, but complete response was not achieved. 
At this time point, the first TuPro sample was taken and analyzed (Supplementary Figure 
1a). FoundationOne Heme confirmed the persistence of the IDH1 R132C mutation in the bone 
marrow (Supplementary Figure 1b). PCY analysis highlighted strong on-target effects for 
cytarabine (Supplementary Figure 1c). scRNAseq identified 40% of AML blasts in the bone 
marrow sample at the first visit, mostly subclassified as GMP- and myeloid-like AML with very 
low expression of CD34 (Supplementary Figure 1d). In addition, more mature myeloid cells 
and a considerable fraction (25%) of T-cells were also present. After the first chemotherapy 
cycle, the patient received a second cycle of induction chemotherapy and a complete 
remission was achieved. However, the IDH1 R132C mutation persisted and the variant allele 
frequency even increased compared to the first visit (Supplementary Figure 1b). Consistent 
with the morphological complete remission, scRNA-seq identified almost complete absence 
(<5%) of AML blasts in the second sample, which was mostly composed of T/NK cells (40%), 
monocyte-like cells (40%) and erythroid cells (16%). The patient received an allo-HSCT after 
the second chemotherapy cycle, Interestingly, IDH1 R132C persisted at low frequencies after 
allo-HSCT, a finding previously reported in the literature 1. The patient remained in complete 
remission afterwards. 
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TP019 

 
 
Supplementary Figure 2. a: Schematic of the clinical course of patient TP019. b: Variant allele 
frequencies from FoundationOne Heme for genomic alterations detected in at least one patient sample. 
c: Correlation of PCY scores between visit 1 and visits 2 and 3, respectively. The red dot highlights 
ivosidenib, which consistently shows no effect (PCY-score = 0) ex vivo. d: Correlation of CyTOF marker 
profiles (aggregated protein abundance across all AML cells) between visit 1 and visits 2 and 3, 
respectively. Lines and shaded areas in (c) and (d) correspond to a linear regression fit with 95% 
confidence bands, P values (two-sided t-test) and Pearson’s R are indicated. e: Fraction of AML cells 
predicted to be in cell cycle phases G1, G2/M or S based on scRNA-seq. f: t-SNE calculated on the 
batch-corrected expression values of all cells measured by scRNA-seq (visit 1: 2380 cells, visit 2: 3614 
cells, visit 3: 1781 cells). Regions in the t-SNE are annotated with the most abundant cell type, small 
plots on the side show cell type specific marker gene expression (darker color = higher expression).  
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Patient TP019 was initially diagnosed with myelodysplastic syndrome (MDS) with excess 
blasts (MDS-EB2). The patient relapsed after allo-HSCT 14 months after initial diagnosis, and 
presented with AML at relapse. The relapse was initially treated with decitabine + venetoclax. 
The therapy was then switched to ivosidenib and low-dose cytarabine due to intolerance to 
decitabine + venetoclax. A first TuPro sample was collected three months after relapse, and 
two follow-up biopsies were analyzed one and three months later, respectively 
(Supplementary Figure 2a). Throughout this time, the patient was treated with ivosidenib. 
Variant allele frequencies of pathogenic mutations (IDH1 R132C, TET2 D1075fs*7, KMT2A 
(MLL) partial tandem duplication (exons 2-10), PTPN11 G503A, RUNX1 R166*, and SF3B1 
H662D) remained constant during the first two visits, no FoundationOne was done at the third 
visit (Supplementary Figure 2b). PCY scores were highly correlated between visits 
(Supplementary Figure 2c), indicating no change in the drug sensitivity of the blast cells. 
Ivosidenib showed no effect ex vivo (PCY score around 0). This was consistent with the 
CyTOF analysis reporting highly similar protein expression across time points 
(Supplementary Figure 2d). scRNA-seq also showed no change in blast cell cycle state 
(Supplementary Figure 2e), and identified mostly AML blasts with high proportion of myeloid-
like AML cells across visits (Supplementary Figure 2f).   
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Supplementary Figure 3. a: Schematic of the clinical course of patient TP024. b: Variant allele 
frequencies from FoundationOne Heme for genomic alterations detected in at least one patient sample. 
A FLT3-ITD (K602_W603insPWSK) mutation was detected at all visits. c: Correlation of PCY scores 
between visit 1 and visits 2 and 3, respectively. The colored dots highlight the previous treatment 
(decitabine + venetoclax) the treatment following the first visit (gilteritinib), as well as treatments that 
show increased sensitivity in visits 2 and 3 compared to visit 1 (green dots). d: Correlation of CyTOF 
marker profiles (aggregated protein abundance across all AML cells) between visit 1 and visits 2 and 3, 
respectively. Colored dots highlight the targets of previous (Bcl-2) and current (Flt-3) therapies. Dots 
highlighted in green correspond to proteins whose abundance increased in visits 2 and 3 relative to visit 
1. Lines and shaded areas in (c) and (d) correspond to a linear regression fit with 95% confidence 
bands. P values (two-sided t-test) and Pearson’s R are indicated.  e: Fraction of AML cells predicted to 
be in cell cycle phases G1, G2/M or S based on scRNA-seq. f: t-SNE calculated on the batch-corrected 
expression values of all cells measured by scRNA-seq (visit 1: 3130 cells, visit 2: 3119 cells, visit 3: 
6019 cells). Regions in the t-SNE are annotated with the most abundant cell type, small plots on the 
side show cell type specific marker gene expression (darker color = higher expression). g: Inferred 
cellular hierarchy based on copy number variations identified by scDNA-seq.  
 
Patient TP024 was diagnosed with therapy-related MDS-EB2, which then rapidly progressed 
to AML. After an initial response to decitabine, the patient was treated by allo-HSCT and 
remained in remission for 7 months. He relapsed 3 months before the first study visit and 
treatment with decitabine + venetoclax was initiated, but AML progressed under this therapy 
(Supplementary Figure 3a). FoundationOne Heme identified a FLT3-ITD mutation, as well 
as a loss of exons 3-7 in RUNX1. The patient was then switched to gilteritinib after the first 
TuPro visit and treated throughout the study, however, the FLT3 mutation persisted over time 
(Supplementary Figure 3b). Consistent with this lack of clinical sensitivity, PCY analysis 
revealed low ex vivo sensitivity to decitabine + venetoclax as well as gilteritinib in all samples. 
However, PCY highlighted an increase in ex vivo sensitivity to afatinib, crizotinib, volasertib 
and the combined aurora kinase / JAK inhibitor AT9283 over the course of the three time 
points (Supplementary Figure 3c). Potentially explaining the altered ex vivo drug sensitivity 
pattern, CyTOF reported elevated levels of proteins related to cell proliferation (pRb, Ki67, 
CDK6), DNA damage (pH2AX) and JAK/STAT signaling (CALR) (Supplementary Figure 3d). 
This increase in proliferation was confirmed by scRNA-seq analysis of predicted cell cycle 
phases in AML blasts, which went from 25% of cells in S or G2M phase in the first sample to 
almost 50% in the sample collected at visit 3 (Supplementary Figure 3e). scRNA-seq 
identified a majority of blasts among all cells in all visits, spanning the full spectrum from HSC-
like to myeloid-like AML cells, with myeloid-like being the most abundant subtype. 
Interestingly, HSC-like cells were more abundant in visit 1, while samples from visits 2 and 3 
contained higher fraction of myeloid-like AMl cells, monocyte-like and erythroid cells as well 
as other nonmalignant cells such as T cells and B cells that were almost entirely absent at 
visit 1 (Supplementary Figure 3f). scDNA-seq analysis identified one major clone, 
characterized by a gain of two copies of chromosome 3q, resulting in an amplification of CBLB, 
GATA2 and PIK3CA. Consistent with the increased fraction of nonmalignant cells identified 
by scRNA-seq, scDNA-seq detected no diploid cells at visit 1, but at visits 2 and 3, there were 
around 20% of cells present without any CNVs (Supplementary Figure 3g). 
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Supplementary Figure 4. a: Schematic of the clinical course of patient TP025. b: Variant allele 
frequencies from FoundationOne Heme for genomic alterations detected in at least one patient sample. 
c: Expression of CD34, Bcl-2 and CD36 by CyTOf. Black dots correspond to all samples in the cohort, 
colored dots mark samples from patient TP025. d: PCY responses (1-RBF) for decitabine, venetoclax, 
and decitabine + venetoclax at visits 1 & 2. *** P < 0.001, right-tailed Student’s t-test comparing drug 
treated wells (all concentrations) to DMSO controls. Dots correspond to replicate wells (n = 4 or 5 per 
drug, n = 15 for DMSO ocntrol), box-plots as in Supplementary Figure 1c. e: t-SNE calculated on the 
batch-corrected expression values of all cells measured by scRNA-seq (visit 1: 3830 cells, visit 2: 3635 
cells, visit 3: 2379 cells). Regions in the t-SNE are annotated with the most abundant cell type, small 
plots on the side show cell type specific marker gene expression (darker color = higher expression). 
 
Patient TP025 was initially diagnosed with NPM1 mutated AML. He initially responded to 
induction chemotherapy and received an allo–HSCT, but relapsed after 5 months, at which 
point the first TuPro sample was obtained. After the first visit, the patient started treatment with 
decitabine, resulting in no response at visit 2, after which venetoclax was added to the therapy 
and led to a complete remission (Supplementary Figure 4a). FoundationOne confirmed the 
presence of an NPM1 W288fs*12 mutation, and also detected mutations in DNMT3A and 
IDH2. These mutations were detected at all time points, even after complete morphological 
remission. However, they were absent in a later follow-up sample that was not part of the 
study, suggesting that they likely originated from remaining dying blast cells or potentially from 
differentiated myeloid cells that originated from the mutated progenitors (Supplementary 
Figure 4b). Consistent with the clinical course of the patient, CyTOF analysis indicated high 
expression of CD34 and Bcl-2 in the AML blasts (Supplementary Figure 4c), and PCY 
showed on-target responses of the patient’s AML cells to venetoclax and the combination of 
decitabine + venetoclax ex vivo (Supplementary Figure 4d). scRNA-seq analysis identified 
the presence of immature CD34 positive AML blasts at visits 1 and 2, which were all cleared 
at visit 3. Interestingly, erythroid cells were mainly detected in the sample at visit 3, potentially 
indicating the restoration of a healthy bone marrow environment (Supplementary Figure 4e).  
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Supplementary Figure 5. a: Schematic of the clinical course of patient TP030. b: Variant allele 
frequencies from FoundationOne Heme for genomic alterations detected in at least one patient sample. 
c: t-SNE calculated on the batch-corrected expression values of all cells measured by scRNA-seq (visit 
1: 3469 cells, visit 2: 4152 cells). Regions in the t-SNE are annotated with the most abundant cell type, 
small plots on the side show cell type specific marker gene expression (darker color = higher 
expression). d: Inferred cellular hierarchy based on copy number variations identified by scDNA-seq. 
 
Patient TP030 was initially diagnosed with AML six years before this study. The patient 
relapsed for the first time after allo-HSCT four years past diagnosis, at which point she was 
treated with the Flt3-inhibitor midostaurin, leading to a complete remission followed by a 
second allo-HSCT. After another two years in remission, the patient presented with a second 
relapse and the first TuPro sample was obtained (Supplementary Figure 5a). FoundationOne 
highlighted the re-emergence of a FLT3-ITD mutation, as well as the presence of mutations in 
BCORL1, CHEK2 and a splice site mutation in RUNX1 (Supplementary Figure 5b). Based 
on the FLT3 mutation, the patient was treated with Gilteritinib after the first visit and achieved 
a complete remission (Supplementary Figure 5a). Interestingly, although the previously 
observed pathogenic mutations disappeared at the second visit, we observed a low frequency 
DNMT3A R882C mutation emerging at this time point. This mutation persisted at low 
frequencies even though the patient remained in remission, likely reflecting clonal 
hematopoiesis. This finding is consistent with a previous study that identified no correlation 
between disease progression and the persistence of DNMT3A mutations 2. scRNA-seq 
analysis revealed that the first sample was dominated by AML blasts (>80%) with mostly 
myeloid-like phenotype and only a small fraction of CD34 positive cells (Supplementary 
Figure 5c). Consistent with the clinical course of the patient, AML blasts were no longer 
present in the second sample, which was instead composed of a mixture of erythroid cells, B 
cells and a large fraction of T- and NK cells. Analysis of CNVs by scDNA-seq indicated a gain 
of a short segment on chromosome 8 in all analyzed cells, thus likely representing a germline 
variant. An additional clone characterized by loss of one copy of the segment of chromosome 
21 where RUNX1 is located (21q.22) was only detected at visit 1, while two clones 
characterized by a gain of one segment in chromosome 17 and loss of one copy of the X-
chromosome, respectively, were present at the second visit only (Supplementary Figure 5d). 
 
  



12 

TP031 

Supplementary Figure 6. a: Schematic of the clinical course of patient TP031. b: Correlation of PCY 
scores between visit 1 and visits 2 and 3, respectively. The colored dots highlight the previous treatment 
(decitabine) and the treatment following the first visit (decitabine + venetoclax). Lines and shaded areas 
correspond to a linear regression fit with 95% confidence bands. P values (two-sided t-test) and 
Pearson’s R are indicated. Data are from three biological replicates (blood and bone marrow samples 
at visit 1, blood only at visit 2). c: Expression of CD34, Bcl-2 and CD36 by CyTOF. Black dots 
correspond to all samples in the cohort, colored dots mark samples from patient TP031. d: t-SNE 
calculated on the batch-corrected expression values of all cells measured by scRNA-seq (visit 1: 
3261 cells, visit 2 (peripheral blood sample): 4648 cells). Regions in the t-SNE are annotated with the 
most abundant cell type, small plots on the side show cell type specific marker gene expression 
(darker color = higher expression). e: Inferred clonal hierarchy based on copy number variations 
identified by scDNA-seq. 
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Patient TP031 was initially diagnosed with KMT2A rearranged AML. The patient had been 
treated by allo-HSCT and prophylactic treatment with decitabine, but eventually relapsed three 
months prior to the first TuPro visit (Supplementary Figure 6a). After the first sampling, the 
patient received decitabine + venetoclax, however the treatment was stopped after 14 days. 
A second sample (peripheral blood only) was then analyzed. PCY analysis identified 
venetoclax-based treatments among the strongest on-target hits in all samples analyzed 
(Supplementary Figure 6b). Consistent with the ex vivo sensitivity to Bcl-2 inhibition, CyTOF 
analysis highlighted high expression of CD34 and Bcl-2 compared to the remainder of the 
cohort (Supplementary Figure 6c), and scRNA-seq identified primarily immature AML blasts 
with high expression of CD34 and BCL2 (Supplementary Figure 6d). This was particularly 
pronounced in the blood sample analyzed at visit 2, which was composed of >80% of mostly 
HSC-like immature blasts. scDNA-seq analysis highlighted the presence of multiple clones 
with different CNV patterns, of which some were sample-specific.  
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Supplementary Figures 7-13 
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Supplementary Figure 7 
Identification of AML blasts across TuPro technologies. a: Schematic illustrating the definition 
of blasts across technologies (see Methods for details). For PCY, it corresponds to the fraction 
of cells positive for CD34 or CD117. For scRNA, blasts were identified using automated 
hierarchical cell typing based on reference transcriptomes (Supplementary Data 13) as 
described by Prummer et al 3. For CyTOF, blasts were defined on the abundance of known 
markers, primarily CD45 (low) and absence of erythroid markers (putative AML), and 
additionally CD34 (high) (CD34+ AML). For scDNA, only samples with any CNVs are 
considered and the blast fraction corresponds to the fraction of cells with CNVs in a panel of 
disease-relevant genes (Supplementary Data 3). b: Correlation of blast fractions identified 
by TuPro technologies and pathology. Pathology refers to bone marrow aspirate cytology 
(histology if no cytology readout was available) for bone marrow samples and cytology for 
blood samples. Linear regression lines with 95% confidence bands, Pearson’s R and 
corresponding P values (two-tailed t-test) are indicated. Sample numbers (biological 
replicates): CyTOF n = 57; PCY n = 48, scRNA n = 29; Pathology n = 53; scDNA n =14. 
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Supplementary Figure 8 
PCY-based ex vivo drug response landscape of rrAML. a: Fraction of samples in which a drug 
scored on-target (PCY score > 0.1), by drug. b: Drug-drug correlation matrix of PCY scores. 
Drugs are ordered by hierarchical clustering (euclidean distance, complete linkage). Color 
represents Pearson correlation between each pair of drugs. Manually curated drug target 
categories are annotated. c: Example correlation plots for selected drug-drug pairs, 
highlighted by colored squares in (b). Purple dots correspond to samples in the chemoresistant 
cluster (see Figure 2a). Linear regression lines with 95% confidence bands, Pearson’s R and 
corresponding P values (two-sided t-test) are indicated. Data represent 38 samples with > 5% 
blast content by cytology from 18 patients. 
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Supplementary Figure 9 
Consistency between ex vivo responses by PCY and 4i DRP. a: Absolute log2 fold changes 
(FC) comparing VEN to DMSO control across 4i DRP features versus VEN PCY scores. Each 
dot corresponds to the mean absolute FC across 37 4iDRP features for a single sample, lines 
correspond to the standard error of the mean, and colors mark VEN exposure at the time of 
sampling. b: Volcano plot for the association of VEN PCY scores and VEN-induced changes 
in 4i DRP features. The x-axis corresponds to the slope of the regression line with VEN PCY 
scores as predictor and the DMSO-normalized 4i DRP features as the response variable. The 
y-axis denotes uncorrected p values of the linear model (two-sided t-test). Red dots denote 
Benjamini-Hochberg FDR < 0.1. Features shown in Figure 2d are highlighted in bold. All data 
represent 16 samples from 13 patients that had a blast content of > 5% and were measured 
both by 4i DRP and PCY. 
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Supplementary Figure 10 
A single-cell landscape of rrAML. a-c: t-SNE calculated on scRNA expression of 40369 AML 
cells. a: Colored by phenograph cluster assignment, b: Colored by sample ID, c: Colored by 
AML subtype (assigned by scROSHI, see Supplementary Data 13 and Methods). d: 
Characteristics of the clusters shown in (a). From top to bottom: Contribution of each sample 
ID to each cluster; Fraction of AML subtypes per cluster; Contribution of cells from VEN 
exposed and non-exposed samples to each cluster; Average BCL2 and CD36 expression; 
VEN sensitivity (PCY score, weighted by relative abundance of cells per sample) per cluster.  
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Supplementary Figure 11 
Molecular determinants of VEN sensitivity. a: Scatterplots of VEN PCY score against gene 
expression (scRNA-seq, bulkified across all AML cells per sample) for genes with previously 
reported associations to VEN resistance (see Figure 3d and Supplementary Table 1). b,c: 
Correlation of PCY-based VEN response and composite biomarkers calculated from bulkified 
scRNA-seq expression in AML cells. b: 17-gene leukemia stem cell (LSC17) score 4, C: 
Mediators of apoptosis combinatorial (MAC) score 5. d: Expression of CD36 in bulk RNA. Left: 
z-scored normalized expression values. Right: z-scored normalized expression values after 
regressing out the effect of blast content. e: Abundance of CD36 in bulk proteotyping. Left: 
normalized protein abundance. Right: z-scored normalized protein abundance after 
regressing out the effect of blast content. Linear regression line with 95% confidence bands, 
Pearson’s R and corresponding P values (two-sided t-test) are shown. Sample and patient 
numbers: a-c: 24 samples from 18 patients; d: 26 samples from 17 patients; e: 25 samples 
from 12 patients. 
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Supplementary Figure 12 
Comparison of molecular associations with VEN resistance across technologies. a-b: 
Association of protein / RNA levels with innate and treatment-related resistance to VEN for all 
markers in the CyTOF panel. Effect size represents the slope of the regression line for innate 
resistance and the difference in mean between VEN naive and VEN exposed samples for 
acquired resistance. P values obtained from a linear regression and a two-sided Welch’s t-
test, respectively. CyTOF: n=38 samples from 18 patients; scRNA: n=24 samples from 18 
patients; bkRNA: 26 samples from 17 patients. c: Association of marker (protein or RNA) 
levels with VEN PCY score across all samples and 4 technologies. Shown are literature-
derived genes known to be involved in VEN resistance, as well as the top 5 associations by 
technology. Values correspond to the slope of the regression line marker level ~ VEN PCY 
score d: GSEA result using the average association between gene expression in AML cells 
(scRNA-seq) and innate / acquired VEN resistance to rank genes. Negative enrichment scores 
indicate association with resistance, and positive scores with sensitivity. e: Protein 
abundances for all detected proteins in the pathway “mitochondrial respiratory chain complex 
assembly” (GO:GO:0032981). Colors represent z-scored, blast content-corrected protein 
abundances. Samples are ordered by VEN PCY score, proteins are rendered by hierarchical 
clustering (Euclidean distance, complete linkage). f: Pathway score (singscore, 6) for the 
proteins shown in (e), associated with VEN ex vivo response. Data in (e) and (f) represent 29 
samples from 12 patients. g: Fraction of VEN resistant samples (n=12) that were ex vivo 
sensitive (1-RBF > 0.1) per drug. Only drugs to which at least 5 samples were sensitive are 
shown. h: Correlation between ex vivo response to volasertib and expression (bulkified 
scRNA-seq) of the drug’s target PLK1. b,f,h: Regression line with 95% confidence bands, 
Pearson’s R and P value (two-sided t-test) are indicated. All analyses were performed for 
samples with > 5% blast content. In a,b, and d, samples from patients that were treated with 
venetoclax in previous treatment lines were excluded.  
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Supplementary Figure 13 
Kaplan-Meier curves for patients in the BEAT-AML cohort, stratified by CD36 expression level 
(bulk RNA-seq). P value from a log-rank test is indicated. a, including all samples from patients 
> 18 years old (n=626), b, only including newly diagnosed patients > 18 years old (n=426). 
Patient numbers per 2-year interval are indicated. Lines indicate the Kaplan-Meier survival 
probability estimate, estimate, shaded areas correspond to the 95% confidence interval and 
tick marks represent censored events. 
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Supplementary Table 1: Summary of known venetoclax resistance mechanisms involving 
altered gene expression 

Category Protein (Gene) Mechanism of / 
association with 
resistance 

References 

BCL2 family BCL2 Decreased ratio of 
BCL2 / other BCL 
family members 

 5,7 

 MCL1 upregulation 
 7–10 

 BCL-xL (BCL2L1)  upregulation 
7,10 

 BCL-w (BCL2L2)   

 BCL2A1 upregulation 
11 

BH3 proteins 
(sensitizers) 

NOXA (PMAIP1) Loss or 
downregulation by 
TP53 loss 

12,13 

BH3 proteins 
(sensitizers) 

BIK   

BH3 proteins 
(sensitizers) 

BIM (BCL2L11)   

BH3 proteins 
(activators) 

BID   

BH3 proteins 
(activators) 

BAD   

BH3 proteins 
(activators) 

PUMA (BBC3) Downregulation by 
TP53 loss 

13 

Effectors BAX, BAK (BAK1) loss or 
downregulation by 
TP53 loss 

12,13 

Metabolism CPT1A Upregulation 
14 

 CD36 Upregulation 14–16 

Mitochondrial 
structure and 
function 

AMPK (PRKAA1) Upregulation leading 
to increased oxphos 

17 

Mitochondrial 
structure and 
function 

CLPB upregulation 12 
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Differentiation CD34 down 
5 18–20  

 

 Monocytic markers 
e.g. CD68, CD64 
(FCGR1A), ITGAM, 
KIT  

up 
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